Contribution-Aware Federated Learning for Smart Healthcare
DOI:
https://doi.org/10.1609/aaai.v36i11.21505Keywords:
Smart Healthcare, Federated Learning, Contribution EvaluationAbstract
Artificial intelligence (AI) is a promising technology to transform the healthcare industry. Due to the highly sensitive nature of patient data, federated learning (FL) is often leveraged to build models for smart healthcare applications. Existing deployed FL frameworks cannot address the key issues of varying data quality and heterogeneous data distributions across multiple institutions in this sector. In this paper, we report our experience developing and deploying the Contribution-Aware Federated Learning (CAFL) framework for smart healthcare. It provides an efficient and accurate approach to fairly evaluate FL participants' contribution to model performance without exposing their private data, and improves the FL model training protocol to allow the best performing intermediate models to be distributed to participants for FL training. Since its deployment in Yidu Cloud Technology Inc. in March 2021, CAFL has served 8 well-established medical institutions in China to build healthcare decision support models. It can perform contribution evaluations 2.84 times faster than the best existing approach, and has improved the average accuracy of the resulting models by 2.62% compared to the previous system (which is significant in industrial settings). To our knowledge, it is the first contribution-aware federated learning successfully deployed in the healthcare industry.Downloads
Published
2022-06-28
How to Cite
Liu, Z., Chen, Y., Zhao, Y., Yu, H., Liu, Y., Bao, R., Jiang, J., Nie, Z., Xu, Q., & Yang, Q. (2022). Contribution-Aware Federated Learning for Smart Healthcare. Proceedings of the AAAI Conference on Artificial Intelligence, 36(11), 12396-12404. https://doi.org/10.1609/aaai.v36i11.21505
Issue
Section
IAAI Technical Track on Highly Innovative Applications of AI