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Abstract

Early detection of lung cancer is crucial for five-year survival
of patients. Compared with the pathological analysis and CT
scans, the circulating tumor DNA (ctDNA) methylation based
approach is noninvasive and cost-effective, and thus is one of
the most promising methods for early detection of lung can-
cer. Existing studies on ctDNA methylation data measure the
methylation level of each region with a predefined metric, ig-
noring the positions of methylated CpG sites and methylation
patterns, thus are not able to capture the early cancer signals.
In this paper, we propose a blood-based lung cancer detection
method, and present the first ever study to represent methyla-
tion regions by continuous vectors. Specifically, we propose
DeepMeth to regard each region as a one-channel image and
develop an auto-encoder model to learn its representation. For
each ctDNA methylation sample, DeepMeth achieves its rep-
resentation via concatenating the region vectors. We evalu-
ate DeepMeth on a multicenter clinical dataset collected from
14 hospitals. The experiments show that DeepMeth achieves
about 5%-8% improvements compared with the baselines in
terms of Area Under the Curve (AUC). Moreover, the experi-
ments also demonstrate that DeepMeth can be combined with
traditional scalar metrics to enhance the diagnostic power of
ctDNA methylation classifiers. DeepMeth has been clinically
deployed and applied to 450 patients from 94 hospitals na-
tionally since April 2020.

Introduction
Lung cancer has been one of the deadliest cancers (Did-
kowska et al. 2016). The prognosis of lung cancer is highly
correlated with the stage of the disease at diagnosis, which
affects the five-year survival rate of patients. For instance,
the five-year survival rate decreases greatly from 85% for
stage IA to 6% for stage IV (Torre, Siegel, and Jemal 2016).
Therefore, early detection of lung cancer is crucial for sav-
ing lives and reducing medical costs, which has significant
clinical value and social impact.

DNA methylation, found primarily at CpG dinucleotides,
is an epigenetic mechanism used by cells to control gene
expression (Deaton and Bird 2011). Due to its significance
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Figure 1: Illustration of a ctDNA methylation sample. Each
sample usually contains thousands of regions, and each re-
gion consists of tens of reads. The CpG sites in a read has
three status, i.e., methylated (black), unmethylated (white)
and unknown (grey).

in the etiology of diseases, DNA methylation analysis has
been a powerful tool in cancer diagnosis. Much research
has been done to measure tissue-based DNA methylation
level, such as Beta-value (Bibikova and Fan 2009), methy-
lation entropy (Xie et al. 2011), and the percentage of co-
methylation (Liang et al. 2019).

Compared to the tissue-based DNA methylation, the
way to obtain circulating tumor DNA (ctDNA) methyla-
tion in blood is more noninvasive and cost-effective, which
makes it more valuable for early detection of cancers. Re-
cent research has demonstrated that ctDNA methylation is
exquisitely specific for lung cancer detection (Guo et al.
2017; Liang et al. 2021). Therefore, to analyze ctDNA
methylation is one of the most promising way for early de-
tection of lung cancer.

Figure 1 illustrates the raw data of a ctDNA methylation
sample obtained by high throughput DNA bisulfite sequenc-
ing. It consists of thousands of regions (mostly CpG islands),
which are the key genomic fragments identified by biomed-
ical scientists (Liang et al. 2019). Each region contains tens
of reads. Each read is comprised of CpG sites. There are
three methylation status for a CpG site, i.e., methylated,
unmethylated, and unknown. As observed from Figure 1,
the raw data of ctDNA methylation samples contains vari-
ous methylation patterns and large amounts of information,
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which makes ctDNA methylation analysis suffer from the
curse of dimensionality.

Desipte some works on the metrics of the methylation
level, there are mainly two reasons that prevent them from
applications on ctDNA methylation analysis for lung can-
cer. First, most of them are designed for tissue methylation
samples, where malignant signals are stronger and thus eas-
ier to be detected compared to ctDNA methylation samples.
Second, existing metrics typically represent each region by
a scalar, while ignoring positions of methylated CpG sites
and methylation patterns, which are predictive features for
cancer detection (Affinito et al. 2020; Gatev et al. 2020).

In this paper, we propose DeepMeth, a novel method to
analyze ctDNA methylation data for lung cancer early de-
tection. To our best knowledge, it is the first study that an-
alyzes the raw data of ctDNA methylation with deep learn-
ing. Specifically, DeepMeth first learns the continuous rep-
resentations of regions with a residual-based auto-encoder.
Then, it obtains the representation of each ctDNA methy-
lation sample by concatenating the region vectors. Finally,
DeepMeth trains a classifier on the ctDNA methylation data
to detect lung cancer. To address the curse of dimension-
ality problem, each region is regarded as an independent
sample for the auto-encoder according to the Occam’s Ra-
zor 1 (Schaffer 2015). The reason behind is that the cor-
relations between regions are limited within a methylation
sample (Eckhardt et al. 2006). We evaluate DeepMeth on a
clinical dataset LC-Meth. The dataset contains the ground
truth (i.e., benign or malignant) from the pathological anal-
ysis of lung nodules. Compared to the baselines, DeepMeth
achieves 5%-8% improvements on LC-Meth in terms of
Area Under the Curve (AUC).

In summary, we make the following main contributions:

• In this paper, we propose a blood-based method, Deep-
Meth, for early prediction of lung cancer. Compared
with pathological analysis and CT scans, the proposed
method is noninvasive and cost-effective. Since April
2020, DeepMeth has been clinically applied to 450 pa-
tients from 94 hospitals.

• To the best of our knowledge, it is the first study that
represents methylation regions by continuous vectors.
To avoid the curse of dimensionality, it regards each
methylation region independently and develops an auto-
encoder to learn the rich semantics (e.g., positions of
methylated CpG sites) hidden in region layouts.

• We conduct extensive experiments on a clinical dataset
collected from 14 hospitals, LC-Meth. The experiments
show that DeepMeth outperforms four state-of-the-art
baselines by 5%-8% in terms of AUC. In addition, it has
also been demonstrated that our auto-encoder features
can be combined with traditional metrics to enhance pre-
diction performance.

Related Work
In this section, we first review the current available metrics
that measure the methylation level of a region. Then, we in-

1https://en.wikipedia.org/wiki/Occam’s razor

troduce recent deep learning-based studies on DNA methy-
lation data.

Metrics of Methylation Level
Much research has been done to measure DNA methylation
level. Beta-value (Bibikova and Fan 2009) has been the most
widely used metric to measure the methylation level of a re-
gion. It calculated the ratio of the methylated probe intensity,
and was utilized as the input for cancer detection (Li et al.
2018; Wang and Wang 2018; Levy et al. 2020). In order to
satisfy the range of Gaussian distribution, some works pro-
posed transformations of Beta-value, e.g., M-value (Du et al.
2010), but degraded the performance.

Although widely used, Beta-value only calculated the fre-
quency of methylated sites in a region, ignoring the co-
methylation information within the region (i.e., consecutive
methylated sites). To address the problem, several metrics
have been proposed. Specifically, (Xie et al. 2011) proposed
to utilize the entropy concept in information theory to quan-
tify the methylation level of a region. (Landan et al. 2012)
proposed the Epipolymorphism metric that measured the
methylation level of the set of four CpGs by considering the
frequency of epi-alleles in the population. (Guo et al. 2017)
identified 771 million methylation haplotype blocks (Shoe-
maker et al. 2010) based on 61 Whole-Genome Bisulfite Se-
quencing (WGBS) data from human primary tissues. Then,
they defined Methylation Haplotype Load (MHL) to quan-
tify the methylation level of a block, which is the weighted
average of the fraction of fully methylated haplotypes and
substrings at different lengths. Recently, the percentage of
co-methylation has aroused much attention from the com-
munity (Wang et al. 2016; Gomez et al. 2019; Affinito et al.
2020), and exhibited its power in the classification of cancers
like the lung cancer (Liang et al. 2019) and the breast can-
cer (Sun et al. 2019). It first defined a read as co-methylated
if there exist a methylated sites within b consecutive CpG
sites (a ≤ b and they are hyper-parameters) (Liang et al.
2019). Then, it calculated the ratio of co-methylated reads
to the overall reads within a region.

Despite the progress, the limitations of the aforemen-
tioned metrics are two folds. First, most of them were de-
signed for tissue methylation samples, where malignant sig-
nals are stronger and easier to be detected compared with
ctDNA methylation samples. Second, previous studies typ-
ically represented each region by a scalar, and might miss
rich semantics conveyed by region layouts. In this paper, we
propose an unsupervised learning-based method to represent
each methylation region by a continuous vector, which cap-
tures more semantic information of raw methylation data.

Deep Learning for DNA Methylation
Deep learning has accelerated the research of DNA methy-
lation data analysis. Some studies applied deep learning
on DNA methylation data for cancer detection (Wang and
Wang 2018; Titus, Bobak, and Christensen 2018; Levy et al.
2020; Macı́as-Garcı́a et al. 2020) and age prediction (Galkin
et al. 2021). Specifically, (Wang and Wang 2018; Levy et al.
2020) constructed a deep learning model to detect lung can-
cers, and fed Beta-value into the model as the input. (Ti-
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tus, Bobak, and Christensen 2018) and (Macı́as-Garcı́a et al.
2020) performed feature engineering and exploited auto-
encoder for breast cancer and breast cancer recurrence di-
agnosis respectively. Desipte the progress, these methods
mainly focused on the tissue data from The Cancer Genome
Atlas (TCGA) data portal, and degraded the performance
when directly applied on ctDNA methylation data. On the
other hand, existing studies usually exploited metrics (e.g.,
Beta-value) or feature engineering to analyze methylation
data, which required experiences of biological experts and
might introduce bias.

In addition, some studies improve the usability of methy-
lation data with deep learning. These studies typically im-
puted the status of unknown CpG sites to improve the anal-
ysis of methylation data. Specifically, DeepCpG (Anger-
mueller et al. 2017; Ni et al. 2019; Tian et al. 2019) proposed
to employ convolutional neural networks to predict the un-
known methylation status after bisulfite sequencing. Since
the scales of DNA methylation datasets are usually very
small, MethCancer-Gen (Choi and Chae 2020) employed a
variational auto-encoder (Kingma and Welling 2013) model
to generate synthesis methylation data.

In this paper, we propose DeepMeth to model raw methy-
lation data and capture rich semantics hidden in the region
layouts. In addition, instead of tissue-based methods, this pa-
per developed a blood-based method to detect lung cancers,
which is non-invasive and cost-effective.

Methodology
In this section, we first introduce the problem definition.
Then, we describe the proposed DeepMeth in detail.

Problem Definition
According to the microarray-based sequencing technologies
(e.g., the Illumina HumanMethylation450 (450K) array), a
ctDNA methylation sample m consists of a sequence of n
regions, i.e., m = [R1, R2, . . . , Rn], where Ri refers to the
i-th region. A region Ri contains tens of reads and can be
formulated as:

Ri = {ri(1), ri(2), . . . , ri(ki)} ,

where ri(j) is the j-th read in Ri and ki denotes the number
of reads within the region. Notice that the methylation reads
from the same region have the same length, while the length
of reads from different regions could be different. Each read
is a sequence of CpG sites, and each CpG site has a methy-
lation status, which is denoted by methylated (C), unmethy-
lated (T ), or unknown(N ). The read ri(j) with lj sites can
be formulated as follows:

ri(j) = [si(j)0, s
i(j)1, . . . , s

i(j)lj ] ,

si(j)k ∈ {C, T,N}, k ∈ {1, 2, . . . , lj} .

Given a ctDNA methylation sample m, the goal of lung
cancer detection is to predict whether the input is benign or
malignant. Specifically, we divide the classification into two
phases. In the first phase, a representation learning model Φ
is applied to learn methylation representations. In the second

R1 Rn

...

R2
ctDNA Methylation m

...vn
z1 z2 zn

Residual Based  
Auto-Encoder

Deep Learning Ensemble

Lung Cancer Detection

Figure 2: The framework of DeepMeth. It can be divided
into two phases. The first phase is region representation
learning, aiming to extract biomedical features from the
methylation regions. The second phase is classification. Sev-
eral classifiers are employed to classify the methylation into
malignant or benign pathology classes.

phase, we use a classifier F to predict the pathology class of
m. Formally,

vm = Φ(m) = Φ([R1, R2, . . . , Rn]) ,

ym = F(vm) ∈ {Benign,Malignant} ,

where vm refers to the methylation representation of m, Φ
the representation learning model, and F the classifier.

DeepMeth
Figure 2 shows the overall framework of DeepMeth. Deep-
Meth contains two phases. Given a ctDNA methylation m,
we regard the regions within m independently of each other.
We develop a residual-based auto-encoder model to learn
region representations in the first phase. Then in the sec-
ond phase, we employ a widely used classifier for pathology
classification based on the sequence of region vectors. Next
we introduce the details of DeepMeth.

Auto-Encoder for Region Representations DeepMeth,
for the first time, represents each methylation region by a
continuous vector. To capture more semantic information of
the methylation region, we develop an auto-encoder model
to the learn the methylation region representation. As de-
scribed in the Introduction, the number of ctDNA methyla-
tion samples is small due to the expensive cost for collection.
However, the number of regions and that of reads are very
large. Thus, analyzing ctDNA methylation suffers from the
curse of dimensionality problem. Existing study (Eckhardt
et al. 2006) has found that the correlations among regions
are very weak. Therefore, DeepMeth regards each region
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Figure 3: The architecture of the residual-based auto-
encoder. We treat the regions independently and take them
as the input for the auto-encoder.

independently of each other and learns a vector represen-
tation of a region. The region representation model has a
large number of regions as the training data. Specifically,
the number of training instances increase from #samples to
#regions × #samples. We develop a residual-based auto-
encoder model to learn region representations. The overall
architecture of the residual-based auto-encoder is depicted
in Figure 3. Given an input region Ri, the encoder compress
the raw data in to a region zi through a sequence of neural
layers. Then the decoder reconstruct the region R′i with a
sequence of reversed operations. we detail the encoder, the
decoder, and the training objective in the auto-encoder next.

We employ the ResNet (He et al. 2016) as the backbone
of DeepMeth encoder. Formally,

zi = ResNet(Ri) ,

where zi ∈ Rh refers to the learned region vector of the i-th
region Ri.

Specifically, The encoder starts with a down-sample op-
eration, and followed by four residual blocks (ResBlock).
The input down-sample operation contains a convolutional
layer with 7 × 7 filters, a batch normalization (BN) (Ioffe
and Szegedy 2015) layer, a rectified linear unit (ReLU) (Glo-
rot, Bordes, and Bengio 2011) activation layer, and a max-
pooling layer with 3×3 filters (Figure 4). The large kernel
convolution layer can capture the local region biological
methylation semantics. The ResBlock is consisted of two
convolution blocks. Each block contains a 3 × 3 convolu-
tion layer, a batch normalization, a rectified linear unit, and
a residual connection (Figure 3). The residual connections
are able to migrate the biological features from different lev-
els and alleviate the information loss problem happened in
deep neural networks. Table 1 lists the configurations of the
encoder layers in detail. Finally, we employ a linear pooling

3 3
3 3

(a) ResBlock

3 3
3 3

(b) rResBlock

Figure 4: Detail structures of ResBlock and rResBlock.

Block Encoder Block Decoder
input output input output

ResBlock1 64 64 rResBlock1 64 64
ResBlock2 64 128 rResBlock2 128 64
ResBlock3 128 256 rResBlock3 256 128
ResBlock4 256 512 rResBlock4 512 256

Table 1: Block configurations in the auto-encoder. The input
and the output fields indicate the sizes of input channel and
output channel of each block respectively.

layer to get the encoded region vector.
As for the decoder, we introduce the reversed ResNet

(rResNet) to reconstruct the regions from the region vectors.
Formally, we denote the reconstructed region by R′, which
is obtained by the reversed ResNet (rResNet).

R′i = rResNet(zi) ,

The rResNet is designed following three principles: (1)
following reversed data flow; (2) replacing the convolution
layer with the transposed convolution layer (Zeiler et al.
2010); (3) preserving the residual connection. Following the
principles, we also build the reversed residual block (rRes-
Block) corresponding to the ResBlock in the encoder (Fig-
ure 4). Table 1 also shows the detailed rResBlock.

Similar to conventional auto-encoder models, we take
Mean Square Error (MSE) as our region reconstruction cri-
terion:

L =
1

n×N

n×N∑
i=1

||R′i −Ri||22 ,

where N is the number of ctDNA methylation samples in
the training set.

Lung Cancer Detection To detect the methylation sig-
nal from the auto-encoded region vectors, we study two
strategies. The first one is to apply deep learning models
to the region vectors directly. We use multi-layer percep-
trons (MLP), convolution neural network (CNN), and the
recurrent neural network (RNN). MLP is a widely used deep
learning classifier, which learn the relationships between
methylation features and the pathology class by changing
the weights of its neurons. The non-linear activation layer
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between the perceptrons enable learning the non-linear rela-
tionships between the pathology classes and the classifica-
tion features. However, MLP is prone to overfit due to the
massive training parameters. CNN is usually consisted of
multiple convolution layers and a fully connection layer. The
convolutional layers share parameters across kernels (local
receptive fields), thus reduce the number of parameters to
train and have a better generalization ability than MLP. RNN
is designed for sequential data, which is suitable for model-
ing the sequence of methylation region vectors.

On the other hand, we build traditional machine learning
classification models based on the auto-encoded region vec-
tors. In this case, we need to combine them together first to
obtain the ctDNA methylation representation. We use con-
catenation and mean as the aggregation methods, namely,

vm =


[z0; zi; . . . , zn], (concatenation)

1

n

n∑
i=0

(zi), (mean)
,

where zi is the hidden vector encoded from i-th region. vm

is the classification feature.
Following previous studies (Guo et al. 2017; Liang et al.

2019, 2021), we employ three widely used ensemble classi-
fiers, namely, Random Forest, XGBoost (Chen and Guestrin
2016), and LightGBM (Ke et al. 2017). The Random Forest
is an early and widely used classical tree-based ensemble
learning model for classification. It creates many decision
trees from the subset of the problem, thus it overcomes the
problem of overfitting within one decision tree. The class se-
lected by most decision trees is returned as the output of the
random forest. XGBoost is an optimized distributed gradient
boosting framework. It leverages a weighted quantile sketch
for approximate tree learning methods. LightGBM is an-
other distributed gradient boosting framework for machine
learning. The LightGBM has better scalability than the XG-
Boost by leveraging the gradient-based one-side sampling
and the exclusive feature bundling techniques.

We conduct extensive experiments to compare the clas-
sification models. We notice that the ensemble methods,
i.e., Random Forest, XGBoost, and LightGBM, are able to
achieve high performance without careful tuning.

Dataset
We evaluate DeepMeth on a clinical dataset, LC-Meth. It
contains 424 patients in total and their pathological analy-
sis results. The dataset were collected by Company X from
the thoracic department of 14 hospitals. The criteria for se-
lecting subjects are as follows: adult patients who are no
younger than 18 years old; both male and female; the size
of a single nodule is between 5 and 30 millimeters de-
tected by standard or Low-Dose CT screening; nodule types
include solid, part-solid, and pure ground-glass. LC-Meth
also excluded several subjects, such as pregnant or lactat-
ing females, patients with metastasis symptoms, patients
without confirmed pathological diagnosis after surgery, and
patients with confirmed cancer 2 years prior to enroll-
ment. LC-Meth finally collected pathological data informa-
tion of 424 plasma samples. For each sample, it contains

Category Train. Valid. Test
M B M B M B

Age

0-40 6 16 5 6 2 2
41-55 76 52 19 17 9 6
56-70 96 31 26 7 14 7
≥ 71 14 0 4 0 7 2

Gender Male 39 46 15 11 5 8
Female 58 36 13 13 12 3

Nodule
Nonsolid 37 13 11 3 7 2
Partially Solid 37 28 10 6 6 4
Solid 23 41 7 15 2 7

Total Number 192 106 54 30 27 15

Table 2: Statistics in training, validation and test sets strati-
fied by age group, gender and nodule type. (M: Malignant,
B: Benign).

10180 preselected lung cancer–specific methylation regions.
Each region is composed of multiple Illumina sequencing
reads (Sandoval et al. 2011). LC-Meth contains all the in-
formation of the pathological examination, and the detailed
deidentified clinical information (including demographics,
LDCT imaging reports, and pathology reports) of the sub-
jects. Therefore, the dataset contains both the methylation
data and the ground truth of benign or malignant.

The blood samples of the enrolled patients were collected
in Streck cell-free DNA BCT tubes (Streck, catalog 218962)
and were shipped to Company X’s certified molecular di-
agnosis laboratory. Then, we separated plasma from the
blood samples immediately and stored it at –80◦C. We per-
formed Bisulfite conversion using the EZ DNA Methylation-
Lightning Kit (catalog D5031, Zymo Research). We con-
ducted targeted genome methylation analysis on 10 ng input
ctDNA, and used a custom lung cancer methylation specific
panel, which consists of 10180 preselected regions.

We randomly split the training, validation, and test sets by
7:1:2, and made the distribution of both the demographics of
the patients and the morphological features of the nodules
in accordance with the proportion. Finally, we obtained 298
training samples, 42 test samples, and 84 validation samples.
We run the experiments on 10 random splits and reported the
average performance. We present the statistics of the train-
ing, test, and validation sets in Table 2.

Experiments

In this section, we describe the details of the experimen-
tal evaluation. We first introduce the baselines and the im-
plementation details. Then, we vary the size of represen-
tation vectors and present the results of region representa-
tion. Given the same representation, we report the results of
two aggregation methods, and compare DeepMeth with four
baseline metrics to evaluate the performance of DeepMeth.
Moreover, we also show the results of experiments that com-
bine DeepMeth with traditional metrics.
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Figure 5: The influence of the size of region vectors. (a) ctDNA Methylation is represented by concatenation of region vectors;
(b) ctDNA Methylation is represented by mean of region vectors. We varies the size of region vectors from 1 to 100. Each bar
group shows the AUC scores under different classifiers.

Baselines
We compare DeepMeth with four widely-used cancer de-
tection methods, which utilize the traditional metrics of
the methylation level. Specifically, the metrics include the
Percentage of Co-Methylation (PCM) (Liang et al. 2019),
the Methylation Frequency (MF) (Bibikova and Fan 2009),
Methylation Entropy (ME) (Xie et al. 2011), and Methyla-
tion Haplotype Load (MHL) (Guo et al. 2017). Notice that
MF is the same with Beta-value. Then, the baseline methods
employ traditional machine learning classifiers (e.g., Ran-
dom Forest) to predict the diagnosis of inputs.

Implementation Details
We implement the auto-encoder of DeepMeth with Py-
Torch (Paszke et al. 2019). The source code is avail-
able at https://github.com/XiangruiCAI/DeepMeth/. We use
Adam (Kingma and Ba 2015) to optimize the parameters.
The learning rate is set to 1e-4 and the weight-decay is 1e-5.
The training batch size is 32.

To compare with existing methods, we implement three
ensemble classifiers on all baseline metrics and our region
vectors. Specifically, we implement RandomForest, XG-
Boost, and LightGBM with scikit-learn (Pedregosa et al.
2011). We also perform grid search on the validation set to
choose the best hyper-parameters.

We train the auto-encoder on with a Nvidia RTX 2080Ti
GPU. All models are run on the same random splits. We
report the mean AUC scores and their variations. We also
present the receiver operating characteristic (ROC) curves
in the Github repository.

Influence of the Size of Region Vectors
In order to analyze the size of region vectors, we conduct the
experiments using various sizes of region vectors, including
1, 10, 20, 50, 70, and 100. The learned vectors are processed
to form a methylation vector with two methods, i.e., mean
and concatenation. Then, based on the methylation vector,
we employ three ensemble classification models (i.e., Ran-
dom Forest, XGBoost, and LightGBM) for cancer detection.

The results are reported in Figure 5(a). We report the
mean and variance of the AUC scores on the test set of 10
random splits. When the dimensionality is set to 1, a region
is represented by a scalar, which is similar to the traditional
metrics. As we can observe, setting the dimensionality to 1 is
ineffective to encode the information of methylation patterns
within a region, resulting in the sub-optimal performance.
As the size of region vectors increases, the performance of
the three classifiers increases first and then decreases. We
can observe that the classifiers perform best when the dimen-
sionality is set to 10. On the other hand, in Figure 5(b), we
compare two aggregation methods, i.e., mean and concate-
nation. It can be observed that concatenation achieves much
better performance than mean. The mean aggregation be-
haves like a random guess. The reason is that a small number
of discriminative region vectors are eliminated in the mean
aggregation due to the large number of regions. The tumor
signals are drowned out through the mean aggregation.

Comparison of DeepMeth and SOTA Methods
We compare DeepMeth with four baseline metrics on LC-
Meth. DeepMeth is configured with two sizes of region
vectors, i.e., dim=1 and dim=10. The aggregation method
is concatenation. We perform prognosis classification with
three ensemble classifiers, i.e., RandomForest, XGBoost,
and LightGBM. As shown in Table 3, ME performs the best
among the baselines. Though we set the size of region vec-
tors to 1, DeepMeth outperforms ME by 3% to 5.6% across
three classifiers in terms of AUC. This extreme setting indi-
cates that the scalar feature learned by the auto-encoder is
better than the hand-craft metrics. When the size of region
vector is set to 10, DeepMeth achieves the best performance,
i.e., 5% to 8% higher than ME in terms of AUC. We can ob-
serve that PCM (3-5) performs better than PCM (2-3). One
possible explanation is that PCM (3-5) has a more relaxed
conditions on co-methylation. We also notice that MHL has
poor performance on the LC-Meth dataset. The identifica-
tion of methylation haplotype blocks (MHB) is the premise
for calculating the MHL score. It heavily depends on the tis-
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Region Representations Classifiers
RandomForest XGBoost LightGBM

PCM (2-3) 0.6692±0.0675 0.6097±0.0943 0.6055±0.1458
PCM (3-5) 0.7074±0.0666 0.6606±0.1132 0.6634±0.1006

ME 0.7470±0.0818 0.7055±0.0901 0.7415±0.0800
MF 0.7066±0.0905 0.6281±0.0880 0.7057±0.0859

MHL(wi = i) 0.7004±0.0945 0.6110±0.1103 0.6834±0.1010

DeepMeth (h = 1) 0.7770±0.0718 0.7712±0.0645 0.7770 ±0.0702
DeepMeth (h = 10) 0.7860±0.0613 0.7892±0.0698 0.8117±0.0638

Table 3: Comparsion of DeepMeth and the baselines. DeepMeth achieves best performance on LC-Meth in terms of AUC.
Compared to the best baselines (ME), DeepMeth improves the AUC by about 5%-8% across the three classifers.

Method RandomForest XGBoost LightGBM

DeepMeth(h = 10) 0.7860±0.0613 0.7892±0.0698 0.8117±0.0638
DeepMeth(h = 10) + ME 0.8026±0.0703 0.8195±0.0694 0.8326±0.0527
DeepMeth(h = 10) + MF 0.8017±0.0627 0.8114±0.0580 0.8309±0.0592
DeepMeth(h = 10) + MHL 0.7919±0.0643 0.8114±0.0630 0.8272±0.0578
DeepMeth(h = 10) + PCM(2-3) 0.7930±0.0661 0.8032±0.0671 0.8262±0.0570
DeepMeth(h = 10) + PCM(3-5) 0.7928±0.0633 0.8030±0.0707 0.8200±0.0599

Table 4: Representing methylation regions with combined features. The size of region vectors is set to be 10. Combining
DeepMeth and a traditional metric is able to achive higher AUC scores than DeepMeth only.

sue data, which degrades the performance of MHL on new
datasets. In addition, it can be observed that the LightGBM
performs the best among the three the ensemble classifiers.

Combined Region Representations
To investigate the effectiveness of our auto-encoder fea-
tures, we also conduct experiments that combine DeepMeth
and the scalar metrics. For each region, we concatenate the
DeepMeth features with the metrics to get a combined repre-
sentation. We set the size of region vectors to 10. The results
are reported in Table 4. As we can observe, it achieves a
small improvement when combining DeepMeth with tradi-
tional metrics. It indicates that the two types of features can
serve as the supplements of each other. We can also observe
that LightGBM over the region vectors and ME performs the
best, gaining more than 2% improvements compared with
DeepMeth-only.

Comparison to Deep Learning Classifiers
We also compare DeepMeth equipped with different classi-
fiers. Specifically, we feed the learned methylation represen-
tations into six classifiers for early detection of lung cancer.
Among these classifiers, three of them are ensemble mod-
els (i.e., Random Forest, XGBoost, and LightGBM), and the
others are deep learning-based models (i.e., MLP, CNN, and
RNN). We describe more details in the Github repository.

The experimental results are shown in Table 5. It can
be observed that with the ensemble classifiers, DeepMeth
achieves higher AUC in lung cancer detection than with the
deep learning models. One possible explanation is that the
methylation dataset has 10180 regions, while the number
of samples is only 424. The deep learning models have too
many parameters to tune and are prone to overfitting.

Classifiers AUC
RandomForest 0.7860 ± 0.0613

XGBoost 0.7892 ± 0.0698
LightGBM 0.8117± 0.0638

MLP 0.7498 ± 0.0659
CNN 0.7604 ± 0.0642
RNN 0.7027 ± 0.0693

Table 5: The comparison between DeepMeth and other clas-
sifiers. We can observe that the LightGBM achieves the best
AUC and outperforms the second (XGBoost) by about 2%.

Conclusion

This paper proposes a noninvasive and cost-effective
method, DeepMeth, for early detection of lung cancer. In-
stead of predefined metrics, we present an auto-encoder to
learn the rich semantics hidden in the layouts of ctDNA
methylation regions. To avoid the curse of dimensional-
ity, we regard each methylation region independently and
concatenate region vectors to represent a ctDNA methyla-
tion sample. Extensive experiments on a multicenter clinical
dataset have demonstrated the effectiveness of DeepMeth
compared with four state-of-the-art baselines. Moreover, our
experiments also show that the auto-encoder features can
be well combined with traditional metrics to enhance the
prediction performance. DeepMeth has been clinically de-
ployed national-wide in more than 94 hospitals. Our future
research plan is to apply DeepMeth to the prognosis of other
cancers such as liver and breast cancers.
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