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Abstract

Electricity forecasting has important implications for the key
decisions in modern electricity systems, ranging from power
generation, transmission, distribution and so on. In the litera-
ture, traditional statistic approaches, machine-learning meth-
ods and deep learning (e.g., recurrent neural network) based
models are utilized to model the trends and patterns in elec-
tricity time-series data. However, they are restricted either
by their deterministic forms or by independence in prob-
abilistic assumptions – thereby neglecting the uncertainty
or significant correlations between distributions of electric-
ity data. Ignoring these, in turn, may yield error accumu-
lation, especially when relying on historical data and aim-
ing at multi-step prediction. To overcome these, we propose
a novel method named Probabilistic Electricity Forecasting
(PrEF) by proposing a non-linear neural state space model
(SSM) and incorporating copula-augmented mechanism into
that, which can learn uncertainty-dependencies knowledge
and understand interactive relationships between various fac-
tors from large-scale electricity time-series data. Our method
distinguishes itself from existing models by its traceable in-
ference procedure and its capability of providing high-quality
probabilistic distribution predictions. Extensive experiments
on two real-world electricity datasets demonstrate that our
method consistently outperforms the alternatives.

Introduction
Analyzing electricity time-series data (e.g., power genera-
tion and electricity demand) and making accurate forecast-
ing has been a topic of interest starting in (and going on
for most of) the 20th century (Taylor 1975; Moghram and
Rahman 1989), and continuing through contemporary re-
search (Khan et al. 2016; Kuster, Rezgui, and Mourshed
2017; Aslam et al. 2021). Stable and efficient managements
in modern electricity power systems – including power
generation scheduling, transmission, distribution, and sales
decision-making – are of extreme socio-economic impor-
tance, and heavily depend on the high-quality prediction of
various electricity data at short-term. One of the issues is
that the growing renewable energies (e.g., wind energy or
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hydropower) which reduce the carbon emissions, are unsta-
ble due to the rapidly changed climate conditions. A com-
plementary issue is that the electricity cannot be stored in
large quantities or for a significant duration, to be subse-
quently used when needed. This brings great uncertainty and
increases difficulties in effective management of operations,
as well as making reliable predictions for electric systems.
In this paper, we investigate how to effectively integrate the
use of historical observations and various external factors
to model electricity time-series data and make high-quality
forecasting for operations of electricity systems.

Electricity time-series data was analyzed by knowledge-
able experts who would typically design mathematical/sta-
tistical models and tune suitable parameters from specific
data type to simulate the dynamical procedure (Da Silva,
Do Coutto Filho, and De Queiroz 1983; Moghram and Rah-
man 1989). In addition to relying on domain knowledge,
such models generalize poorly on future data. More recently,
researchers have proposed learning-based approaches, e.g,
based on recurrent neural network (RNN) and variational-
autoencoders (VAE) to conduct quantile regressions, varia-
tional inference, or Gaussian noise building for electricity
time-series data (He et al. 2016; Dalal et al. 2020; Xia et al.
2021; Qiu et al. 2021).

However, the existing methods suffer from the follow-
ing limitations (illustrated in Figure 1): (1): They are unable
to capture the uncertainty-dependencies of electricity time-
series. Uncertainties widely exist in modern electricity sys-
tems due to the instabilities of power generations, especially
for the growing renewable resources. Most of the existing
models generate single-valued predictions and thus fail to
consider the future uncertainty, or only utilize independent
probabilistic techniques such as simple Gaussian process
and Monte Carlo simulation (Nguyen and Quanz 2021), ig-
noring the dependencies between probabilistic distributions
in a traceable way. (2): They are prone to error accumula-
tion. Existing models solely based on RNNs or autoregres-
sive methods are ineffective in making the multi-step ahead
predictions for electricity time-series. (3): They cannot es-
tablish the interactive relationships between electricity data
and various external factors. Electricity data are closely re-
lated with natural (e.g., weather or seasonal changes) and
social (e.g., economics or policy) factors which greatly af-
fect the performance of electricity forecasting. However, re-
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Figure 1: Illustration of electricity time-series data and three research questions.

searchers found that classical methods cannot capture the
complex dependencies among multivariate time-series and
the non-linear interactions between different causal factors
for their own limitations (Gallicchio, Micheli, and Pedrelli
2019).

To address the aforementioned limitations, we propose a
novel copula-augmented state space model for Probabilistic
Electricity Forecasting (PrEF). It consists of two main mod-
ules: (1) probabilistic temporal inference; and (2) interactive
covariance establishment. The first module proposes neural
non-linear state space model (SSM) which transforms ob-
servations and external factors into SSM’s parameter space
for probabilistic time-series inference and learns the depen-
dencies between electricity distributions. SSM maintains a
latent state obeying Gaussian distribution at each timestamp
and makes inference based on previous state, which can
effectively ignore short-term interference from fluctuations
and cumulative errors. The second module integrates a cop-
ula mechanism with SSM to learn the interactive relation-
ships between electricity data and various external factors,
enabling better approximations of the true distributions of
electricity data. To summarize, our contributions are three-
fold:

• We propose PrEF, a probabilistic electricity forecasting
framework that learns cross-dependencies between elec-
tricity distributions and eliminates the cumulative errors
during the inference by a non-linear neural SSM.

• We propose a copula-augmented mechanism for incor-
porating the impact of complex external factors. It estab-
lishes the covariance matrix between electricity data and
various external factors, which explicitly accounts for the
interactive relationships of multivariate input, while giv-
ing probabilistic distribution predictions.

• We empirically validate our model on two large-scale
real-world electricity forecasting datasets: one for re-
newable power generation and another for electricity de-
mand. The experimental results demonstrate the superior
performance of PrEF compared to baselines.

Problem Definition and Model Overview

We now formalize the problem and present the basic archi-
tecture components of PrEF.

Problem Definition
Let X1:T = {X1, · · · ,Xt, · · · ,XT } denote a set of time
series observations at a sequence of time instants. Each
Xt = {Xe

t ,X
a
t } ∈ Rdx consists of two componente: (1) Xe

t
denoting the value of electricity data; and (2) Xa

t denoting
other auxiliary observations (e.g., temperature and humid-
ity) at time t, where dx denotes the feature dimensions of
Xt.

Let E1:T = {E1, · · · ,Et, · · · ,ET } denote the set of
associated external factors. Each Et is composed of cer-
tain time dependent variables (e.g., the hourOfDay and day-
OfWeek), as well as certain external variables which, al-
though may occur at particular time instant, they need not
have an explicitly known dependence on it (e.g., electricity
price and capacity of electric power plants). Given past time
series observations X1:T and external factors E1:T+τ , the
goal of electricity forecasting problem is to produce a set of
probabilistic forecastings, i.e., we are interested in the con-
ditional distribution of future electricity values Xe

T+1:T+τ :

p(Xe
T+1:T+τ |X1:T ,E1:T+τ ; Θ) , (1)

where τ is the future time-step for forecasting and Θ de-
notes learnable parameters of the model. In this paper, we
study two forecasting problems: electricity demand forecast-
ing (EDF) and electricity generation forecasting (EGF).

Model Overview
As a time-series inference neural network, PrEF provides
a principled framework for modeling the uncertainty pat-
terns of electricity time-series data. In addition, it establishes
the correlations between variables and learns non-linearities
from copula-augmented neural network.

The overall framework of PrEF is shown in Figure 2
and we note that, from a high-level perspective, there are
two main modules of our proposed PrEF model: proba-
bilistic temporal inference and interactive covariance estab-
lishment. The first one includes SSM into RNN-based net-
work to transform the observations and external factors into
SSM’s parameter space for probabilistic time-series infer-
ence. The second one builds the covariance matrix to capture
the cross-sectional and temporal-locality dependencies.

Methodology
This section details our methodology for probabilistic elec-
tricity time-series modeling and forecasting. We begin by
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explaining the novel probabilistic temporal inference mod-
ules where we create a non-linear neural SSM, followed by
the establishing of interactive covariance, which explicitly
accounts for external factors aggregation, and conclude with
the details of optimization and prediction approach of PrEF.

Probabilistic Temporal Inference
Recurrent neural networks and their variants (e.g., LSTM
and GRU) are widely used for modeling sequential depen-
dencies in electricity forecasting (Kong et al. 2017; Dudek,
Pełka, and Smyl 2021). As a simple but effective method,
RNNs achieve satisfactory performance in traditional tasks.
However, when applied to large-scale time-series, RNNs
cannot effectively model the long-term correlations be-
tween external features (Gallicchio, Micheli, and Pedrelli
2019). Besides, direct sequential forecasting and temporal
label-forced alignment lead to error accumulation in multi-
step ahead forecasting, causing inaccuracies in long-term
electricity predictions. More importantly, the determinis-
tic structure of RNNs cannot support learning uncertainties
from time-series data. This, in turn, impacts the effectiveness
of the interval predictions, which is of a great significance
for electric power industry (Hong and Fan 2016).
Inference with Nonlinear State Space Model. To address
the issues mentioned above, we introduce a novel learning-
based state space model (SSM). Its main benefit is that it
has the ability to provide traceable multi-step ahead forecast
distributions while accounting for data uncertainties. It can
be described by the following process:{

Lt = AtLt−1 +Bt +Qtε,

Xt = CtLt +Dt +Rtε,
ε ∼ N (0, 1). (2)

At time t, Lt ∈ Rds is the latent state in SSM which includes
temporal patterns with respect to trend and seasonality, and
ds is the dimension of latent states. At ∈ Rds×ds denotes
the translation matrices evolving the latent states of the pre-
vious time to the current time, and Ct ∈ Rdx×ds denotes
the parameters which transform latent states Lt into obser-
vations Xt. Bt ∈ Rds and Dt ∈ Rdx are system bias. Here
we assume the vectors in Lt are independent, then positive
Qt ∈ Rds and Rt ∈ Rdf denote the respective variances of
latent states and observations. This iterative structure sim-
ulates the dynamics of complex states in time series. How-
ever, simple linear SSM ignores the non-linear relationships,
which have impact on fitting ability. Thus we further employ
the activation function to model the nonlinearity and the con-
ditional probabilistic distribution of each time t, which can
be described as follows:

p(L0) = N (L0|0, I),
p(Lt) = N (Lt|δ(AtLt−1 +Bt), diag(Q2

t )),

p(Xt) = N (Xt|δ(CtLt +Dt), diag(R2
t )),

(3)

where L0 is the initial latent state, δ(·) denotes Tanh acti-
vation function and diag(·) the diagonal function. Notably,
after the introduction of nonlinearity in Eq. (3), the key dis-
tribution in SSM – i.e., filter distribution – is still Gaussian
and equals to the distribution of canonical SSM. Based on
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Figure 2: An illustration of PrEF. It takes electricity time
series as input and outputs probabilistic distribution. There
are two main modules: (1) probabilistic temporal inference;
and (2) interactive covariance establishment.

this design, we can obtain the probabilistic results of time-
series observations Xt at time t from the distributions in
Eq. (3).
Autoregressive Parameter Learning. Traditionally, knowl-
edgeable experts set translation matrices and variance of the
SSM in a rule-based manner, relying on their experience,
which can also be compute-intensive. However, in modern
forecasting task with larger-scale dataset, it becomes more
difficult to find suitable parameters to describe the temporal
processes and to learn shared patterns of time-series data.
Furthermore, in their classical setting, parameters are con-
sidered time-invariant in SSM, which is not flexible enough
to model the dynamics of all time-steps.

To address these issues, we first let parameters be different
at each time-step. The temporal evolution dynamics at time
t are driven by parameters Φt = {At,Bt,Qt,Ct,Dt,Rt}.
A general way to estimate the parameters Φt is to maximize
the following likelihood:

argmaxΦt
p(X1:t|Φ1:t). (4)

We employ autoregressive models GRU (Cho et al. 2014)
to estimate these parameters. Specifically, at each time step
t, the GRU cells take the previous hidden states ht−1, ob-
servations Xt−τ , and the current external factors Et as in-
put. Notably, employing Xt−τ aims to let the model learn
the contemporaneous situation since electricity forecasting
has a certain periodicity. For example, in hourly data, when
τ = 24, the model can utilize the electricity time-series at
the same time yesterday to make the prediction. This design
ensures GRU understand both trends and seasonality from
external factors E1:t and temporal patterns from observa-
tions X1:t. Thus, we can obtain the hidden states ht from
the GRU cell at time t, i.e.,

ht = GRU-CELL(ht−1,Xt−τ ,Et; θg), (5)
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where θg denotes the learned parameters of GRU. Then the
dense layers are applied to accomplish the affine transfor-
mation from ht to Φt:

Φt = δ(Dense(ht; θd)), (6)

where θd are parameters of the dense layers and δ(·) de-
notes the activation function. For transformation matrices
At,Ct and bias Bt,Dt, we use Sigmoid function for train-
ing stability. For variance Qt,Rt, we use SoftPlus function
to ensure positive results. The probabilistic likelihood of the
time-series is distributed according to:

p(X1:t|h1:t−1,Xt−τ ,E1:t, θg, θd) = p(X1:t|Φ1:t), (7)

which is equal to Eq. (4). Hence we can optimize the pa-
rameters Φ1:t in temporal inference and parameters θg, θd in
network by maximizing this likelihood with SSM, which is
elaborated in Section .

Interactive Covariance Establishment
The accuracy of the electricity forecasting is typically influ-
enced by various external factors, such as economy, weather,
policy, historical data and real-time electricity price (Pardo,
Meneu, and Valor 2002; Alamaniotis, Gatsis, and Tsoukalas
2018). However, in most probabilistic forecasting models,
especially those based on neural networks, random variables
are treated as independent (mostly for efficiency), which
cannot reflect the significant correlations between electric-
ity time-series and various external factors. To address this
issue, we introduce copula mechanism to establish the in-
teractive covariance and approximate the true distribution of
time-series. In our PrEF, we naturally select Gaussian copula
to establish the covariance since the assumption that vari-
ables follow multivariate Gaussian distribution.

According to Sklar’s Theorem (Sklar 1997), given a series
of random variables {ki}, i ∈ {1, · · · , n} and their marginal
cumulative distribution functions (CDFs) Fi(ki), the joint
CDF is decomposed by a unique copula function C(·):

F (k1, · · · , kn) = C(F1(k1), · · · , Fn(kn)). (8)

Via this formula, we can easily construct the joint dis-
tribution from the known marginal Gaussian distribution
Fi(ki) ∼ N (0, σi) and obtain the joint probability density
function (PDF) by taking the derivative with respect to ran-
dom variables:

p(k1, · · · , kn) =
∂F (k1, · · · , kn)

∂k1 · · · kn

=
∂C(F1(k1), · · · , Fn(kn))

∂F1(k1) · · ·Fn(kn)

∏
i

∂Fi(ki)

∂ki

= c(F1(k1), · · · , Fk(kn))
∏
i

p(ki), (9)

where c(·) denotes the copula density. Then we can employ
neural networks to build the covariance and to estimate the
copula densities. On the one hand, we build ccross(·) with
cross-sectional correlations, i.e., covariance between elec-
tricity Xe

t and auxiliary observations Xa
t . On the other hand,

we construct ctime(·) for modeling the temporal locality de-
pendencies of adjacent latent states, i.e., covariance between

Lt−1 and Lt. Notably, in the following we will use super-
script “∗” to represent all variables during the establishment
of ccross

t (·) and ctime
t (·), since the only difference between

them is their dimension.
To estimate the copula density at time t, we first build a

covariance matrix through dense layers:

α∗
t = Tanh(Dense(ht; θα)), (10)

Σ∗
t = σ∗

t I+ α∗
tα

∗T
t , (11)

where σcross
t = Rt, σ

time
t = Qt, (12)

where θα denotes the learned parameters and Eq. (12) guar-
antees Σ∗

t to be positive definite. Then we take the Cholesky
factorization (Chen et al. 2008) with respect to Σ∗

t and get
the factor Ω∗

t , from which we can utilize the reparameteriza-
tion approach (Kingma and Welling 2014) for differentiable
copula samples Γ∗

t ∼ C∗
t (·) and subsequent parameters op-

timization:

Γ∗
t = Ω∗

tΥ, Υ ∼ N (0, I). (13)

We compute the gradient for optimization with respect to
copula samples as Γ∗

t ∼ N (0,Σ∗
t ), and then the logarithmic

copula density can be calculated as:

log c∗t (·) =
1

2
log |Σ∗

t | −
∑
i

log σ
∗(i)
t

− 1

2
Γ∗T
t (diag(Σ∗−1

t )−Σ∗−1
t )Γ∗

t , (14)

where σ
∗(i)
t is the i-th value of σ∗

t . Now, the distributions of
latent states Lt and the observations Xt at time t are:{

p(Lt) = N (Lt|δ(AtLt−1 +Bt),Σ
time
t ),

p(Xt) = N (Xt|δ(CtLt +Dt),Σ
cross
t ),

(15)

where both the correlations between various observations
and temporal locality dependencies are fully taken into ac-
count.

Optimization and Prediction
To get the probabilistic distribution predictions, a straight-
forward way is to maximize Eq. (1). However, the proba-
bilistic temporal inference in PrEF is an autoregressive pro-
cess from the initial latent states L0. Ignoring the dynamics
in time t ∈ {1, · · · , T} and treating them as “black box”
will not only lead to training instability but also weaken the
generalization capability of our model. Similarly, when only
considering the electricity value Xe, the model is prone to
overfitting issue on training data. Thus, we set the optimiza-
tion goal as maximizing the following loss:

L(Θ) = log p(X1:T+τ |X1:T ,E1:T+τ ; Θ)

=
T+τ∑
t=1

log p(Xt|X1:t−1,E1:t; Θ)

=
T+τ∑
t=1

log ccross
t +

dx∑
i=1

log p(X
(i)
t |Σ∗

1:t,Φ1:t), (16)
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where X(i)
t is the value of i-th observation of Xt. In this loss,

the first term optimizes the covariance, and we estimate it via
Eq. (14). The second term is a likelihood driven by SSM pa-
rameters Φ1:t, and we employ Kalman Filter (Kalman 1960)
to finish the deduction. This loss provides the sequential in-
ference with structural assumptions and keeps the evolution
traceable, significantly reducing the error accumulation im-
pact – and we can use general optimization methods such as
Adam and RMSprop to calculate the gradients and update
parameters.

When the optimization finishes, we iteratively employ
Eq. (15) at each time steps t ∈ {T +1, · · · , T +τ} to obtain
the probabilistic distribution of Xt. To obtain the electricity
value, we can sample values from the distribution of Xt and
calculate the average as output. We use the joint distribution
of Xt to build the probabilistic electricity distribution of Xe

t .

Experiments
We now discuss the experiments for evaluating PrEF by
comparing its performance with state-of-the-art electricity
forecasting baselines and time-series prediction methods on
two large-scale real-world electricity datasets.

Research Questions: We aim to address the following
three research questions (RQ):

• RQ1: How does PrEF perform on electricity forecasting
when compared to existing time-series learning baselines
especially those based on probabilistic inference?

• RQ2: Can PrEF address the error accumulation issue in
multi-step electricity forecasting?

• RQ3: Can PrEF approximate the true predictive distri-
butions by building the interactive relationships of multi-
variate input?

Datasets and Processing: We use large-scale real-world
electricity forecasting datasets:

(1) Sichuan dataset is collected from a hydroelectric sta-
tion located in Sichuan, China and we use it for renewable
power generation forecasting. Notably, hydropower genera-
tion is greatly influenced by external factors (e.g., water flow
volume and rate) and thus makes the forecasting more chal-
lenging.

(2) Panama dataset contains the total electricity consump-
tion in Panama in four years and we use it for electricity
demand forecasting.

Baselines. We select nine baselines covering three classi-
cal methods, three RNN-based methods, and three proba-
bilistic methods for comparison.

• Historical Average (HA): uses the average value of pre-
vious p = 7 periods as prediction.

• ARIMA (Lee and Ko 2011): is a generalization of au-
toregressive moving average (ARMA) model which con-
ducts statistical analysis on series data.

• SVR: is the regression type of support vector machine
(SVM) which has been widely used for electricity data
forecasting (Hong et al. 2013; Fan et al. 2016).

• LSTM and GRU: are two popular variants of RNN,
used for modeling electricity time-series data (Kong et al.
2017; Dudek, Pełka, and Smyl 2021).

• CNN-RNN: combines the CNN with RNN to consider
both rich features and dependencies in electricity time-
series (Guo et al. 2020; Qu, Qian, and Pei 2021).

• GRU-VAE: employs GRU as encoder and decoder for
prediction. It builds the distributions in latent space and
reconstructs the observation via VAE (Qiu et al. 2021).

• DSSM (Rangapuram et al. 2018): bridges the gap be-
tween state space model and neural network, which can
be used to make probabilistic predictions.

• DeepAR (Salinas et al. 2020): is an RNN-based prob-
abilistic method and makes forecastings in the form of
Monte Carlo samples. Besides, it can learn seasonal be-
haviors and dependencies on given features.

The deterministic models (LSTM/GRU) are used to param-
eterize a normal distribution instead of directly making pre-
dictions.

Experimental settings. Each dataset is split into two sub-
sets P1 (Jan 2017 - Dec 2018) and P2 (Jan 2019 - Dec 2020),
both spanning two years. Each subset is split into training
(50%), validation (25%), and test (25%) sets. For time-series
sequence, we let T be 48 and prediction steps τ be 24, i.e.,
we employ two days of observations as well as external fac-
tors to make future one-day hourly electricity forecasting.
The dimensions of latent states in SSM and GRU are 128
and 256, respectively. Same with our PrEF, we employ stan-
dard GRU cell for DeepAR and DSSM and let dimension of
latent state of GRU be 256. In DSSM, we also set consistent
dimensions of latent state of state space model as 128. All
models are tuned to the best performance with early stop-
ping when validation loss has not declined for 50 consecu-
tive epochs.

Evaluation Protocols. We use four common metrics to
evaluate the forecasting performance. RMSE and MAE are
aiming to measure the accuracy of predictions. Logarith-
mic density log p and continuous ranked probability score
(CRPS) evaluate the quality of probabilistic distribution. We
employ truncated normality for the computation of CRPS.
Specifically, we only consider the range where the forecast-
ing target locates. For the two tasks in our paper, we keep
the positive value. Among them, larger log p is better, while
for others the smaller the value – the better.

RQ1: Modeling Uncertainty-dependencies
Improves Electricity Forecasting
We now consider the benefits of PrEF on improving
the electricity forecasting by modeling the uncertainty-
dependencies. Table 1 summarizes the performance of
PrEF and the baselines in probabilistic electricity forecasting
on both datasets. We can observe that PrEF achieves the best
results in terms of all four metrics. In addition, we have fol-
lowing conclusions: (1) Classical approaches HA and statis-
tic model ARIMA perform poorly since they can only make
static predictions and cannot capture the uncertainties ex-
isting in electricity time-series; (2) All other baselines are
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Model
Sichuan Panama

P1 P2 P1 P2

RMSE MAE log p CRPS RMSE MAE log p CRPS RMSE MAE log p CRPS RMSE MAE log p CRPS

HA 584.9 442.7 n/a n/a 597.1 454.9 n/a n/a 132.2 96.79 n/a n/a 123.7 86.10 n/a n/a
ARIMA 446.2 346.7 n/a n/a 453.5 357.9 n/a n/a 101.5 86.05 n/a n/a 100.6 80.43 n/a n/a
SVR 397.3 307.4 1.184 0.036 401.0 310.8 0.940 0.037 92.76 70.77 2.453 0.017 78.30 58.48 2.667 0.016
LSTM 366.9 282.0 1.300 0.033 356.7 267.4 1.237 0.032 79.24 56.68 2.649 0.015 73.60 52.04 2.694 0.015
GRU 365.0 280.6 1.349 0.034 355.3 265.7 1.239 0.032 80.24 57.49 2.677 0.015 74.34 51.84 2.680 0.016
CNN-RNN 361.5 277.1 1.351 0.034 352.6 261.6 1.240 0.032 72.43 51.60 2.734 0.012 70.85 51.74 2.784 0.014
GRU-VAE 346.2 264.5 1.390 0.032 339.4 254.6 1.363 0.030 76.04 60.24 2.727 0.013 73.74 52.18 2.675 0.015
DSSM 324.4 247.0 1.546 0.029 324.0 247.3 1.469 0.027 64.14 43.66 2.801 0.010 71.21 51.87 2.793 0.013
DeepAR 326.2 246.8 1.539 0.029 325.0 248.1 1.463 0.029 66.85 45.49 2.764 0.011 67.87 46.03 2.753 0.015

PrEF− 315.0 242.2 1.597 0.028 320.4 244.9 1.506 0.027 62.29 42.60 2.901 0.009 64.35 43.11 2.823 0.012
PrEF 308.6 239.5 1.626 0.026 318.5 242.7 1.522 0.026 60.00 40.84 3.118 0.008 63.94 42.01 2.851 0.012

Table 1: Performance comparison on renewable power generation and demand forecastings on two real-world datasets. Best
performance is in bold font and the best baselines result is underlined. PrEF− demotes removing the copula mechanism. “n/a”
denotes not applicable since HA and ARIMA cannot make probabilistic predictions.
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Figure 3: The effect of probabilistic temporal inference at
multi-step electricity forecasting on Sichuan-P1 (left) and
Panama-P1 (right) datasets.

learning-based methods thus they can parameterize a distri-
bution (mostly Gaussian) to account the uncertainties and
output a probabilistic prediction; (3) Unlike PrEF, learning-
based methods consider electricity distributions whether in
observation or inference, which cannot fully estimate the
uncertainty-dependencies. For example, GRU-VAE focuses
on Gaussian noise of latent states, while others only consider
the noise of predictions; (4) Although DSSM introduced
SSM to model time-series for uncertainty-pattern percep-
tion, it ignores the contemporaneous observations and infers
the latent states linearly. In PrEF, we consider the interactive
relationships between various factors while DSSM treats
them independently; Overall, our proposed PrEF handles the
uncertainty that widely exists in electricity time-series in a
traceable way and captures the uncertainty-dependencies be-
tween electricity distributions, enabling significant improve-
ments in electricity forecasting.

RQ2: Probabilistic Temporal Inference Mitigates
Error Accumulation
In this part, we investigate the effect of probabilistic tem-
poral inference on the error accumulation. Towards that, we
replace the evolution of SSM with fully connected layers to
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Figure 4: Comparison of PrEF w/o SSM (left) and
PrEF (right) on a multi-step forecasting case.

generate the probabilistic distributions of latent states Lt and
electricity forecasting Xe

t at each time step. We keep other
settings unchanged and use PrEF w/o SSM to denote it. To
highlight the capability of our model, we report the perfor-
mance changes at each forecasting step from T +1 to T +τ ,
and the results are shown in Figure 3.

We can observe that our probabilistic temporal inference
module outperforms the counterpart, especially when pre-
diction steps increase. Like most existing models, PrEF w/o
SSM generates the distributions at each time step indepen-
dently, while our non-linear SSM provides a traceable way
to consider the cross-dependencies between electricity dis-
tributions. Specifically, each distribution of latent state in
inference is deduced at the previous step, making the dis-
tributions closely related. In addition, we use a Kalman fil-
ter method (Kalman 1960) to optimize the evolution pro-
cedure during inference and hence the performance degra-
dation caused by error accumulation can be alleviated to a
large extent.

We further validate the quality of multi-step electricity
predictions, comparing PrEF with PrEF w/o SSM in Fig-
ure 4. We can see that for PrEF w/o SSM, the gaps be-
tween ground truth and predictions are getting larger as time
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(a) Temperature (b) Temperature

(c) Precipitation (d) Precipitation

(e) HourOfDay (f) HourOfDay

Figure 5: Visualization of the latent states in the 2-D space,
where each point denotes a sample and the distances be-
tween points can reflect their original Euclidean distance.
In each subfigure, we color points by the values of a spe-
cific external factor. The latent states are learned by baseline
CNN-RNN (a,c,e) and PrEF (b,d,f), separately.

increases. Conversely, PrEF approximates the ground truth
better, demonstrating that probabilistic temporal inference
helps in mitigating the impact of error accumulation.

RQ3: Interactive Covariance Establishment
Improves External Factor Aggregation
We now analyze the impact of incorporating external fac-
tors on electricity forecasting via interactive covariance es-
tablishment module. We first remove the this module and
denote such model as PrEF−. As shown in Table 1, our pro-
posed copula mechanism brings additional performance im-
provements on both datasets and helps us better approximate
the true distribution of electricity data.

We demonstrate our conclusion in a more intuitive way
by visualizing the latent states. We project the latent states
Lt to a 2D space using UMAP algorithm (McInnes, Healy,
and Melville 2020) and color them by the values of exter-
nal factors including temperature, precipitation, and hourOf-

(a) Sichuan-P1 (b) Panama-P1

Figure 6: Influence of different factors estimated by SHAP
values. The bars with hatch “/” denote negative correlations.

Day, the results are shown in Figure 5, where we compare
the latent states of CNN-RNN (a,c,e) with PrEF (b,d,f). We
can observe that the positions of latent states in PrEF obey
the Gaussian distribution and many of them with the simi-
lar color are clustered together. This demonstrates that our
model can learn certain patterns between electricity time-
series and external features. In contrast, the latent states in
CNN-RNN cannot be disentangled within the color. These
results suggest that our proposed PrEF not only improves
the performance of electricity forecasting but also enables
better explanations of prediction.

Lastly, we study the influence of each external factor on
electricity forecasting for better understanding the behaviors
of factors and providing prediction interpretability. We em-
ploy Shapley additive explanations (SHAP) (Lundberg and
Lee 2017) to show the importance values of factors in Fig-
ure 6. We can see that climatic factors such as temperature
and precipitation, play an important role in electricity fore-
casting since there exist certain intrinsic correlations; pe-
riodicity can also be understood well with time-dependent
variables such as hourOfDay, weekday, etc. Additionally,
holidays are negatively correlated with electricity demand
on Panama dataset and precipitation has strong positive cor-
relation with hydropower generation on Sichuan dataset.
These indicate the benefits PrEF for improving the inter-
pretability for the electricity forecasting, confirming that op-
erations of electricity systems require overall coordination
and optimization – and our model can provide an enabling
perspective for probabilistic electricity forecasting.

Conclusions

We presented PrEF, a novel framework for probabilis-
tic electricity forecasting, integrating traceable uncertainty-
dependencies and interactive relationships. It provides high-
quality probabilistic forecastings in short-term with stable
performance, enabling significant improvements for opera-
tions of modern electricity systems. Our extensive experi-
ments demonstrate that PrEF is superior to existing meth-
ods and provides a satisfactory interpretability. In our future
work, we plan to extend PrEF to capture spatial-temporal
correlations among both producers and consumers of elec-
tricity.
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