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Abstract
With the rapid increase of multimedia data, a large body of
literature has emerged to work on multimodal summariza-
tion, the majority of which target at refining salient infor-
mation from textual and visual modalities to output a picto-
rial summary with the most relevant images. Existing meth-
ods mostly focus on either extractive or abstractive summa-
rization and rely on qualified image captions to build image
references. We are the first to propose a Unified framework
for Multimodal Summarization grounding on BART, UniMS,
that integrates extractive and abstractive objectives, as well
as selecting the image output. Specially, we adopt knowledge
distillation from a vision-language pretrained model to im-
prove image selection, which avoids any requirement on the
existence and quality of image captions. Besides, we intro-
duce a visual guided decoder to better integrate textual and
visual modalities in guiding abstractive text generation. Re-
sults show that our best model achieves a new state-of-the-art
result on a large-scale benchmark dataset. The newly involved
extractive objective as well as the knowledge distillation tech-
nique are proven to bring a noticeable improvement to the
multimodal summarization task.

Introduction
Existing researchers (Srihari 1994; He and Deng 2017; Bal-
trusaitis, Ahuja, and Morency 2019) have evidenced that
in order to understand the world around us, it needs to be
able to interpret and reason from multimodal information.
Recently proposed Multimodal Summarization with Mul-
timodal Output (Zhu et al. 2018) (MSMO) that condenses
long multimodal news to a short pictorial version, as shown
in Fig. 1, is a new fashion of summarization. This method
improves users’ satisfaction with the ability to quickly grasp
news highlights, and brings both research and commercial
value in the face of information explosion.

A large amount of methods (Zhu et al. 2018, 2020; Zhang
et al. 2021) are proposed for improving multimodal summa-
rization. They serve as baselines for the large-scale bench-
mark dataset collected by Zhu et al. (2018), and provide in-
sights for recent work on multimodal summarization. In or-
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NFL Hall of Famer Nick Buoniconti is pledging his brain 
to research into football-linked brain injuries. The 
Miami Dolphins legend, 76, was diagnosed with 
dementia in May, and his doctors suspect he also suffers 
from chronic traumatic encephalopathy (CTE), a critical 
disease which scientists believe is caused by blows to 
the head. [Speaking on Friday, Buoniconti cried as he 
said he is leaving his brain with the famed
research team at Boston University, which
diagnosed CTE posthumously in the late Patriots star 
Aaron Hernandez, in the hopes that he can help speed 
up attempts to diagnose CTE during life.] [It comes a 
month after his son Marc, who was left paralyzed for life 
after a clash in a college football game 32 years ago, 
said he believes youth football should be banned.]
‘My life, as I know it, has been taken away from me,’ 
Buoniconti wept on Friday, sat in a wheelchair next to 
his wife Lynn. …

Nick Buoniconti, 76, was a legend with the Miami 
Dolphins. He was diagnosed with dementia in May, and 
his doctors now believe he also suffers CTE. On Friday, 
Buoniconti announced he is leaving his brain with 
Boston University. The famed brain research 
team diagnosed CT posthumously in the late Patriots 
star Aaron Hernandez. Last month, Buoniconti's son 
Marc, who was left paralyzed for life after a clash in a 
college football game 32 years ago, said youth football 
should be banned.
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Figure 1: The illustration of multimodal summarization task.
Our unified framework is able to achieve extractive and ab-
stractive summarization objectives, as well as the image se-
lection objective with no need of using image captions.

der to obtain the pictorial summary including a piece of con-
densed text with images as shown in Fig. 1, existing methods
typically consist of two objectives.

Firstly, as a critical modality of the pictorial summary, the
objective of abstractive text summarization plays an impor-
tant role in improving multimodal summarization. Recent
advances in denoising autoencoder for pretraining sequence-
to-sequence models such as BART (Lewis et al. 2020) have
been shown to capture many language relevant facets for
downstream tasks, which leads to a large improvement on
text summarization metrics. We believe the existing high-
capacity language model benefits summarization remark-
ably even in a multimodal setting. However, the original
BART model has no support for multimodal input and out-
put. Therefore, we are motivated to integrate textual and vi-
sual modalities into the BART model and extend its architec-
ture to further improve the multimodal summarization task.
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Next, to leverage the visual modality and improve the
quality of model-selected image, Zhu et al. (2020) proposes
to incorporate image references into the training process,
and jointly consider summary generation and image selec-
tion as training targets. Due to the lack of image references,
Zhu et al. (2020) proposes a ROUGE-ranking method using
the similarity of image caption and text reference to rank
images, which hence builds the pseudo image reference for
training. It assumes the image caption has already contained
condensed textual information of visual modalities, which
semantically matches with the corresponding image. How-
ever, this assumption largely depends on the quality of the
image caption instead of the image content itself. To sum up,
the effectiveness of this ROUGE-ranking method relies on
the presence of high-quality image captions. Unfortunately,
the image captions are not often qualified or even not present
in a multitude of irregular multimedia data.

Thus, we propose to distill knowledge from a pretrained
vision-language teacher model (e.g., CLIP) to help our
model on learning the relevance rank of images in the given
textual context without any requirement on the existence and
quality of image captions. Specially, given the recent process
in contrastive vision-language pre-training (Radford et al.
2021), we are motivated to use the cosine similarity of text
references and images to represent text-image content rele-
vance, and use this relevance to build pseudo image refer-
ences. As far as we know, distilling knowledge from vision-
language models to mentor multimodal summarization re-
mains unexplored.

Considering the above mentioned abstractive and image
selection objectives, we design UniMS: a Unified frame-
work for Multimodal Summarization grounding on BART,
which integrates inputs of both textual and visual modali-
ties along with multiple multimodal objective functions in
a unified multitask framework. We modify the BART archi-
tecture separately on its encoder and decoder. In the encoder,
we distill the knowledge from a pretrained vision-language
teacher model to guide our encoder on selecting images. We
additionally introduce a new extractive objective, together
with the image selection objective, as multimodal super-
vised signals for our encoder. It could potentially reduce the
modality-bias problem (Zhu et al. 2020) and improve the
understanding of multi-modalities for our encoder, which
eventually benefits the multitask abilities. In the decoder, we
adopt visual guided attention to better integrate both modal-
ities to achieve the abstractive objective.

Overall, our unified multitask framework extends the
BART model by enabling both extractive and abstractive
summarization, as well as image selection as output. To our
knowledge, UniMS is the first unified framework including
three objectives of multimodal summarization. Experimen-
tal results show that our framework achieves new state-of-
the-art results in all tasks. Our contributions in this paper are
three-fold:

1. We propose a unified multimodal summarization
framework with an encoder-decoder multitask architecture
on top of BART, which simultaneously outputs extractive
and abstractive summaries, and image selection results.

2. Our framework adopts knowledge distillation to im-

prove image selection without any requirement on the ex-
istence and quality of image captions. We further introduce
the extractive objective in the encoder and visual guided at-
tention in the decoder to better integrate both textual and
visual modalities in the conditional text generation.

3. Our unified method achieves a new state-of-the-art re-
sult of multimodal summarization in all the subtasks, i.e.,
extractive, abstrastive, and image selection.

Related Work
Multimodal summarization takes two or more modalities of
data as input, and outputs either single-modal or multimodal
summary. The input modality could contain documents, im-
ages, audios and videos from the rich multimedia informa-
tion (Li et al. 2017), which enables it to make use of more
information than traditional text summarization. Zhu et al.
(2018) construct a large-scale corpus for a novel multimodal
summarization task, which takes the news with images as
input, and outputs a pictorial summary. They also present a
multimodal attention method serving as a baseline for this
task.

To further improve the quality of the model-selected im-
ages, Zhu et al. (2020) propose to incorporate the multi-
modal reference into the training process, thus taking ac-
count of both summary generation and image selection to
guide the abstractive model. LAMS (Zhang et al. 2021) con-
siders image location as a critical factor for news summa-
rization, and proposes a location-aware extractive approach
for multimodal summarization.

Existing methods are only targeting either extractive or
abstractive multimodal summarization. The tradeoff in the
use of extractive and abstractive approaches has been dis-
cussed a lot in existing research (Cao et al. 2017; Jia et al.
2021): the former often achieve better factuality and effi-
ciency, while the latter generates flexible and less redundant
summaries. They both have merits in summarizing multime-
dia data.

We aim to propose a unified framework producing both
extractive and abstractive summaries with a selected image
preview that serves a multi-functional use. Our framework
extends BART model (Lewis et al. 2020) to a unified multi-
task architecture. The model comparison with related work
is presented in Table 1, and more details are discussed in
Section 4.3. In addition, we distill the knowledge from state-
of-the-art vision-language model CLIP (Radford et al. 2021)
to guide our training process, which avoids any requirement
on the existence and quality of image captions.

Methodology
Model Overview
We propose a new multimodal summarization framework
that unifies multiple subtasks of multimodal summarization.
We use the BART model (Lewis et al. 2020) as our backbone
architecture which consists of an encoder and decoder com-
ponent. The overall architecture of our framework is shown
in Fig. 2.

Given a multimodal document D = {T, V }, where
T = {t1, t2, ..., tM} is a sequence of M tokens and V =
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Figure 2: Overview of our proposed UniMS framework. At first, we extend BART encoder to multimodal encoder by embedding
visual features with linear projection as additional input. To enhance the multimodal encoder’s ability to understand multimodal
input, we further introduce extractive text reference and image reference via knowledge distillation to guide our encoder.
Besides, the proposed visual guided decoder separately attends to the visual and the textual output of the multimodal encoder.

{v1, v2, ..., vN} is a collection of N images, the proposed
framework summarizes D into a multimodal summary Y =
{Yt, Yv}, where Yt = {y1, y2, ..., yl} denotes the textual
summary limited by length l and Yv is a subset of images
extracted from the image collection V .

Multimodal Reference Enhanced Encoder
Multimodal Encoder. Inspired by Kim, Son, and Kim
(2021), we adopt a simple scheme, linear projection oper-
ating on image patches for obtaining visual embeddings.
Specifically, each input image vi is sliced into patches and
flattened as {vik}. Followed by linear projection and visual
position embedding vpos, vi is embedded into evi . It is worth
noting that, unlike existing methods (Zhu et al. 2018, 2020),
we take the first attempt to only use patch projection rather
than any visual backbone.

Then, we extend the text encoder of BART to multimodal
encoder, which takes the concatenation of text embeddings
et and visual embeddings ev as input and outputs their con-
textualized joint representations:

et = [t[CLS]; t1; ...; tM ; t[SEP]]Wt,

evi
= [v[CLS]; vi1; ...; vik]Wv + vpos,

e = [et; ev] = [et; evi
; ...; evN

] + epos,

h = [ht;hv] = fenc(e),

(1)

where t[CLS] and t[SEP] are the special token embeddings
introduced to mark the start and the end of the text input,
epos is the multimodal sequence position embedding, fenc
denotes the encoder function, Wt and Wv are learnable pa-
rameters. Following Dosovitskiy et al. (2021), we add v[CLS]

as the beginning token of each image, whose hidden state at
the output of the encoder serves as the whole image repre-
sentation.

Knowledge Distillation for Image Reference. The mul-
timodal summarization training set has only plain summary
text reference, which lacks image reference for helping im-
age selection in the training process. Thus, the existing re-
search (Zhu et al. 2020) considers ROUGE-ranking (RR)
strategy to rank images and choose the top-k as image ref-
erences, which thus extends text-only to multimodal refer-
ence. In detail, RR uses the similarity of image caption and
text reference to rank images. However, this strategy relies
on not only the presence of image captions but also the high
relevance between images and their captions, which can lead
to a very limited application scenario in reality.

Therefore, we adopt the Knowledge Distillation (KD)
technique (Hinton, Vinyals, and Dean 2015) for distilling
the text-image content relevance knowledge, which can get
image reference without any image caption. Our proposed
method aims to distill the knowledge from a teacher net-
work, i.e., CLIP (Radford et al. 2021), to a student network,
i.e., our encoder. The student network is trained to mimic the
behaviors of the teacher network, on calculating text-image
content relevance score as well as ranking images according
to the precedent score.

Specifically, we use the hidden state hv[CLS]
of visual to-

ken [CLS] as the image representation
−→
hv , and feed it into

a fully connected layer to predict a score:

gv(
−→
hv) =Wv

−→
hv + bv, (2)

where Wv and bv are learnable parameters.
Then, we employ CLIP (Radford et al. 2021) as a teacher

model to calculate the cosine similarity scores between text
embeddings generated by feeding textual summary Yt into
its text encoder T , and image embeddings generated by
feeding image collection V into its image encoder V:

f(v, Yt) = sim(V(v), T (Yt)). (3)
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To quantify the variation of ranking score distribution for
our encoder and the CLIP model, we use the Kullback-
Leibler (KL) divergence (Kullback and Leibler 1951). Via
distilling knowledge, our encoder intends to directly mimic
the teacher model’s score distribution. Formally, CLIP-
based KD can be modeled as minimizing the following
objective functions with temperature τ . Unless otherwise
specified, all results reported in this paper use temperature
τ = 10 which we find to perform best.

pv(
−→
hv, τ) =

exp(gv(
−→
hv)/τ)∑

v∈V exp(gv(
−→
hv)/τ)

, (4)

qv(v, Yt, τ) =
exp(f(v, Yt)/τ)∑

v∈V exp(f(v, Yt)/τ)
, (5)

LKD = LKL(p||q) = −
∑
v∈V

pv ln
qv
pv
. (6)

Extractive Text Reference Due to the fact that if the en-
coder only obtains the reference from one single modality,
the system may suffer from the modality-bias problem (Zhu
et al. 2020). Therefore, we introduce the extractive text ref-
erence to supervise our encoder. In other words, we regard
extractive text summarization as one of the subtasks in our
framework. We use a greedy algorithm similar to Nallap-
ati, Zhai, and Zhou (2017) to obtain an oracle summary
within each document as the extractive text reference. In de-
tail, our algorithm generates an oracle consisting of multi-
ple sentences, which are selected greedily to maximize the
ROUGE-L score against the gold summary.

In our encoder, for representing individual sentences, we
insert extra [CLS] and [SEP] tokens at the start and end of
each sentence, expecting each [CLS] token to collect fea-
tures for the sentence following it, i.e.,

−→
ht = ht[CLS]

. Thus,
on top of which, a fully connected layer can be used to pre-
dict an extractive score for each sentence:

gt(
−→
ht) =Wt

−→
ht + bt, (7)

where Wt and bt are learnable parameters.
Given the extractive score per sentence, the regular binary

cross-entropy loss is employed as the objective function for
extractive text reference:

pt(
−→
ht) =

exp(gt(
−→
ht))∑

t exp(gt(
−→
ht))

, (8)

LExt = −
∑
t

log pt(
−→
ht). (9)

Visual Guided Decoder
Different from the original BART, our decoder has to at-
tend to both the textual and visual content of the multimodal
document instead of single modality input. Inspired by the
guidance-aware mechanism proposed by Dou et al. (2021),
which can introduce multiple textual guidance signals into
the transformer decoder, we design a visual guided text gen-
eration decoder for better utilizing our encoded visual sig-
nals. As shown in Fig. 2, after self-attention, the sequence in

the decoder first attends to the encoded visual hidden states
and generates the visual-guided cross-modal representation.
After that, this sequence continuously attends to the textual
hidden states to produce the final representation:

y = LN(y + CROSSATTN(y;hv)),

y = LN(y + CROSSATTN(y;ht)),
(10)

Ideally, modeling the multimodal signals separately with
two cross-attention blocks allows the decoder to be explic-
itly guided by signals from different modalities. Overall, the
decoder iteratively attends to previously generated tokens
y<j and the encoder outputs h, and subsequently predicts
the probability of future text tokens py(yj |y<j , h). For mul-
timodal conditional text generation task, i.e., multimodal ab-
stractive summarization subtask, we train our model by min-
imizing the negative log-likelihood:

LAbs = −
|y|∑
j=1

log py(yj |y<j , h). (11)

Finally, the training loss L of our framework is a sum of
the objectives of all these subtasks: image selection, extrac-
tive, and abstractive text summarization.

L = LKD + LExt + LAbs. (12)

Experiments
Datasets
We use the MSMO dataset, which is collected by (Zhu
et al. 2018) for multimodal summarization. It contains on-
line news articles from the DailyMail website1 paired
with multiple images (6.58 images on average) and multi-
sentence ground-truth summaries. The dataset includes
293,965 training pairs, 10,355 validation pairs, and 10,261
test pairs. In the test set, at most three images are annotated
as a multimodal reference.

Implementation Details
Our framwork is built on ’bart-base’2 version of
BART (Lewis et al. 2020) with its initialized parame-
ters and tokenizer. We use the released ’ViT-B-32’3 version
of CLIP (Radford et al. 2021) as the teacher network for
knowledge distillation. Meanwhile, following the image
pre-processing used in CLIP, we resize the resolution of
each image into 224×224 with a patch projection yielding
49 patches. We limit the number of images to 10 and pad
the visual token [CLS] and image patch tokens together
in a total length of 500 for batch training. Besides, we
truncate each article to 512 tokens, and the oracle summary
in this paper is calculated on the truncated articles. All
models are trained for 30,000 steps with 750 steps for
warm-up. Model checkpoints are saved and evaluated on
the validation set every 2,000 steps. We select the top-3

1http://www.dailymail.co.uk
2https://huggingface.co/facebook/bart-base
3https://github.com/openai/CLIP
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Model Multimodal Ext. Abs. ImgSel

BertExt (2019) X
BertAbs (2019) X
BertExtAbs (2019) X X
BART (2020) X

ATG/ATL/HAN (2018) X X X
GR (2018) X X X
MOF (Zhu et al. 2020) X X X
LAMS (Zhang et al. 2021) X X

UniMS X X X X

Table 1: Model comparison with baseline models. Multi-
modal, Ext., Abs. and ImgSel denote whether the model
could support multimodal input, perform extractive text
summarization, abstractive text summarization, and image
selection subtasks, respectively.

checkpoints according to the validation loss and report the
averaged results on the test set.

For abstractive summarization, we use beam search (size
5) in decoding, and tune the α for the length penalty (Wu
et al. 2016) between 1.6 and 2.0 on the validation set; we
decode until an end-of-sequence token is emitted. For ex-
tractive summarization, we first use the model to obtain the
score for each sentence. We then rank these sentences de-
scendingly according to their scores and select the top-3 sen-
tences as the summary.

We report the F1 ROUGE score via ROUGE-
1.5.5.pl (Lin 2004), which calculates the overlap lexical
units between generated and ground-truth sentences. For im-
age selection, we report image precision (IP) score, which is
defined in (Zhu et al. 2018) to represent whether an image is
correctly selected as output. Besides, Msim is an image-text
relevance metric which measures the maximum similarity
between the output image and text summary via the cross-
modal retrieval model, as stated in Zhu et al. (2018, 2020).

Baselines
To show the effectiveness of our unified framework, we
compare our model with existing text and multimodal sum-
marization methods:
BertSum (Liu and Lapata 2019) is an unified model for ex-
tractive and abstractive text summarization whose parame-
ters are initialized with BERT (Devlin et al. 2019). Its vari-
ants include BertExt, BertAbs and BertExtAbs.
BART (Lewis et al. 2020) is the state-of-the-art abstractive
pure text summarization model pretrained with a denoising
autoencoding objective.
ATG/ATL/HAN/GR are proposed by Zhu et al. (2018), the
former three of which leverage the pointer generator net-
work (See, Liu, and Manning 2017) for multimodal sum-
marization via adopting the visual attention on global fea-
tures, local features and hierarchically local features of im-
ages. GR is an extractive method that ranks sentences and
captions via LexRank (Erkan and Radev 2004) and guidance
strategies.

Model R-1 R-2 R-L IP Msim

Text Abstractive

BertAbs (2019) 39.02 18.17 33.20 - -
BertExtAbs (2019) 39.88 18.77 38.36 - -
BART (2020) 41.83 19.83 39.74 - -

Multimodal Abstractive

ATG (2018)* 40.63 18.12 37.53 59.28 25.82
ATL (2018)* 40.86 18.27 37.75 62.44 13.26
HAN (2018)* 40.82 18.30 37.70 61.83 12.22
MOFRR

enc (2020)* 41.05 18.29 37.74 62.63 26.23
MOFRR

dec (2020)* 41.20 18.33 37.80 65.45 26.38

UniMS 42.94 20.50 40.96 69.38 29.72
w/o Visual Guide 42.71 20.26 40.76 69.14 29.64
w/o LExt 42.63 20.21 40.61 69.25 29.61
w/o Both 42.55 19.88 40.14 69.22 29.57

UniMS-VL 40.81 18.83 38.83 68.26 29.45

Table 2: Experimental results for multimodal summarization
on MSMO test set, where “w/o Visual Guide” denotes to re-
move the visual-guided cross attention from the decoder and
keep only one cross attention on all hidden states from two
modalities, “w/o LExt” denotes to the model without apply-
ing LExt to the encoder and “w/o Both” denotes to remove
the former two. Results marked by * are taken from the au-
thors’ respective papers.

MOF variants (Zhu et al. 2020) introduce the multi-
modal objective function with image reference obtained by
ROUGE-ranking (RR) as described in Section 3.2. Besides,
they incorporate the last hidden states of the text encoder or
the summary decoder into their proposed image discrimina-
tor and denote it as MOFenc and MOFdec.
LAMS (Zhang et al. 2021) proposes a location-aware ex-
tractive approach to utilize the image locations for multi-
modal summarization.
UniMS-VL: Cho et al. (2021) proposes VL-BART which
extends BART text encoders to multimodal encoders by in-
coporating image region embeddings extracted by Fast-R-
CNN (Ren et al. 2017) as additional input. VL-BART has
shown good performances on vision-language tasks. There-
fore, we also aim to train our model with their released
checkpoint as a starting point.

The comparison among our UniMS and different base-
line models is shown in Table 1, which demonstrates that
our unified framework is able to cover all the subtasks of
multimodal summarization.

Automatic Evaluation
Table 2 summarizes the results on abstractive summariza-
tion and image selection subtasks. The first block in the table
includes abstractive summarization methods with text-only
input, while the second block includes abstractive methods
with multimodal input. We find that, by fine-tuning the pre-
trained BART model (Lewis et al. 2020), the results of ab-
stractive text summarization is able to achieve competitive
performances as state-of-the-art models that additionally use
visual signals, which indicates the powerful language mod-
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Model R-1 R-2 R-L

ORACLE 50.15 28.56 47.91
LEAD-3 39.94 18.56 38.38

GR (2018)* 37.13 15.03 30.21
BertExt (2019) 39.02 18.17 33.20
LAMS-ATL (2021)* 42.48 19.75 38.78
LAMS-MFB (2021)* 43.07 20.28 39.34

UniMS 42.58 20.29 40.91
UniMS-VL 41.29 19.01 39.47

Table 3: Experimental results for extractive summarization
on MSMO test set. Results marked by * are taken from the
respective papers.

Model R-L IP Msim

ROUGE-ranking 40.90 69.25 29.56
UniMS 40.96 69.38 29.72

Table 4: Experimental results for multimodal summarization
with different methods of building image references.

eling capabilities of BART and motivates us to extend BART
to handle multi-modalities. Our proposed UniMS outper-
forms state-of-the-art methods in both abstractive summa-
rization and image selection tasks, demonstrating the supe-
riority of our multimodal summarization model.

In addition, our model can achieve extractive goals with
LExt. We display the results of our extractive summariza-
tion in Table 3. As an upper bound, the table begins with an
extractive ORACLE result as described in Section 3.2. We
also present the LEAD-3 baseline, which simply selects the
first three sentences from a document as extractive output.
The second block includes various extractive summarization
methods with text-only input, i.e., BertExt, and multimodal
input, i.e., LAMS. Our extractive model can achieve compa-
rable performance to the state-of-the-art extractive method
(Zhang et al. 2021) that additionally models human-labeled
image locations as input.

Overall, our proposed unified multitask framework pro-
vides superior performances in all subtasks of multimodal
summarization.

Model Analysis
Ablation study. Table 2 also shows the ablation test of our
model when some components are removed. It shows the
degradation in performances of abstractive summarization
and image selection tasks when removing the correspond-
ing components. Meanwhile, we find that training from the
BART pretraining parameters is better than the VL-BART. It
may be because the pre-training task of VL-BART is primar-
ily designed for vision-language tasks, such as VQA, etc.
Therefore, the original BART’s capability, such as summa-
rization, is corrupted during their training process. We be-
lieve using a visual-languaged pretrained model particularly
designed for multimodal summarization tasks could further
improve our framework, which we leave as future work.

Model R-L IP Msim Para.↑%

LinearProjection 40.96 69.38 29.72 10.07

ResNet50 40.79 68.92 29.66 30.22
CLIP-ResNet50 40.83 69.14 23.73 28.78
CLIP-ViT-B-32 40.86 69.16 29.62 74.10

Fast-RCNN 40.76 68.33 29.62 41.73
UniMS-VL 38.83 68.26 29.45 41.73

Table 5: Experimental results for multimodal summarization
with different visual backbones.
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Figure 3: Novel n-grams and the recall of novel n-grams
appearing in the ground-truth reference. Introducing the vi-
sual guided decoder and extractive objective can enhance the
ability of our framework to generate more novel n-grams.

Image Reference. Table 4 depicts the model perfor-
mances varying with different strategies of building image
references. We adopt the ROUGE-ranking (RR) strategy
from MOF (Zhu et al. 2020) to our framework. Results show
that RR is a strong competitor since the high-quality image
caption of MSMO dataset has already contained condensed
textual information of visual modalities. However, RR relies
on the presence of high-quality image captions, while our
KD method is more flexible with no additional dependency
on captions, leading to wide use in reality.

Visual Backbone. To study the impact of visual back-
bones in our framework, we conduct an experiment on eval-
uating the model performances vary with employing differ-
ent visual backbones, as shown in Table 5. In terms of grid
features, we use pretrained visual backbones, i.e., ResNet50,
CLIP-ResNet50, and CLIP-ViT-B-32, to extract the 49 im-
age patch features. In terms of region features, we represent
an input image v with n = 49 object regions with Faster R-
CNN (Ren et al. 2017) pretrained on Visual Genome (An-
derson et al. 2018).

Results show that the pretrained visual backbones cannot
significantly improve the performance of our model. Mean-
while, the use of pretrained visual backbones increases the
overhead of obtaining visual embeddings. Using the linear
projection only brings an additional 10% gain in parameters
compared to BART. As a result, we choose linear projection
to obtain visual embeddings in our framework.

Novel n-grams. Following Dou et al. (2021), we count the
number of novel n-grams in the output summaries, namely
the newly generated n-grams that do not appear in the source
document. As shown in Fig. 3, all the variants of our model
generate more novel n-grams and cover more novel n-grams
that exist in the ground-truth references than the baseline
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NFL Hall of Famer Nick Buoniconti is pledging his brain to …
The Miami Dolphins legend, 76, was diagnosed with dementia …
Speaking on Friday, Buoniconti cried as he said he is leaving his…
It comes a month after his son Marc, who was left paralyzed for…
'My life, as I know it, has been taken away from me,' Buoniconti…
'I don't believe there are any miracles with this disease, but I …
'I hope that my story and contribution will help thousands of …
Research by the BU CTE Center and VA-BU-CLF Brain Bank, led …
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Nick Buoniconti, 76, was diagnosed with dementia in May, and his doctors suspect he also suffers from chronic traumatic encephalopathy, a critical disease. Buoniconti cried
as he said he is leaving his brain with the famed research team at Boston University, which diagnosed CTE posthumously in the late Patriots star Aaron Hernandez. It comes
a month after his son Marc, who was left paralyzed for life after a clash in a college football game 32 years ago, said he believes youth football should be banned.Abs

hi
gh

lo
w

Figure 4: Visualizations for indicating how one modality affects the other in our multimodal encoder. Note that the importance
scores decrease from red to blue. The red three sentences are extractive results and the first image with a red border owns the
highest score 0.5 in the image selection. Our encoder is able to recognize summary reference related tokens as important, such
as the person regions from images, and verb tokens like ”said” and ”attempt”.

Models Abs. Ext. ImgSel
Consist. Relev. Relev. Relev.

BART 2.18 2.40 - -
UniMS 2.32 2.45 2.37 2.44

w/o Visual Guide 2.26 2.42 2.41 2.44
w/o LExt 2.22 2.40 - 2.42
w/o Both 2.19 2.39 - 2.38

Table 6: Human evaluation of different model outputs. All
the improvements are significant (p < 0.001).

BART. It indicates that our modifications on top of BART
can indeed generate more novel expressions in the abstrac-
tive summary. Additionally, it is clear from Fig. 3 that intro-
ducing the extractive loss and visual guided decoder brings
a significant improvement on enabling models to generate
more novel n-grams.

Human Evaluation. We further conduct a manual evalu-
ation to assess the quality of the generated multimodal sum-
marization. We randomly sample 200 data points from the
test set and recruit three people from Amazon Mechanical
Turk to rate them between 1 to 3 points on multiple quali-
tative aspects. For extractive summarization, we ask the an-
notators to evaluate the relevance (i.e., Relev.), which mea-
sures whether the summary captures the key points of the
source document. For abstractive summarization, we ask the
annotators to evaluate the consistency (i.e., Consist.), which
measures the factual alignment between the summary and
the source document. In particular for image selection, we
ask the annotators to measure whether the summary cap-
tures the key points of the selected image as the relevance
(i.e., Relev.) score, which indicates the image-text relevance
of multimodal output. Table 6 shows that our framework can
generate more faithful and relevant summaries compared to
other variants and baselines.

Visualizations It is of interest to visualize how one modal-
ity affects the other in our multimodal encoder. As shown in
Fig. 4, we adopt the class activation mapping (CAM) (Zhou
et al. 2016) technique to visualize the importance scores by
feeding the last hidden states of our encoder to the fully con-
nected layers used separately in extractive summarization
and image selection tasks. Specifically, for extractive sum-
marization, we employ its fully connected layer on the last
hidden states of visual embeddings to indicate which region
of images is regarded as important by this layer. Similarly
for image selection, we employ its fully connected layer on
the last hidden states of textual tokens to indicate which set
of tokens is regarded as important by this image selection
layer. As shown in Fig. 4, we find that our framework sur-
prisingly attends to the person and player region from im-
ages, and the verb tokens such as “said” and “attempt”,
which is quite close to the key points of summary reference.

Conclusion

We propose a unified framework for multimodal summa-
rization that is able to produce extractive and abstractive
text output, and jointly select image output for the final
pictorial summary. Grounding on BART, our method uses
an encoder-decoder architecture consisting of three train-
ing objectives, i.e., extractive & abstractive text summa-
rization, and image selection. In particular, extractive and
image selection objectives cooperatively supervise the en-
coder. To improve the image selection, we distill the knowl-
edge from existing pre-trained vision-language models. We
also propose a visual guided decoder that separately attends
to the textual and visual modalities while performing ab-
stractive text generation. Overall, our best model achieves
a new state-of-the-art result on the MSMO dataset. We be-
lieve such a unified framework with multi-functional use
can serve as a stepping stone to further improve multimodal
summarization, as well as baselines against which future
methods are tested.
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