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Abstract

The deployment of systems of artificial intelligence (Al) in
high-risk settings warrants the need for trustworthy Al. This
crucial requirement is highlighted by recent EU guidelines
and regulations, but also by recommendations from OECD
and UNESCO, among several other examples. One critical
premise of trustworthy Al involves the necessity of finding
explanations that offer reliable guarantees of soundness. This
paper argues that the best known eXplainable Al (XAI) ap-
proaches fail to provide sound explanations, or that alterna-
tively find explanations which can exhibit significant redun-
dancy. The solution to these drawbacks are explanation ap-
proaches that offer formal guarantees of rigor. These formal
explanations are not only sound but guarantee irredundancy.
This paper summarizes the recent developments in the emerg-
ing discipline of formal XAI. The paper also outlines existing
challenges for formal XAI

1 Introduction

The vital importance of Trustworthy Al is illustrated by re-
cent guidelines, recommendations and regulations put for-
ward by the European Union (EU), the United States gov-
ernment, the Australian government, the OECD and UN-
ESCO (EU 2016; DARPA 2016; HLEG AI 2019, 2020; EU
2021b,a; National Science and Technology Council (US).
Select Committee on Artificial Intelligence 2019; Australian
Gov. 2021b,a; OECD 2021; UNESCO 2021). Moreover,
the forecast application of machine learning in high-risk
and safety-critical applications further underscores the im-
portance of reliable explainable AI (XAI) in delivering
trustworthy Al (EU 2021a). Unfortunately, most existing
XAI approaches exhibit critical limitations, which represent
paramount reasons for excluding their deployment in high-
risk and safety-critical settings. To illustrate how significant
these critical limitations are, we analyze two concrete sce-
narios.

The Bessie & Clive affair. Two friends, Bessie and Clive,
are having a drink at the local pub. Bessie is thrilled. Her
loan application with Bank 001 was just approved. She will
soon be living in her dream house. Clive is devastated. His
loan application, also with Bank 001, was just declined.
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He doubts he will ever own a house. Trying to console her
friend, Bessie asks of Clive: “But did the bank explain to you
why your application was declined?” Clive retorts: “Well,
according to the bank’s Al, my application was declined be-
cause my age range is 30-45 and my income range is 50K-
70K.” Bessie looks baffled and exclaims: “That’s absurd!
The bank’s Al told me that my loan application was ap-
proved for the exact same reasons!” Enraged with the irra-
tionality of Bank 001’s Al, Clive, aided by his lawyer friend
Bessie, sues all the banks in the land that use the same Al

The fictional story above reveals a critical limitation of
existing model-agnostic explanations approaches (Ribeiro,
Singh, and Guestrin 2016; Lundberg and Lee 2017; Ribeiro,
Singh, and Guestrin 2018). Given two samples s; and so,
with different predictions c¢; and co, model agnostic ap-
proaches may compute an explanation X that is consistent
with both s; and s5. As the example illustrates, such ex-
planations offer no indication whatsoever for why the pre-
diction is ¢; for sy, and ¢y for ss. Clearly, limitations like
the one above contribute not to building trust in the use of
ML-enabled systems, but instead further motivate distrust.
Recent work demonstrated that situations similar to the sce-
nario above were observed with a frequency of up to 99.7%
for some datasets and ML models (Ignatiev, Narodytska, and
Marques-Silva 2019c; Ignatiev 2020). Another issue is that
model-agnostic approaches may find unrelated explanations
for the same instance.

Mrs. Long’s long reasons. Bank 001’s branch manager,
May B. Long, is delighted with the new interpretable Al for
deciding bank loan applications. Unfortunately, Mrs. Long
soon realizes that she must curb her expectations about the
new Al since it often offers explanations that are unaccept-
ably and unnecessarily long, and about which loan appli-
cants complain of being both obscure and inept.

The second fictional story above hints at a critical lim-
itation of so-called intrinsically interpretable ML mod-
els (Molnar 2020; Rudin 2019), which represent an alter-
native to model-agnostic explainers, and which have been
advocated for high-risk settings (Rudin 2019). Indeed, it has
been shown (Izza, Ignatiev, and Marques-Silva 2020; Huang
et al. 2021b) that some interpretable models, namely de-
cision trees, may produce unnecessarily conservative (and
so unnecessarily complicated) explanations. Existing ex-



perimental evidence obtained on DTs (Izza, Ignatiev, and
Marques-Silva 2020) confirms that conservative explana-
tions are often observed in more than 80% of the paths, for
DTs obtained with state-of-the-art decision tree learners.

Recent years witnessed a number of efforts towards what
this paper refers to as formal XAI (Shih, Choi, and Darwiche
2018; Ignatiev, Narodytska, and Marques-Silva 2019a; Shih,
Choi, and Darwiche 2019; Narodytska et al. 2019; Ignatiev,
Narodytska, and Marques-Silva 2019b,c; Darwiche 2020;
Ignatiev 2020; Darwiche and Hirth 2020; Audemard, Ko-
riche, and Marquis 2020; Boumazouza et al. 2020; Ig-
natiev et al. 2020a; Marques-Silva et al. 2020; [zza, Ignatiev,
and Marques-Silva 2020; Barcel6 et al. 2020; Marques-
Silva et al. 2021; Izza and Marques-Silva 2021; Ignatiev
and Marques-Silva 2021; Asher, Paul, and Russell 2021;
Waildchen et al. 2021; Huang et al. 2021b; Audemard et al.
2021a; Boumazouza et al. 2021; Blanc, Lange, and Tan
2021; Arenas et al. 2021; Darwiche and Marquis 2021; Ig-
natiev et al. 2022; Huang et al. 2022; Gorji and Rubin 2022).
In contrast with other approaches to XAI, which are cur-
rently more visible, formal XAI is based on rigorously de-
fined (and so formal) explanations, ensuring a level of rigor
that directly correlates with the logic languages used for rep-
resenting ML models. The main objective of this paper is
to provide an account of the emerging field of formal XAlI,
highlighting its successes, but also being clear about its cur-
rent limitations.

The paper is organized as follows. Section 2 introduces
the notation and definitions used throughout the paper. This
section also briefly overviews the best-known approaches
for computing explanations, highlighting their limitations.
Section 3 introduces formal explanations, summarizes a
number of results related with formal explanations, and a
number of computational problems of interest. Section 4
covers the advances in computational formal explanations
that have recently been reported. Section 5 investigates the
weaknesses of formal explanations and possible approaches
for overcoming them. Section 7 concludes the paper.

2 Preliminaries

Throughout this paper, we study explanations for classifica-
tion problems. A classification problem is represented by a
4-tuple (F,D,K, k). F = {1,...,m} represents a set of
m features. D = {Dy,...,D,,} denotes a set of domains.
Each feature ¢ € F is associated with a domain D;, repre-
senting the values that can be assigned to the feature. Given
F and D, feature space is defined as F = Dy X --- X Dy,.
(Although the examples in the paper consider Boolean fea-
tures, formal explanations do not impose restrictions on fea-
ture domains.) K = {¢1, ..., ck } is a set of classes. Finally,
K 1s a non-constant classification function mapping points in
feature space to classes, « : F — . An instance is a pair
(v,c), suchthatv € I, ¢ € K, and ¢ = x(v). The classifi-
cation function represents the operation of a classifier, i.e. a
machine learning (ML) model. We can consider neural net-
works, tree ensembles, decision trees, etc.

Throughout the paper, the simple neural network (NN)
shown in Figure 1a is used as the running example. For this
example, F = {1,2}, D = {D;, Dy}, with D; = Dy =
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{0,1}, and so F = {0,1}%, K = {0,1}, and s(x1,72) =
(max(z1 + z2 — 0.5,0) > 0). It is easy to conclude that the
classifier corresponds to the Boolean function f(z1,22) =
x1 V To.

The paper assumes a basic knowledge of propositional
and decidable fragments of first order logic (Biere et al.
2021). The notation used is standard.

Non-formal explanations. These can be broadly catego-
rized as local or global (Guidotti et al. 2019; Samek et al.
2019; Molnar 2020; Samek et al. 2021). Local approaches
for computing explanations aim at being valid for points
in feature space that are close to the target point, whereas
global approaches aim at finding an interpretable model that
mimics the original ML model. Most often, local (or post-
hoc) explanations compute either a simpler model, which
is easier to understand and analyze, or a set of features
that justify the explanation. LIME (Ribeiro, Singh, and
Guestrin 2016) and SHAP (Lundberg and Lee 2017) il-
lustrate approaches that compute simpler models, and An-
chors (Ribeiro, Singh, and Guestrin 2018) illustrates ap-
proaches that compute sets of features. As argued in Sec-
tion 1, and since 2019, several works have identified a grow-
ing number of shortcomings of non-formal explanation ap-
proaches (Ignatiev, Narodytska, and Marques-Silva 2019c;
Narodytska et al. 2019; Ignatiev 2020; Slack et al. 2020;
Camburu et al. 2019; Dimanov et al. 2020; Izza et al. 2021).
Some of the identified shortcomings demonstrate the inade-
quacy of non-formal explanations in high-risk settings. For
example, the issue with explanations illustrated with the ab-
stract loan example outlined in Section 1 is not hypothetical
and has been observed for a number of datasets (Ignatiev,
Narodytska, and Marques-Silva 2019c; Ignatiev 2020).

Non-formal explanations exhibit additional important
drawbacks. First, for deployed ML models, model agnostic
approaches are impractical since these are required to ana-
lyze training data (in order to capture the input distribution),
which may not be readily available. Similarly, the training
data may not rigorously represent the input distribution, or
data and/or concept drift may be observed. Thus, in situa-
tions where rigor of explanations is paramount, direct access
to and the ability to reason about the underlying ML model
are crucial requirements.

3 Formal Explanations

We consider an instance (v, ¢) and seek explanations for the
instance. Concretely, we seek a set of feature-value pairs
which are sufficient for the prediction, and which are also
minimal, meaning a subset- or a cardinality-minimal set. We
first propose two categories of formal explanations. After-
wards, we discuss how formal explanations are computed in
practice.

3.1 Defining Formal Explanations

The first category of explanation aims to answer a “Why?”
question. Explanations are represented as conjunctions of
literals, relating a feature with a specific or range of values;
these represent the chosen explanation function, and aim at
improving the interpretability of the explanation. Clearly, we
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The running example used in the paper is the (simple) NN shown in Figure 1a. The actual class is picked with an
ITE (if-then-else) operator. As can be concluded from the truth table for the classifier, it computes the function
1 V z2 (see Figure 1b). The NN’s logic representation (see Figure 1c) is based on earlier work (Fischetti and Jo
2018). For the point (1,0) in feature space, the prediction is 1. This can easily be checked from the constraints
modeling the NN (see Figure 1a). The logic representation is shown to be consistent with the input assignment
when the prediction is 1 (see Figure 1d). To compute an AXp, first consider allowing x; to take any value. In
this case this means allowing x; to take value O (besides the value 1 it is assigned to). As can be observed, the
prediction is allowed to change (actually in this case it is forced to change) (see Figure le). Hence, the feature 1
must be included in the AXp. In contrast, by changing x» from O to 1, the prediction cannot change (see Figure 1f).
This means that, if the other features remain unchanged, the prediction is 1, no matter the value taken by x2. Hence,

the feature 2 is dropped from the AXp. As a result, the AXp in this case is X = {1}.

Figure 1: Complete example with NN

could consider other explanation functions, as long as these
were deemed of interest. Informally, an explanation will then
be a set of features X which, if assigned to the values in v,
then the prediction is guaranteed to be ¢, independently of
the values assigned to the remaining features in 7 \ X. In-
voking Occam’s razor, we want such set of features to be
minimal, and consider subset-minimal sets of features. For-
mally, the condition above can be represented as follows. We
want to find a subset-minimal set X C F, such that,

vix e B). [(A, (o =) 2k = )]

This category of explanations is referred to as abductive ex-
planations (Ignatiev, Narodytska, and Marques-Silva 2019a)
(AXp’s), or Pl-explanations (Shih, Choi, and Darwiche
2018), or sufficient reasons (Darwiche and Hirth 2020). In
this paper, we will use the acronym AXp. If (1) holds for
some set X C F, but X is not necessarily subset-minimal,
then we say that X’ is a weak AXp. Clearly, for an instance
(v,c), F itself is a weak AXp. Computing cardinality-
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minimal explanations makes the problem computationally
harder (Ignatiev, Narodytska, and Marques-Silva 2019a).
Furthermore, existing experimental evidence (Ignatiev, Nar-
odytska, and Marques-Silva 2019a) does not reveal signifi-
cant reductions in explanations sizes.

As an example, consider a classifier computing the
Boolean function f(x1,x2) = 1 V 22, and the instance
((1,0),1). It is intuitive that the abductive explanation (for
the prediction is 1 = 1, i.e. the prediction will be 1 as long
as x1 is assigned value 1. (Observe that, in this case, the AXp
is unique.) Given the proposed definition of AXp above, it
is easy to conclude that for X = {1}, it is the case that:
V(x €F). [(x1) = (21 V x2)].

Motivated by recent work on understanding the role of ex-
planations (Miller 2019), a different category of explanation
aims to answer a “Why Not?” question. Here the objective is
to understand what needs to be done to change the predic-
tion. Informally, we want to find a subset of features which,
if allowed to take some other value, and when the remain-



ing features remain unchanged given their values in v, then
the prediction can be changed to a class other than c. As
above, we can target subset- or cardinality-minimal expla-
nations, but will preferably discuss subset-minimal explana-
tions. Formally, the condition above can be represented as
follows. We want to find a subset-minimal set )) C F, such
that,

S e B (A py =) A ) 20| @

This category of explanations is referred to as contrastive
explanations (Ignatiev et al. 2020b) (CXp’s)'. If (2) holds
for some set ) C F, but ) is not necessarily a CXp, then
we say that ) is a weak CXp.

Consider again a classifier representing the Boolean func-
tion f(z1,x2) = @1 V 2, and the instance ((1,0),1). It
is intuitive that the contrastive explanation for the predic-
tion is 1 # 1, i.e. for the prediction to change its value,
it is the case that the value of x; must also be allowed
to change. Given the proposed definition of CXp above, it
is easy to conclude that for )} = {1}, it is the case that:
A(x € F). [(—z2) A —(x1 V 22)], which is a true statement,
since 1 = 0 (with o = 0) cause the prediction to change.

By building on the work of R. Reiter on model-based di-
agnosis (Reiter 1987), recent work has proved a fundamen-
tal duality relationship between AXp’s and CXp’s (Ignatiev
et al. 2020b): For an instance (v, c), the AXp’s are (subset-
)minimal hitting sets of the CXp's and vice-versa. This result
is of utmost importance, as it has been instrumental in devis-
ing algorithms for enumeration of explanations (Marques-
Silva et al. 2021; Huang et al. 2021b; Ignatiev and Marques-
Silva 2021). Besides duality between AXp’s and CXp’s, it
can be shown that both (1) and (2) are monotone, respec-
tively on sets A and ).

Finally, AXp’s can also be formulated globally (Ignatiev,
Narodytska, and Marques-Silva 2019b), meaning that these
are defined independently of a concrete instance. In this
case, recent work proved another duality relationship (Ig-
natiev, Narodytska, and Marques-Silva 2019b), by relating
global AXp’s with counterexamples (CEx’s). This duality
result also highlighted connections between explanations
and adversarial examples (Szegedy et al. 2014; Goodfellow,
Shlens, and Szegedy 2015).

3.2 Computing Formal Explanations

Given the formal definitions of explanations proposed in the
previous section, we now investigate how automated reason-
ers can be used for computing explanations in practice. Ex-
amples of automated reasoners include Boolean Satisfiabil-
ity (SAT), Satisfiability Modulo Theories (SMT), or Mixed
Integer Linear Programming (MILP). Consistency checking
with a reasoner for theory 7 on a 7 -theory formula @7 is
represented by CO(p7; 7), and denotes whether ¢ has at
least one model (given 7), i.e. an interpretation that satis-
fies 7. For simplicity, the parameterization on 7 is omit-

'The definition used for CXp is less strict than what is described
in earlier work (Miller 2019). However, Miller’s definition is easy
to accommodate, by fixing the class one is interested in.

12345

ted, and so we use CO(¢7) instead. These theory reason-
ers operate on formulas of a suitable logic language. Given
some logic formula ¢, [] 7 denotes the encoding of ¢ in
a representation suitable for reasoning by a decision oracle
for theory 7. (For simplicity, we just use [¢].) As shown
below, the computation of formal explanations assumes the
existence of a reasoner that decides the satisfiability (or con-
sistency) of a statement expressed in theory 7 :

0O([ (Aot = 0) 1 )

(Observe that CO requires some sort of parameterization us-
ing T, F, k, X, and also ¢ = k(v).)

The function CO takes as argument a statement in theory
T, and returns one of two values: L (or false) if the state-
ment is inconsistent, and T (or true) if the statement is con-
sistent. Moreover, both (1) and (2) can be decided with calls
to CO, as shown next. Regarding (1), by double-negating
the formula one gets:

BxeF). [(A_ @ =u) A () £ @

By setting S = X, it becomes clear that (4) holds (and
so (1) holds) iff (3) does not hold. Similarly, by setting S =
F\ Y, itis also clear that (2) holds iff (3) also holds.

The computation of a single AXp or a single CXp can be
achieved with a greedy algorithm provided a few require-
ments are met. First, reasoning in theory 7 is required to be
monotone, i.e. inconsistency is preserved if constraints are
added to a set of constraints, and consistency is preserved if
constraints are removed from a set of constraints. Second,
for computing one AXp, the predicate to consider is:

Paxp(S; T, F, £, V) £
vz)> A (k(x) # c)ﬂ) %)

(1

and for computing one CXp, the predicate to consider is:

3)

]P)cxp(S; T”/T." R, V) £
co /\ (x; = v;) | A (K(X) #¢) (6)
i€F\S

(Similar to the case of CO, Py, and Py, are parameterized
by T, F, k, v, and also ¢ = £(v). For simplicity, this pa-
rameterization will be left implicit when convenient. Also,
the parameterization on ¢ = x(v), given the ones on x and
v.) Moreover, given that (1) and (2) are monotone, then Py,
and PP, are also monotone with respect to set S.
Algorithm 1 illustrates the computation of one AXp or
one CXp. (To prove that the algorithm is sound, the invari-
ants guarantee that the resulting set S respects the given
predicate, i.e. it computes either a weak AXp or a weak CXp.
Moreover, monotonicity of both P,y and Pcy, ensures that
Algorithm 1 computes a minimal set, respectively an AXp
or a CXp.) Algorithm 1 corresponds to the so-called deletion
algorithm used for explaining over-constrained sets of con-
straints. (For reasoning about diagnosis or inconsistent sets



Algorithm 1: Finding one AXp/CXp

Input: Predicate IP, parameterized by 7, F, k, v
Output: One XP S

procedure oneXP(P, T, F, k, V)
S+ F > Initialization: P(S) holds
fori ¢ F do > Loop invariant: P(S) holds
if P(S\ {i}; T, F,~k,v) then
S+ S\ {i} »>Dropiif P(S\ {i}) holds
return S > Returned set S: P(S) holds

1:
2
3
4
5:
6

of constraints, Algorithm 1 can be traced back to the early
90s (Chinneck and Dravnieks 1991). However, the same
general algorithm is also used in Valiant’s work (Valiant
1984), and some authors (Juba 2016) argue that it is im-
plicit in works from the 19 century (Mill 1843).) Because
of monotonicity of P, finding one AXp/CXp can be solved
with any algorithm for the problem of finding a minimal set
subject to a monotone predicate (MSMP) (Marques-Silva,
Janota, and Mencia 2017), and Algorithm 1 is one such ex-
ample. However, and besides the generalized formulation
of the deletion algorithm shown above, other alternatives
include the QuickXplain algorithm (Junker 2004) and the
Progression algorithm (Marques-Silva, Janota, and Belov
2013). The main difference between these algorithms is the
number of times the predicate is checked, and so the number
of times consistency of some formula is tested. In the worst-
case scenario, all algorithms require a number of predicate
tests that grows linearly with the number of features.

4 Progress in Formal Explanations

Formal explanations raise a number of challenges. We dis-
cuss two in this section, and postpone presenting a few addi-
tional challenges for the next section. One commonly per-
ceived limitation is that one must resort to a logical lan-
guage suitable for describing the ML model, and this might
be unrealistic. As argued in the previous sections, and as
shown in the recent work overviewed in this section, this is
more of a misconception than a limitation. A second lim-
itation is scalability. Indeed, the initial experimental evi-
dence (Shih, Choi, and Darwiche 2018; Ignatiev, Narodyt-
ska, and Marques-Silva 2019a) could hardly be considered
encouraging. However, the last couple of years have wit-
nessed a growing number of results on the efficient com-
putation of explanations, both in theory and in practice. This
progress is surveyed next.

4.1 Tractable Explanations

Recent years have shown that, for a growing number of
families of classifiers, both (1) and (2), but also (5) and
(6), and so Algorithm 1, can be solved in polynomial time.
The first work targeted the class of Naive Bayes Classi-
fiers (Marques-Silva et al. 2020). This work proposed a
polynomial-time algorithm for computing one AXp, and
showed that AXp’s could be enumerated with polynomial
delay (Marques-Silva et al. 2020). A second work stud-
ied decision trees (DTs) (Izza, Ignatiev, and Marques-Silva
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2020). Although decision trees are in general considered to
be interpretable (Rudin 2019; Molnar 2020), recent work has
shown that DTs can have paths that are arbitrarily larger (on
the number of features) than the number of features in an
AXp (Izza, Ignatiev, and Marques-Silva 2020). (Clearly, if
some paths in a DT are arbitrarily larger than AXp’s con-
sistent with those paths, then it is difficult to argue for the
interpretability of DTs, at least when interpretability equates
with explanation succinctness. The second hypothetical sce-
nario in Section 1 illustrates this issue.) Furthermore, this
work showed that AXp’s could be computed in polynomial
time. In independent work, and also in the case of DTs, it
was shown that computing one smallest explanation was
NP-hard (Barcel6 et al. 2020). Later work (Huang et al.
2021c,b) extended the results on DTs, by introducing expla-
nation graphs (XpG’s). XpG’s allow explaining in polyno-
mial time a wider range of families of classifiers that com-
prise decision trees, graphs and diagrams, including their
multi-valued variants. Furthermore, this work showed that:
i) CXp’s could also be computed in polynomial time; ii)
duality could be used for enumerating AXp’s and CXp’s;
and iii) for DTs the total number of CXp’s is polynomial
on the number of tree nodes. In the case of DTs, the fact
that the number of CXp’s is polynomial on the tree size also
served to solve in polynomial time the problem of deciding
whether a feature is included in some AXp. Clearly, being
able to decide membership of features in explanations is cru-
cial in assessing fairness, but also in helping human decision
makers to understand the impact of features on predictions.
Monotonic classifiers is another class for which tractabil-
ity results were obtained (Marques-Silva et al. 2021), both
for computing AXp’s and CXp’s. These results were fur-
ther extended in more recent work (Cooper and Marques-
Silva 2021). Finally, more recent results showed that clas-
sifiers represented with propositional languages (Darwiche
and Marquis 2002) can be explained efficiently for a broad
class of languages (Huang et al. 2021a, 2022). Concretely,
classifiers represented with d-DNNF (or with any strictly
more succinct language) can be explained in polynomial
time. The same work (Huang et al. 2021a, 2022) also stud-
ied general decision functions (GDFs). GDFs associate a
boolean function x; with each class ¢; € K, and such that
the functions {x1, ..., kKx } respect two criteria related with
computing a total function (i.e. for any point in [F at least one
k; takes value 1) and ensuring non-overlap among the classi-
fiers (i.e. for no point in feature space there exist two classi-
fiers taking value 1). For GDFs where each boolean function
is represented with the propositional language DNNF (or a
strictly more succinct language), then one AXp can be com-
puted in polynomial time (Huang et al. 2021a, 2022).

4.2 Efficient Explanations

For a number of additional families of classifiers, recent
work showed that the computation of explanations is compu-
tationally hard in theory, but that in practice explanations can
be efficiently computed, with a performance that even out-
performs model-agnostic approaches. A first work proposed
encodings for boosted trees (Ignatiev, Narodytska, and
Marques-Silva 2019c; Ignatiev 2020) (BTs), with significant



Computationally hard

Computational complexity

Poly-time

Effective Ineffective

Practical scalability (effectiveness)

Figure 2: Complexity & practical scalability of finding one
(subset-minimal) AXp/CXp

performance improvements reported recently (Ignatiev et al.
2022). More recently, and for random forests (RFs) (Izza
and Marques-Silva 2021), the problem of deciding whether
a set of features is an AXp was proved to be DP-complete.
However, in practice, the computation of one AXp was
shown (Izza and Marques-Silva 2021; Ignatiev et al. 2022)
to outperform that of the heuristic method Anchors (Ribeiro,
Singh, and Guestrin 2018), allowing the computation of for-
mal explanations for large-size random forests. It should be
underscored that this performance difference is observed no-
tably given that Anchors computes a heuristic explanation,
without guarantees of soundness or minimality in stark con-
trast with the guarantees provided by AXp’s. A difference
encoding for explaining RFs was proposed in more recent
work (Boumazouza et al. 2021). Moreover, similar results
were obtained for decision lists (Ignatiev and Marques-Silva
2021) (DLs). The progress observed in computing AXp’s in
recent years is informally summarized in Figure 2. Despite
the growing list of ML models for which explanations can
be efficiently computed in practice, efficient solutions for
neural networks (NNs) and bayesian networks (BNs) remain
illusive.

4.3 Approximate Explanations

One limitation of AXp’s and CXp’s is that there is no con-
trol over the size of explanations. Another related limitation
is that human decision makers exhibit hard limits on the
number of concepts included in explanations (Miller 1956).
Recent work proposed J-relevant inputs (Wildchen et al.
2021). These can be viewed as a generalization of (smallest)
abductive explanations, that allows the prediction not to hold
in some points of feature space, as long as the probability
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of predicting the correct prediction is sufficiently large, and
which results in explanations of smaller size. Unfortunately,
the complexity of computing §-relevant inputs is hard for
NPP. As a result, exact computation of §-relevant inputs ap-
pears impractical for most ML models. Nevertheless, recent
work showed that by relaxing the definition of J-relevant set,
and for the concrete case of decision trees, then such relaxed
(subset-minimal) d-relevant sets can be computed in poly-
nomial time (Izza et al. 2021). However, a downside of ex-
ploiting relaxed J-relevant sets are the weak guarantees of
quality for computed approximate explanations.

4.4 Queries About Explanations

Besides the ability of computing formally defined explana-
tions, another problem of fundamental importance is to be
able to decide whether a feature is included in some expla-
nation. For example, if a bank loan application is declined,
it would be crucial to decide whether the feature gender is
contained in some explanation for the decision to decline
the loan. (The relationships between (formal) explanations
and (formal) fairness were reported in recent work (Ignatiev
et al. 2020a).) The feature membership (in explanation)
problem (FMP) was studied in recent work (Huang et al.
2021b). For functions represented as DNF formulas, (Huang
et al. 2021b) showed that the membership problem was 35-
hard. However, and as mentioned earlier, this same work
showed that FMP for decision trees is in P. Given the practi-
cal importance of FMP, additional complexity results should
be expected in the near future.

Another problem of interest is to be able to enumer-
ate explanations, thus allowing a human decision maker
to get a better understanding for the reasons of a pre-
diction. For the case of naive Bayes classifiers, enu-
meration of abductive explanations can be achieved with
polynomial delay (Marques-Silva et al. 2020). More re-
cent work (Marques-Silva et al. 2021; Izza, Ignatiev, and
Marques-Silva 2020; Huang et al. 2021b; Ignatiev and
Marques-Silva 2021; Huang et al. 2021a, 2022) showed that
duality between abductive and contrastive explanations (Ig-
natiev et al. 2020b) can be used for enumeration of expla-
nations. Enumeration of explanations was also discussed in
a more general setting in earlier work (Ignatiev, Narodyt-
ska, and Marques-Silva 2019b). Besides queries related with
membership and enumeration of explanations, recent work
proposed additional queries (Audemard, Koriche, and Mar-
quis 2020; Audemard et al. 2021b).

5 Open Challenges

Despite the rapid progress witnessed with formal XAI, a
number of important challenges remain. First, for some
relevant classes of classifiers scalability is still an issue.
This is the case with neural networks (Ignatiev, Narodyt-
ska, and Marques-Silva 2019a), but also with bayesian net-
works (Shih, Choi, and Darwiche 2019). Recent advances
in automated reasoners for NNs (Liu et al. 2021; Katz
et al. 2019) are expected to contribute to improving the per-
formance of computing AXp’s and CXp’s in the case of
NNs. Second, the size of formal explanations may be un-



suitably large, especially given the cognitive limits of hu-
man decision makers. Approximate explanations with -
relevant sets (Wildchen et al. 2021), discussed in Sec-
tion 4.3, offer probabilistic guarantees of rigor, trading off
entailment for explanation size. Probabilistic sufficient ex-
planations (Wang, Khosravi, and den Broeck 2021) repre-
sent a related effort. There is preliminary work on prac-
tical implementations of J-relevant sets (Izza et al. 2021),
for the case of DTs. However, the problem’s complexity
raises a number of important challenges for the near future.
Third, as described in earlier sections, formal explanations
assume that any point in feature space is possible. However,
in some cases this is not the case. There is preliminary work
on constraining the feature space (Gorji and Rubin 2022).
Additional work will enable computing explanations by tak-
ing input constraints into account. Finally, additional topics
include feature aggregation (Ribeiro, Singh, and Guestrin
2016), computing preferred explanations, but also applying
formal XAI beyond classification problems.

6 Related Work

Explanations have been comprehensively studied in Arti-
ficial Intelligence (Swartout 1977, 1983; Shanahan 1989;
Falappa, Kern-Isberner, and Simari 2002; Pérez and
Uzcétegui 2003; Amgoud and Prade 2006; Amgoud and Ser-
rurier 2008; Amgoud and Prade 2009; Fan and Toni 2014).
Moreover, efforts at formalizing explanations can be traced
at least to the mid of the 20th century (Hempel and Oppen-
heim 1948). Although this paper focuses on AXp’s, CXp’s,
their relationship, and associated computational problems,
other formal approaches to explainability have been pursued
in recent years (Wolf, Galanti, and Hazan 2019; Amgoud
2021; Liu and Lorini 2021). Other lines of research on ex-
plainability (Rago et al. 2020, 2021) are based on formal
logic, but are not model-based, and we opt not to catego-
rize them as formal approaches to XAI. The paper opts to
cover approaches to formal explainability which have not
only seen rapid growth, but are also supported by a stream of
practical results. Integration of automated reasoners to im-
prove the quality of results of model-agnostic approaches is
also a recent area of research (Shrotri et al. 2022).

7 Conclusions

Non-formal XAI approaches find a growing number of prac-
tical uses. Unfortunately, as demonstrated in recent work,
their shortcomings make their use untenable in high-risk
settings. This paper argues that the only viable alternative
for computing explanations in high-risk situations involves
formal XAI approaches, and the computation of formally-
defined explanations. The paper overviews the progress that
has been witnessed in formal XAl it highlights its successes,
but it also summarizes its existing limitations, and outlines
open areas of research.
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