
Harvest - a System for Creating Structured Rate Filing Data from Filing PDFs

Ender Tekin1, Qian You2*, Devin M. Conathan1, Glenn M. Fung1, Thomas S. Kneubuehl1

1 American Family Mutual Insurance Co. S.I.
2 Coupang Corp.

etekin@amfam.com, qyou@coupang.com, dconatha@amfam.com, gfung@amfam.com, tkneubue@amfam.com

Abstract

We present a machine-learning-guided process that can ef-
ficiently extract factor tables from unstructured rate filing
documents. Our approach combines multiple deep-learning-
based models that work in tandem to create structured repre-
sentations of tabular data present in unstructured documents
such as pdf files. This process combines CNN’s to detect ta-
bles, language-based models to extract table metadata and
conventional computer vision techniques to improve the ac-
curacy of tabular data on the machine-learning side. The ex-
tracted tabular data is validated through an intuitive user in-
terface. This process, which we call Harvest, significantly re-
duces the time needed to extract tabular information from
PDF files, enabling analysis of such data at a speed and scale
that was previously unattainable.

Introduction
Tabular data frequently appears in the vast amounts of doc-
uments that need to be processed in many insurance work-
flows. However, these documents are usually unstructured,
appearing either in the form of scanned documents or im-
ages, as well as documents that were born digital, but lack
a structured representation of the data due to limitations of
document types such as PDF files. As such, any process that
can efficiently extract tabular data and convert it into struc-
tured format can lead to significant savings in processing
time and cost. In this paper, we focus on this problem, in
particular as it pertains to extracting tables from insurance
companies’ public rate filing documents.

To price a customer for a policy, insurance companies use
factor books, sets of tables that provide different weight-
ings to factors such as customer’s age, history, vehicle/prop-
erty type etc. These factors are filed by each company to
each state’s regulatory agency (such as a Department of In-
surance), and are public. Historically, insurance companies
have used these factors to benchmark their pricing. However,
obtaining this information from filing documents is in gen-
eral a manual, cumbersome and time-consuming process,
limiting the ability of companies to analyze this informa-
tion and act accordingly. Doing this in an efficient and af-

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

*The author’s contributions to this paper were produced while
the author was employed at American Family Insurance.

Figure 1: Harvest process

fordable manner can provide a large competitive advantage,
especially when it comes to bringing in new customers.

In this paper, we report on a process called Harvest that
we developed to extract tabular data from rate filings in an
efficient and scalable manner. This cloud-based process de-
ploys a combination of machine learning algorithms in a
way that allows processing large filing documents in a scal-
able manner, and provides a validation user interface that
ensures that the extracted structured tables accurately repre-
sent the data contained in the original documents. Harvest
can significantly cut down the time to process a filing, al-
lowing an analyst to focus on analyzing the data and setting
strategy rather than the tedious task of manually extracting
the information. Furthermore, the extracted information is
then available to be consumed by a variety of downstream
tasks such as analyses for marketing/sales, strategy or pric-
ing. This process is summarized in Figure 1.

Table Detection and Recognition
General document analysis, and specifically extracting ta-
bles from unstructured documents has been the subject of
ongoing research for almost as long as digital documents
have been around. Competitions such as ICDAR 2013† &
2019 (Gao et al. 2019) have recognized the importance of ta-
ble detection and recognition and have sought to further the
interest in unstructured document understanding. Datasets
from these competitions, along with others such as Marmot§
and TableBank (Li et al. 2019) have been released to support
research in this area.

Traditionally, table detection has been approached using
classical computer-vision techniques: finding lines/borders
via edge detection techniques and then combining them to

†https://www.tamirhassan.com/html/competition.html
§http://www.icst.pku.edu.cn/cpdp/data/marmot data.htm

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

12414



Figure 2: Rate filing pdfs. Tables can be affected by watermarks, as well as lack common table features such as border lines.

construct the tables (Cesarini et al. 2002; Kasar et al. 2013).
As CNN’s have exploded in popularity, more approaches
that employ CNNs or other deep learning methods have
taken over as the best performing approaches. For example,
DeepDeSRT is another approach which uses a Fast-RCNN
to detect the tables (Schreiber et al. 2017). This is followed
by some heuristic processing to extract these tables. Paliwal
et al. (2019) uses a bottom-up method to estimate table ar-
eas and table columns; two networks that share the same set
of VGG19 features are trained to create semantic masks for
each of these areas. These are then combined to heuristically
and an OCR service, in this case Tesseract, is used to extract
the tabular data. The Marmot dataset is used for training,
with additional labeling of the columns to train the columns
detection network. Kavasidis et al. (2019) uses a similar ap-
proach, classifying documents’ salient parts in a pixel-wise
fashion, followed by a fully connected CRF for localizing
charts and tables.

Similar to Paliwal et al.’s work, (2019), we focus only on
the table detection problem, and will rely on a third party
service for the extraction of the data.

Rate Filings and Factor Tables
Insurance rate filings are mandatory filings by insurance
companies to state regulatory agencies whenever there is a
change in the factors that go into calculating insurance rates.
These are publicly available either through state regulatory
agencies themselves, or via third party data sources. These
documents consist of a large number of factor rate tables,
each of which can be many pages long. The format of these
filings can change significantly from company to company,
and the tables contained therein can also range from a single
row to many tens of pages. Furthermore, they are contained
in documents that contain a large amount of other informa-
tion regarding the rate calculations, changes between filings,
explanation of factors, etc. As a result, the filing documents
can also range from tens of pages to over a thousand pages.
The Harvest process aims to:

• Find all the tables corresponding to a user-provided list
of factor table names. This is to avoid detecting the many
superfluous tables that exist in documents, but are not of
interest to the analysts.

• Extract the content of each table and provide them to the
analyst for validation.

• Extract table metadata such as the specific names of the
tables. A provided factor may consists of several differ-
ent tables corresponding to that factor, e.g., a ’Base Rate’
table may consist of ’Trailer Base Rate’ and ’Safety Ap-
parel Base Rate’ tables, and both of these tables need to
be detected and provided to the user.

• Allow the analyst to correct any errors in the tables and
submit verified tables for storage in a cloud database that
can be queried for various downstream tasks.

Example pages from a rate filings are shown in Figure 2.
The filings we use for training and testing our models come
from public filings of other insurance companies, or from
within AmFam’s other operating companies.

We note the lack of ’classic’ table features such as bor-
ders as well as the potential existence of watermarks and the
variety of shapes and structures of the tables that make tradi-
tional algorithms struggle with detecting such tables. From
a performance perspective, the Harvest process needs to en-
sure that all relevant tables are detected and presented to the
user, as missing tables in a filing would result in erroneous
rate calculations. In contrast, from a user experience (ana-
lyst’s) perspective, Harvest needs to ensure that there are not
many false detections so as not to waste the user’s efforts re-
moving false detections from the end product. We discuss
this in more detail in the User-Facing Results section.

Table Detection
The first step in Harvest is to determine which pages in these
large documents that may have the tables the analyst is in-
terested in. To find an initial set of candidates, the text from
each page is extracted (via parsing the PDF file or OCR) and

12415



the table names provided by the analysts are matched against
the text in each page. Pages where the names of factor tables
are found are then analyzed to see if any tables are present.
This reduces the number of candidate pages by a significant
amount, reducing the computational demands and cost.

We approach table detection as a general object detection
problem, as was done by Schreiber et al. ((Schreiber et al.
2017)), and use a Faster-RCNN model to detect and localize
tables in page images (Ren et al. 2015). Faster-RCNN is a
state-of-the-art object detection framework that consists of a
region proposal network that learns to identify potential ob-
jects, and outputs region proposals of these objects. These
region proposals are classified as one of the objects of in-
terest or background by a classifier network that is jointly
trained with the region proposal network and shares the set
of object features. This allows for faster training and infer-
ence, as the same backbone is used for both networks.

Model Training
To train the object detection models, we annotated several
hundred pages of rate filing documents from several insur-
ance companies’ filings by drawing bounding boxes around
the tables, captions and headers using the Prodi.gy annota-
tion tool. These labeled datasets were split into training and
test sets, ensuring that the images in the training and test sets
come from separate filing documents from different states.
This was done to ensure generalizability, since some tables
span multiple pages, and having different pages of the same
table in the test and training sets may give inflated accuracy
results. Validation was performed using a five-fold process,
where the training sets were randomly split into 5 subsets,
and the training was done on 4 sets and tested on the fifth.
This was done 5 times, each partition being used for testing
once, and the average results across all 5 were used for pa-
rameter selection. In practice, training was seen to be fairly
robust to parameters, so we only performed this to coarsely
determine reasonable values for learning rate and a couple
of other parameters. After that, we used the whole training
set to train our Faster-RCNN models and test it on the test
sets consisting of separate filing images.

Model Performance
COCO Metrics We used COCO metrics to evaluate the
performance of our table detection models as it is a com-
monly used metric for object detection tasks (Lin et al.
2014). In general, very precise detection of boundaries is
not necessary for extracting the factor rate tables. As such,
we use the mean Average Precision for IoU>0.5 as our pre-
cision metric, and mean Average Recall @ 10 as our recall
metric in our performance comparisons.

A base model was trained using the training sets for 4
companies for 20000 steps, with the learning rate being
halved every 3000 steps. The results are shown in Table 3.

Looking at Figure 3, one might note the low recall values
using the mean Average Recall @ 10 criterion. We believe
that the main reason for the low recall values is due to the
fact that the table detection models detect table-like struc-
tures within the actual tables marked as ground-truth, and

Figure 3: Base Model results. * indicates companies whose
training sets were used for training this model. Results are
shown on the distinct test sets for all companies.

these are considered as false negatives due to the IOU cri-
terion used by COCO metrics. In production, we (1) merge
the detected tables such that only the largest overlapping ta-
ble is returned, and (2) consider confident detection of at
least one table as the criterion for further processing, result-
ing in significantly improved recall values using the same
model when the task is only detecting whether there is a rel-
evant table in the page. From this perspective, COCO recall
metrics are pessimistic, in that they are averaged over IoU
values of [0.5, 0.95] with a step size of 0.05. We can cal-
culate precision/recall metrics by varying the IoU threshold
and confidence threshold for detection, we show one such
example for Company 1 in Figure 4.

The variability of performance across different companies
is especially notable, and for a performance-critical system
as this, it is important that the performance meets certain
criteria. To ensure that the model performs at the expected
level across companies, it was determined that separate mod-
els be deployed for different companies, each model fine-
tuned for that specific domain. This can be achieved by us-
ing labeled examples for each company to further refine the
weights from the base model, potentially leading to signif-
icant improvements at the cost of increased labeling needs.
To this end, we randomly sampled N=5, N=10, N=20, N=50,
N=100 and N=200 samples from the training sets of each
company and used these as the training sets, along with a
matched number of examples from one of the companies in
the original training sets. We performed this experiment 5
times, and show the average results in Figure 5.

We note that there is usually an immediate boost to per-
formance with as little as 5 labeled examples for companies
that were not in the original training set, as can be seen from
the precision/recall plots for Company 3 (see Figure 6). This
continues to improve until around 100 examples for preci-
sion before saturating, whereas for recall, the performance
continues to improve. For companies that the baseline model
was already performing well on, the improvement is limited,
indicating that further fine-tuning is not necessary.

12416



Figure 4: Table detection results for Company 1: the confi-
dence threshold is varied for different IoU thresholds to get
the various precision/recall plots. For our business case, it is
important that the recall for this task is high, so we can set
the thresholds to support this by choosing a combination of
IoU and confidence thresholds. Note that even with a pre-
cise IoU threshold of 0.6 that allows accurate localization of
tables, we can get around 0.9 precision & recall for this task.

Figure 5: Effect of fine-tuning on precision (top) and recall
(bottom) for various split sizes.

Observations We also explored using examples from
other commonly used table datasets such as ICDAR 2013
and Marmot as extra training examples for our table detec-
tion models. However, we saw that this, in fact, reduced per-
formance, further emphasizing that rate filing tables are vi-

Figure 6: Fine-tuning results for company 3 vs the number of
training examples. Precision on the top, recall on the bottom,
results are averaged over 5 runs where the training examples
were randomly sampled for each run. Note the initial im-
provement in performance, despite the error bars due to the
random nature of the smaller splits. Performance increases
and is more stable as the split sizes increase as the variability
of the tables is captured better on larger splits.

sually dissimilar to commonly used tables in publications
and similar documentation that form the bulk of table detec-
tion datasets. Many such datasets are collected from Word
or LATEXsource files, as it is easier to automatically create ta-
ble datasets. However, this ends up skewing these datasets
(and the models trained via these) to focus on conventional
table features such as borders and the distinct look of LATEX-
produced tables in scientific publications.

User-Facing Results In many ways, the problem of de-
tecting a certain set of tables from a larger collection of
pages is similar to a search-ranking problem, where we do
not necessarily know that a given factor exists, and we need
to show the likely candidates sorted in a logical order, with-
out presenting extraneous pages. We use R-precision as the
metric to determine how the table detection performance af-
fects the results presented to the analyst (Beitzel, Jensen, and
Frieder 2009). In summary, R-precision can be defined as
the precision at the Rth position in the ranking of results
that has R relevant documents. For example, if a factor ta-
ble spans R = 5 pages in a filing, R-precision would be
the number of correct pages returned in the first 5 results.
This requires knowing exactly which factors correspond to

12417



Filing Average R-precision Completeness
Filing 1 0.937 58 / 60 (0.967)
Filing 2 0.894 102 / 104 (0.981)
Filing 3 0.960 122 / 124 (0.984)

Table 1: User-facing results reflecting how Harvest performs
as a search engine. Harvest found 282/288 tables (97.9 %) in
these filings. Upon visual inspection, it was noticed that the
tables missed were very small, some only 2 cells big with no
borders, looking visually similar to a line of text.

which pages in a document. To this end, we collected logs
from three rate filings that Harvest was used to process. We
also measured completeness as the number of pages of factor
rate tables that were detected vs the total number of factor
rate tables that were in the filing. We provide the results in
Table 1. We should also note that in some filings, there are
semi-duplicate tables (for example, a table that shows the
current factor, and a factor showing the changes in the fac-
tor table from a previous filing), and the user requires only
one of them. That can result in extra pages being shown to
the user, which affected the average R-precision in Filing 2.
These values were deemed satisfactory by the end user (this
is discussed further in the User Satisfaction section).

We also explored the effect of table detection performance
(as measured by COCO metrics) on these user-facing met-
rics. The precision of the model used here was 0.95 and
recall was 0.68. We then evaluated R-precision and com-
pleteness values at earlier stages of training to see the ef-
fect of different precision/recall values in R-precision and
completeness. It was seen that the while the R-precision and
completeness values can be somewhat stable for some fil-
ings, they drop significantly for others when the precision
and recall values are a few percentage points lower earlier
in the training. As such, to maintain the same level of sat-
isfactory user performance, we found that it is necessary to
maintain precision around 0.95, and recall around 0.68.

New Company Onboarding
A table detection model can benefit significantly from fine-
tuning as noted previously. However, doing this for ev-
ery company and potentially multiple business lines can be
costly and add lead-time to adding a new company’s tables
in this system. From a scalability standpoint, it is important
to minimize the effort required to train a new model on a
new company’s documents. This requires finding a way to
efficiently adapt the existing models to each new company.

Domain Adaptation Domain adaptation is an unsuper-
vised approach to adapting an existing model trained on a
particular domain to a new domain (Long et al. 2015; Ganin
and Lempitsky 2015; Gebru, Hoffman, and Fei-Fei 2017).
The idea behind domain adaptation is to adapt an existing
network to focus on domain-independent features for the
task at hand via regularization that enforces constraints be-
tween the source (original) domain and the target (new) do-
main the model is expected to perform on. If the model can
perform its task based on such domain-independent features,

Figure 7: This t-SNE plot of features prior to the object clas-
sification layers of Faster-RCNN shows an example of do-
main adaptation on the features of two companies. The fea-
tures in blue correspond to an image from a source domain,
and those in red correspond to an image from the target do-
main. On the left are the features from the base model, which
can be seen to differ significantly. On the right are domain-
adapted features after training via labeled images from the
source domain and unlabeled images from the target do-
main. These features are much more aligned.

then it is expected to transfer better to new domains.
For object detection, a similar approach was proposed by

Chen et al. (2018). In this paper, it is noted that a model can
fail to perform well on a new model due to image-level shifts
such as illumination or style, or for object-level shifts such
as changes in the appearance of the objects of interest in the
image. To address this shift and adapt an existing model,
they propose a training paradigm that adds some compo-
nents to a Faster-RCNN model that penalizes the dissimilar-
ity of features (at both image- and object-level) between the
source domain (consisting of labeled images from the origi-
nal training set) and the target domain (consisting of images
from the new domain). The training is done in an adversar-
ial fashion, and does not need labels for the target domain
- if the features between the source domain and target do-
main are similar, then it is expected that the performance of
the target domain be similar to that of the source domain.
We use a number of labeled examples from the source do-
main and an equivalent number of unlabeled examples from
the target domain to perform domain adaptation of the base
models. Figure 7 shows how domain adaptation can align
the features between the source and target domains.

In practice, we found domain adaptation to be very sen-
sitive to parameter values, as it aims to balance the per-
formance of the Faster-RCNN model on the labeled data,
while trying to align the features between the labeled and
unlabeled data. Finding a consistent point where these two
competing constraints are balanced is a challenging task,
and requires some experimentation. In general, we found
that straightforward application of domain adaptation with-
out any labeled examples from the target domain for train-
ing can slightly reduce the performance of the model on
the target dataset. However, we observed that fine-tuning the
domain-adapted model can exceed the performance of fine-
tuning the base model. A two-step approach that involves
unsupervised domain adaptation with supervised fine-tuning
can allow the model to reach the fine-tuned performance of
the base models with fewer labeled examples. Automating
this pipeline can reduce the need for labeling and help on-
board new companies faster.

12418



Figure 8: Precision values for domain adaptation with Com-
pany 1 as the target domain. ’N/A’ indicates conventional
fine-tuning without domain adaptation. Best results come
from using Company 5 as the source domain.

Another point that is worth mentioning is that domain
adaptation performs best when the ’source’ domain and ’tar-
get’ domain during the adaptation process are similar. In
other words, after the base model is trained, identifying the
’closest’ domain to the target domain can lead to improved
performance as the labeled examples from the source do-
main can be used for data augmentation during the fine-
tuning stage; we can perform fine-tuning with labeled ex-
amples from the similar source domain as well as the target
domain, further reducing the need for labeled examples. Fig-
ures 8, 9 show the effect of different source domains as co-
training domains in a domain-adaptation setting for a target
domain (Company 1). While domain adaptation can reduce
the initial precision & recall values compared to the non-
domain adapted model (See the ’Base’ columns in the bar
chart), jointly fine tuning this model afterwards with images
from both the source & target domains can take advantage
of the labeled source domain data and act as data augmen-
tation, potentially leading to significant improvements, es-
pecially in precision. Similar conclusions were reached by
Casado-Garcı́a et al. (2020), namely that “fine-tuning works
better when there is a close relation between the source and
target task.” As such, we are exploring ways to be able to
identify good co-domains that would allow us to only use
unlabeled data from the target domain for adaptation and es-
timating performance.

Table Extraction
Once detected, the information in the detected tables need to
be extracted in a format that will allow analysis of this data.
After some exploration, we decided to rely on the Amazon
Textract service to extract the tabular data. Textract Table
Detection was seen to be mostly reliable in extracting tabular
information, with some caveats discussed below.

Textract
Amazon Textract is a cloud-based service that can perform
OCR on a page and provide the results in a semi-structured

Figure 9: Recall values for domain adaptation with Com-
pany 1 as the target domain. ’N/A’ indicates conventional
fine-tuning without domain adaptation. In this case, highest
recall is by using Company 8 as the source domain.

fashion, including tables. In general, we found Textract to
be a reliable service for Harvest use to extract the data in
the detected tables. To see if we could rely solely on Tex-
tract for table detection, we used COCO metrics to compare
the results of Textract table detection outputs and compare
it to our results. While Textract precisions are comparable
to the baseline results, out of the box it generally has bet-
ter recall than the base model as seen in Figure 5. However,
fine-tuning with as little as 50 images for a company can
provide a significant (and necessary) boost to our precision
and recall values, easily matching and sometimes signifi-
cantly exceeding Textract’s performance. This emphasizes
the potential benefits of in-house models over one-size-fits-
all approaches. As noted prior, we use the COCO metrics
precision @ IoU > 0.5 and recall @ 10.

We also note that different companies can have signif-
icantly different precision and recall values, that seem to
be challenging to both Textract and Faster-RCNN baseline
models. This can be attributed to the widely diverse looks of
the tables in each company, and the internal consistency of
tables within a company’s filings. This supports our conclu-
sion that (1) Fine-tuning is essential to reach a high-level of
performance, and (2) individual models for each company
need to be employed to optimize the performance.

Optical Character Recognition OCR plays a significant
role in the accuracy of data. We have spent considerable time
on looking at ways to optimize OCR performance. As these
filings are, in general, born digital, using 300 dpi when con-
verting the documents to images seems to result in very few
errors. Any errors from Textract are mostly due to issues
with table structure recognition rather than the actual text.
Furthermore, an analyst further validates the data before it
is stored in a database to ensure the quality of the data. In
the future, as the system is used to collect and store more
tabular data, we plan to explore ways to automatically flag
significant deviations from existing data that may be due to
OCR issues.

12419



Figure 10: Harvest processing of a filing page

Figure 11: Precision (top) and Recall (bottom) for table de-
tection performance of Textract vs Harvest.

Table Refinement We noted that for larger tables, espe-
cially those that spanned most of a page, Textract struggled
to find accurate boundaries for the cells, occasionally merg-
ing whole rows or columns. To tackle this issue, we used a
traditional computer-vision approach. This is performed by
scanning lines through the image and marking areas where
the lines do not intersect with the detected text lines to get
a binary set of values for row/column boundary coordinates.
This set of coordinates is smoothed with a Gaussian filter,
followed by non-maximum suppression and peak detection
to estimate cell boundaries. The contents are then reassigned
to the new cells. We found that this can significantly improve
table structure output for large and dense tables.

Table Metadata
In addition to extracting the tables, analysts also need to be
able to determine the particular title of each table as the cal-
culations of rates for particular factor can be split into multi-
ple tables that contribute in different amounts. Furthermore,
determining table names is used for combining multi-page
tables; some factor tables can span over ten pages and need
to be combined into a single table to query. To tackle this
problem, we initially used the Faster-RCNN model trained

Figure 12: LayoutLM used to detect document structure.
Red indicates ’Other’ text, green indicates headers/titles and
blue indicates the tabular data.

for tables in a multi-class fashion, using the extra labeled
headers and captions. However, the performance for this
approach was not satisfactory, which we believe to be due
mainly to (1) faster-rcnn does not take into account the re-
lationship between the various objects in the page, and (2)
The captions and headers ended up just being text areas that
look very similar to other areas of text in the page.

LayoutLM In order to make use of the page layout and the
expected spatial relationships between these components of
a table, we decided to use a LayoutLMv1 model (Xu et al.
2020). LayoutLM is a language model that incorporates two-
dimensional positional embeddings of words to make use of
spatial context, where different tokens may lie with respect
to each other in a document layout. This is opposed to stan-
dard language models such as BERT (which LayoutLM is
based on) that only take into account the position of words
in a 1D word stream. Optionally, LayoutLM can also take
advantage of image embeddings in addition, allowing it to
capture richer context than regular language models.

As noted previously, tables can vary significantly be-
tween companies, necessitating separate models for optimal
performance. However, it is possible to use the same la-
beled datasets that were used for training the table detection
models. A LayoutLM-based sequence classifier model was
trained by labeling each word in a document as belonging to
the fields ’Other’, ’Header’, or ’DataTable’, the classes we
used in table detection. This was done by performing OCR
to extract bounding boxes for words; and labeling each word
with the label of the area labeled for table detection that its
bounding box had the most overlap with. We show an exam-

12420



Type Precision Recall F1-Score
DataTable 0.65 0.69 0.67
Header 0.78 0.85 0.81

Table 2: LayoutLM for detecting table headers

ple of the LayoutLM predictions in Figure 12 and the preci-
sion/recall results in Table 2.

In general, the LayoutLM model was seen to work satis-
factorily. With some post-processing (e.g., assign all words
in a ’row’ the same label as the majority, a heuristic that
seems to reliably hold for filing documents), these results
improve in practice. Note that for table detection Faster-
RCNN outperforms LayoutLM.

Cloud Implementation
The process a particular page undergoes is shown in Fig-
ure 10. Harvest was deployed in Amazon Web Services as
a cloud-based platform, allowing integration with other ser-
vices and easier connectivity to other background tasks. Fil-
ing documents can span over a thousand pages and contain
hundreds of pages of tables. Processing each page sequen-
tially through all the processes of text extraction / table de-
tection / table extraction / metadata detection can take up to a
half hour or more for a large filing. To optimize the user ex-
perience, we have developed a parallel cloud-based process
that allows a filing document to be processed in a massively
parallel fashion. The process is summarized below:
1. Analyst uploads the filing PDF document to Harvest.
2. The PDF is split into pages, and each page is sent to a

separate AWS Lambda that extracts the text and process
to look for the factor names in that page.

3. The pages that were determined to have the names of
the tables in the analyst-provided list of factor tables are
queued for further processing.

4. AWS Lambda functions run table detection models on
queued pages. Pages where tables were detected are then
sent to AWS Textract for table extraction and refinement.

5. The pages with detected tables are sent to a further set of
AWS Lambda functions that apply the LayoutLM model
to extract table headers.

6. Results are combined and presented to the analyst via the
UI once all the pages are processed.

The communication between processed is established via
a combination of message queues and an in-memory key-
value pair database. This approach cuts down the processing
time to 2-3 minutes instead of 30-40 minutes for larger fil-
ings. The architecture is presented in Figure 13.

End User Experience
The goal of Harvest is to use various machine learning
models to greatly simplify and streamline what is currently
a time-consuming manual task. Its adaptability at a larger
scale depends on the performance of the machine learning
models as well as the satisfaction of the system’s users. Har-
vest also includes a user interface that allows the user to view
and to easily make edits to the extracted tables.

Figure 13: Harvest cloud deployment

Figure 14: Harvest main user interface

User Interface
The Harvest user interface resembles an online spreadsheet
program. The user starts by selecting the list of factor tables
they are interested in and uploading a PDF. The document
is processed within a couple of minutes, and the user is pre-
sented with the user interface that allows them to review the
tables and compare them to the filing PDF, with links to the
pages each table was detected in. The user can make edits
or remove tables, and when satisfied commit their changes
which sends the results to a cloud-based database. A screen-
shot of the user interface is shown in Figure 14, displaying a
factor rate table extracted from a filing and the editing inter-
face that the analyst can use to correct any errors.

User Satisfaction
Currently, there is one analyst using Harvest. We evaluated
their satisfaction with Harvest using a modified System Us-
ability Scale (Brooke et al. 1996) that added 8 more ques-
tions regarding the usability of Harvest (pertaining to 4 di-
mensions, bidirectionally coded). The SUS score was 77 (a
score over 75 is usually considered good), and the user noted
they were ’Very Likely’ to recommend Harvest to others.

Various business units and operating companies within
our enterprise have expressed significant interest in using
Harvest for their own similar processes, and we expect the
user base to significantly increase. We can foresee the sys-
tem used by dozens of people for future deployments of the
application in the enterprise; this was one of the reasons we

12421



focused on scalability. Further, Harvest can reduce the field-
expertise currently necessary for the manual task as the ver-
ification can be done with minimal training, saving the ana-
lysts’ time to focus on data analysis.

Conclusions
Even as more data is born digital and stored in a structured
fashion, we envision that many conventional industries such
as insurance and financial industries, will need to handle un-
structured data, whether it is coming from other companies
or their customers. To our knowledge, Harvest is the first
scalable workflow that can allow widespread extraction of
tabular data from filing documents in a cost-effective and
supervised fashion. While our initial focus was based on an
existing business needs, similar architectures can be incor-
porated into other workflows or (common) business scenar-
ios where there are large amounts of unstructured data that
need to be reliably captured with minimal effort.

Future Directions
While Harvest can significantly reduce the time it takes to
process filing documents, it still relies on a human to val-
idate the results, as the accuracy and completeness of the
tables is of crucial importance for the business. We will be
exploring ways to further automate this validation process
by detecting entries that may not fit in the expected values.
The data collected through Harvest-processed filings can be
used to identify trends in field-values, flag unusual changes
to analysts and further improve the efficiency of this process.

We are also interested in improving the on-boarding pro-
cess for new companies or business lines by exploring meth-
ods that can help better identify matching source domains
to further boost the zero- or few-shot table detection per-
formance. In addition, we plan to explore large-scale pre-
training of the LayoutLM models we used to identify table
metadata to improve detection of table headers and captions.
This model that is pre-trained on filings can also be used
to robustly identify filing source, date and state from PDF
files as well, further moving towards our goal of a fully-
automated system that can identify potential errors and only
alert the users to these issues.

References
Beitzel, S. M.; Jensen, E. C.; and Frieder, O. 2009. Average
R-Precision, 195–195. Boston, MA: Springer US. ISBN
978-0-387-39940-9.
Brooke, J.; et al. 1996. SUS-A quick and dirty usability
scale. Usability Evaluation in Industry, 189(194): 4–7.
Casado-Garcı́a, Á.; Domı́nguez, C.; Heras, J.; Mata, E.;
and Pascual, V. 2020. The benefits of close-domain fine-
tuning for table detection in document images. In Interna-
tional Workshop on Document Analysis Systems, 199–215.
Springer.
Cesarini, F.; Marinai, S.; Sarti, L.; and Soda, G. 2002. Train-
able table location in document images. In Object Recogni-
tion Supported by User Interaction for Service Robots, vol-
ume 3, 236–240. IEEE.

Chen, Y.; Li, W.; Sakaridis, C.; Dai, D.; and Van Gool, L.
2018. Domain adaptive faster r-cnn for object detection in
the wild. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 3339–3348.
Ganin, Y.; and Lempitsky, V. 2015. Unsupervised domain
adaptation by backpropagation. In International Conference
on Machine Learning, 1180–1189. PMLR.
Gao, L.; Huang, Y.; Déjean, H.; Meunier, J.-L.; Yan, Q.;
Fang, Y.; Kleber, F.; and Lang, E. 2019. ICDAR 2019 Com-
petition on Table Detection and Recognition (cTDaR). In
International Conference on Document Analysis and Recog-
nition (ICDAR), 1510–1515.
Gebru, T.; Hoffman, J.; and Fei-Fei, L. 2017. Fine-grained
recognition in the wild: A multi-task domain adaptation ap-
proach. In Proceedings of the IEEE International Confer-
ence on Computer Vision, 1349–1358.
Kasar, T.; Barlas, P.; Adam, S.; Chatelain, C.; and Paquet, T.
2013. Learning to detect tables in scanned document images
using line information. In 12th International Conference on
Document Analysis and Recognition, 1185–1189. IEEE.
Kavasidis, I.; Pino, C.; Palazzo, S.; Rundo, F.; Giordano, D.;
Messina, P.; and Spampinato, C. 2019. A Saliency-Based
Convolutional Neural Network for Table and Chart Detec-
tion in Digitized Documents, 292–302.
Li, M.; Cui, L.; Huang, S.; Wei, F.; Zhou, M.; and Li, Z.
2019. TableBank: A Benchmark Dataset for Table Detection
and Recognition. arXiv:1903.01949.
Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ra-
manan, D.; Dollár, P.; and Zitnick, C. L. 2014. Microsoft
COCO: Common objects in context. In European Confer-
ence on Computer Vision, 740–755. Springer.
Long, M.; Cao, Y.; Wang, J.; and Jordan, M. 2015. Learn-
ing transferable features with deep adaptation networks. In
International Conference on Machine Learning, 97–105.
PMLR.
Paliwal, S. S.; Vishwanath, D.; Rahul, R.; Sharma, M.; and
Vig, L. 2019. Tablenet: Deep learning model for end-to-
end table detection and tabular data extraction from scanned
document images. In International Conference on Docu-
ment Analysis and Recognition (ICDAR), 128–133. IEEE.
Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster
R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks. In Cortes, C.; Lawrence, N.; Lee, D.;
Sugiyama, M.; and Garnett, R., eds., Advances in Neural
Information Processing Systems, volume 28. Curran Asso-
ciates, Inc.
Schreiber, S.; Agne, S.; Wolf, I.; Dengel, A.; and Ahmed,
S. 2017. Deepdesrt: Deep learning for detection and struc-
ture recognition of tables in document images. In 14th IAPR
International Conference on Document Analysis and Recog-
nition (ICDAR), volume 1, 1162–1167. IEEE.
Xu, Y.; Li, M.; Cui, L.; Huang, S.; Wei, F.; and Zhou, M.
2020. LayoutLM: Pre-training of Text and Layout for Doc-
ument Image Understanding. Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discov-
ery & Data Mining.

12422


