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Abstract
Unsupervised sentence representation learning is a funda-
mental problem in natural language processing. Recently,
contrastive learning has made great success on this task. Ex-
isting constrastive learning based models usually apply ran-
dom sampling to select negative examples for training. Pre-
vious work in computer vision has shown that hard nega-
tive examples help contrastive learning to achieve faster con-
vergency and better optimization for representation learn-
ing. However, the importance of hard negatives in contrastive
learning for sentence representation is yet to be explored. In
this study, we prove that hard negatives are essential for main-
taining strong gradient signals in the training process while
random sampling negative examples is ineffective for sen-
tence representation. Accordingly, we present a contrastive
model, MixCSE, that extends the current state-of-the-art Sim-
CSE by continually constructing hard negatives via mixing
both positive and negative features. The superior performance
of the proposed approach is demonstrated via empirical stud-
ies on Semantic Textual Similarity datasets and Transfer task
datasets.

Introduction
Sentence representation learning is a basic task of natural
language processing (NLP). Briefly, an embedding model
learns to map a sentence to a single d dimensional vector.
This area has found strong applications in several NLP tasks
including semantic textual similarity (Zhang et al. 2020),
information retrieval (Cer et al. 2018) and text classifica-
tion (Pang and Lee 2005, 2004).

Early work (Conneau et al. 2017) considered learning sen-
tence representations in a supervised way. However, obtain-
ing ample training data is expensive in practice. This has
raised the desire to use little supervision as possible. Re-
cently, several works (Gao, Yao, and Chen 2021; Yan et al.
2021) have opted to learn sentence representations in an
unsupervised fashion, taking advantage of large availabil-
ity of unlabeled data. Among proposed works, the common
consensus is that the semantic information of the sentence
should be preserved when learning a good representation.
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Figure 1: An illustration of the embedding distribution in-
duced by our method. The mix negative features is closer to
the anchor as compared to the random negatives.

Elsewhere, Wang and Isola (2020) identified two properties
for good computer vision representations (Chen et al. 2020;
He et al. 2020). That is, (1) alignment: representations of
similar examples should be close to each other; (2) unifor-
mity: the embeddings should be distributed uniformly in the
representation space. We find that these two properties are
also suitable for learning good sentence representations.

Learning representations such that the embeddings of
similar examples are close to each other while dissimi-
lar ones are far apart can be considered as an instance of
contrastive learning (Wang and Liu 2021). Although it has
received much attention in the computer vision commu-
nity, only a few works (Gao, Yao, and Chen 2021; Yan
et al. 2021) have employed contrastive learning coupled with
pre-trained language models such as BERT (Devlin et al.
2018) for sentence representations. Since BERT suffers from
anistropy (Li et al. 2020) (i.e., the learned embeddings are
distributed into a narrow cone), contrastive learning allevi-
ates this problem by distributing the embeddings uniformly,
leading to significant improvement in current sentence rep-
resentation methods (Gao, Yao, and Chen 2021).

In the context of unsupervised sentence representation
learning, the core idea of contrastive learning is to train a
neural network (i.e., typically BERT) for all sentence inputs
by constructing similar (positive) pairs and dissimilar (neg-
ative) pairs. The goal is to learn a good sentence embed-
ding where positive pairs are pulled together while negative
pairs are pushed apart in space. Thus, the network uses a
contrastive loss to minimize the distance of a positive pair
and maximize the distance of a negative pair. Given an an-
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chor sentence, a positive pair consist of augmented features
of the anchor. A negative pair is typically constructed by
pairing an anchor’s features with the features of a randomly
sampled sentence in a corpus. The current state-of-the-art
SimCSE (Gao, Yao, and Chen 2021) uses dropout masks
to generate positive pairs while random sampling is used to
generate negative pairs. Very recently, several works (Wang
and Liu 2021; Xuan et al. 2020; Kalantidis et al. 2020) have
indicated the importance of hard negatives for contrastive
learning. Hard negatives are those negatives that are hard to
distinguish from the anchor in the embedding space. Hard
negatives has aided in learning computer vision representa-
tions (Xuan et al. 2020). However, integrating hard negatives
into contrastive learning is yet to be explored for sentence
representation.

In this paper, we provide positive results that hard neg-
atives is important for sentence representation under the
framework of contrastive learning. Specifically, we prove
that without hard negatives the gradient signals of con-
trastive learning loss becomes increasingly small, hindering
effective learning. That is, the underlying mechanisms of
how hard negatives affect the sentence representation learn-
ing via contrastive learning is theoretically formulated and
proved. We then present theoretical support to justify that
the strategy of randomly sampling negatives is incapable of
generating strong gradient signals, particularly when the ini-
tial distribution of the features is highly anisotropic such as
those produced by BERT. Finally, we present a novel model
based on the framework of SimCSE (Gao, Yao, and Chen
2021), called MixCSE, which continuously injects artificial
hard negative features via mixing both positive and neg-
ative samples in the training process in order to maintain
strong gradient signals throughout training. Hence, we refer
to these hard negatives as mix negatives. An illustration of
the embedding distribution induced by our method is shown
in Fig 1.

Briefly, our main contributions are to:

• prove that hard negatives are important for sentence rep-
resentation learning and random sampling is not effective
for choosing hard negatives even with many repeats of
random sampling.

• propose the contrastive model MixCSE, an extension of
SimCSE, that constructs hard negatives by mixing the
positive features and random negative features for sen-
tence representation.

• demonstrate through extensive experiments that MixCSE
achieves state-of-the-art results on semantic textual sim-
ilarity (STS) and transfer tasks (TR).

Related Work
Unsupervised Sentence Representation
Unsupervised sentence representation learning has gained
traction recently. Traditional methods generate a sen-
tence embedding by a weighted average of word em-
beddings (Arora, Liang, and Ma 2017; Ethayarajh 2018).
SkipThought (Kiros et al. 2015) adapts the skip-gram model
to the sentence level, where an encoded sentence is used to

predict sentences around it. Other works (Qiao et al. 2019)
use the output of pretrained language models (e.g. BERT)
for sentence embedding. However, Ethayarajh (2019) re-
vealed that the direct use of BERT does not perform
well. Indeed, Li et al. (2020) found that BERT induces an
anisotropic space of sentences embeddings, which is detri-
mental to the performance on STS tasks. For this reason,
Li et al. (2020) proposed BERT-flow, a method that trans-
forms the anisotropic sentence embedding distribution to
a smooth and isotropic Gaussian distribution using a flow-
based method (Dinh, Krueger, and Bengio 2014), improving
performance on STS tasks. BERT-whitening (Su et al. 2021)
uses the traditional whitening method to obtain a smooth
sentence embedding distribution, achieving a performance
equivalent to BERT-flow while reducing the dimensionality
of the sentence embedding.

Contrastive Learning for Sentence Representation
Recently, contrastive learning for sentence representation
has made great success. ConsBERT (Yan et al. 2021) com-
bine multiple data augmentation strategies like token shuf-
fling and cutoff for contrastive learning. Kim, Yoo, and Lee
(2021) construct positive pairs using the hidden representa-
tions of BERT as well as its final sentence embedding. Sim-
CSE (Gao, Yao, and Chen 2021) pass the same sentence to
the pre-trained language twice using different dropout masks
to construct positive pairs. This simple method has proved to
be effective than other data augmentation strategies.

Current methods mainly focus on using different data aug-
mentation strategies to generate positive pairs while nega-
tive pairs are generated through random sampling. Several
works (Wang and Isola 2020; Xuan et al. 2020) in the com-
puter vision community show that hard examples is essen-
tial for contrastive learning. Robinson et al. (2020) use
an importance sampling method to select hard examples.
MoCo (He et al. 2020) keeps a queue with features of the
last few batches as a memory bank to obtain more nega-
tives. Kalantidis et al. (2020) improve MoCo (He et al. 2020)
by generating hard negative examples through mixing pos-
itive and negative examples in the memory bank. However,
hard negatives is yet to be explored for unsupervised sen-
tence representation.

Model
In this section, we first analyze the gradient of the contrastive
loss and discuss the important role of hard negative exam-
ples in contrastive learning. We then show that it is difficult
to obtain hard negative examples through random sampling.
Finally, we introduce our method MixCSE, an extension of
SimCSE that constructs hard negatives to learn sentence rep-
resentation.

Contrastive Learning Framework
Let D denote a corpus of sentences, where xi is a sentence
in D. As shown in Fig 3 (b), the framework typically consist
of an encoder module and a data augmentation module. The
encoder maps xi ∈ D to a feature vector hi in Rd. The data
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augmentation module augments the original data or its fea-
ture vector to obtain two different views of the data. Accord-
ingly, we obtain two d-dimensional feature vectors hi and h′i
of example xi ∈ D to form a positive pair (hi, h′i). Note that
these feature vectors are l2 normalized, so their vectors dis-
tribute on the (d − 1)-sphere of unit radius centered at the
origin of Rd, a sphere we will denote by Sd−1. For the pos-
itive pair (hi, h′i), we will refer to one of the feature vectors
as the “anchor feature” and the other as the “positive fea-
ture” of the anchor. With respect to the anchor hi (or h′i),
the feature vectors hj (or h′j) of any other sentence xj will
be referred to as a “negative feature”. For the clarity of pre-
sentation, we will always use hi as opposed to h′i to refer to
the anchor, thereby reserving h′i for referring to the positive
feature of the anchor. However, in our implementation both
hi and h′i may serve as the anchor.

Using these terminologies, contrastive learning can be
summarized concisely as follows. For each anchor hi in the
pair (hi, h′i), N negative features of the anchor hi are ran-
domly sampled, and the following contrastive loss is mini-
mized.

Lcl = − log
exp(hTi h

′
i/τ)

exp(hTi h
′
i/τ) +

∑N
j exp(hTi h

′
j)/τ)

= −hTi h′i/τ + log

exp(hTi h′i/τ)+N∑
j

exp(hTi h
′
j/τ)


where τ is a scalar temperature hyperparameter.

It is insightful to inspect the derivative of Lcl with respect
to hi is:

−

(
h′i
τ

+
exp(hTi h

′
i/τ)h

′
i +
∑N
j exp(hTi h

′
j/τ)h

′
j

(exp(hTi h
′
i/τ)/τ +

∑M
j exp(hTi h

′
j/τ))/τ

)

= − 1

Cτ

N∑
j

exp(hTi h
′
j/τ)(h

′
i − h′j) (1)

where C = exp(hTi h
′
i/τ) +

∑N
j exp(hTi h

′
j/τ ).

When training is driven by such a gradient signal, we see
that for each negative feature h′j , hi is updated in the direc-
tion of h′i−h′j . But h′i−h′j = (h′i−hi)−(h′j−hi). Such an
update direction can be seen to have a net effect of pushing
hi in the direction of h′i−hi and in the opposite direction of
h′j − hi. In other words, training pushes hi towards h′i (i.e.,
aligning the positive pair) while moving it away from ev-
ery h′j (i.e., makes the sentence embeddings well separated,
or uniformly distributed). Secondly, the jth term in the gra-
dient of Equation (1) depends on exp(hTi h

′
j/τ) and there-

fore it increases exponentially with the inner product hTi h
′
j .

This widely spreads the gradient values that correspond to
different negative features h′j . As a consequence, less distin-
guishable negative features h′j of the anchor (namely those
with larger inner products hTi h

′
j) receive much larger gradi-

ent signals, consequently, pushing them away from the an-
chor.

Playing an important role in contrastive learning, the
second aspect above also results in a limitation of con-
trastive learning. To see this, note that exp(hTi h

′
j) �

exp(hTi h
′
i), making

∑
j exp(h

T
i h
′
j) rather insignificant rel-

ative to exp(hTi h
′
i), particularly as training proceeds and the

former continuously decreases and the latter increases to ap-
proach e. Then the gradient signal given in (1) continuously
decreases, which slows down training and even halts it.

At this point, we see that the existence of negative features
near the anchor are critical for maintaining a strong gradi-
ent signal. We will refer to such hard-to-distinguish negative
features as “hard negative features”. The key development
of this work is to continuously inject artificial hard negative
features to the training process as the originally hard nega-
tives are being pushed away and becoming “easier”.

Distribution of BERT Embeddings

As BERT will be adopted as the encoder to create sentence
embedding (or features), we now recall an issue with such
embeddings, as observed in (Gao et al. 2019). Specifically,
the work of Gao et al. (2019) shows that the embeddings ob-
tained from BERT adopts an anisotropic distribution. This
leads the original sentence embeddings to only occupy a
narrow cone in the feature space. When these embeddings
are l2 normalized, they will be distributed only in a spheri-
cal cap of Sd−1. We now analyze the consequence of such
anisotropic distribution of BERT embeddings in contrastive
learning, where we will assume that the embeddings are dis-
tributed uniformly over the sphere cap.

We consider the sphere cap centered at the “north pole”
(see Fig 1). The sphere cap is the set all points z =
(z1, z2, . . . , zd) ∈ Rd with ‖z‖ = 1 and z22+z

2
3+. . .+z

2
d ≤

R for a positive valueR < 1. A point z in the sphere cap can
be represented alternatively using a spherical coordinate sys-
tem. Specifically, any z on the sphere cap can be represented
by a set of angles (φ1, φ2, . . . , φd−1), where φ1 ≤ ω for
some angle ω ∈ (0, π) and φ2, . . . , φd−1 are unconstrained1.
We denote this sphere cap byOω . Note that here ω specifies
the maximum angle between a vector on Oω and the “north
pole”, i.e. the point (1, 0, 0, . . . , 0) in the Cartesian coordi-
nate system. For the ease of reference, we denote the “north
pole” by µ.

Let S ′ denote the projection of Sd−1 on the “equator
plane”, namely, S ′ = {proj(z) : z ∈ Sd−1}, where
proj(z1, z2, . . . , zd) = (0, z2, . . . , zd).

For any two points z, z′ ∈ Rd, let ](z, z′) denote
the angle between vectors z and z′. That is, ](z, z′) =

arccos( zT z′

‖z‖·‖z′‖ ). We have the following result (See proof
in appendix).

Lemma 1 Suppose that h and h′ are two points on the
sphere cap Oω and ](h, µ) = φ1, ](h′, µ) = φ′1,
](proj(h), proj(h′)) = β and ](h, h′) = θ. Then

cos θ = cosφ1 cosφ
′
1 + sinφ1 sinφ

′
1 cosβ

Lemma 2 If in Lemma 1, h is fixed and h′ is distributed
uniformly in the spherical cap Oω , the probability density

1φd−1 ∈ [0, 2π) and others in [0, π)
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functions of φ′1 and β are:

Pφ(φ
′
1) =

(sinφ′1)
d−2∫ ω

0
(sinφ)d−2dφ

, φ1 ∈ [0, ω]

Pβ(β) =
(sinβ)d−2∫ π

0
(sinφ)d−2dφ

, β ∈ [0, π)

Using these two lemmas, it is then possible to compute
the mean and variance of cos θ in the setting of Lemma 2 as
shown in Figure 2.

In Fig 2, it can be seen that as d increases, the variance
of cos θ declines toward zero. Thus when d is large enough,
the value cos θ is concentrated at its mean. The mean of cos θ
on the other hand depends on ω: when ω ≤ π/2, the mean
of cos θ approaches cos(φ)cos(ω) with increasing d; when
ω ≥ π/2, the mean of cos θ approaches 0. Note that this
latter phenomenon is in fact independent of the value of φ1.

In this analysis, note that h represents an anchor, and
h′ represents a random negative feature of the anchor, dis-
tributed uniformly on the sphere capOω , φ′1 is the angle be-
tween the anchor vector and the north-pole direction, and θ
is the angle between the random negative feature vector and
the anchor vector. When the feature embedding is initialized
with pretrained BERT embeddings, recall that the features
obtained from BERT are distributed in a sphere capOω with
a small ω. As contrastive training proceeds, dissimilar fea-
ture are pushed away from each other, thereby enlarging the
sphere capOω , namely, increasing the value of ω. When the
value of ω exceeds π/2, cos θ all becomes close to 0 namely,
all negative feature vectors are nearly orthogonal to the an-
chor vector2. That is, there hardly exists any “hard” negative
features that are close to the anchor. As explained in the pre-
vious subsection, this results in very weak gradient signal
for further training.

Cancellation effect among negative features One way to
obtain hard negative features is to increase the number N of
sampled negatives. However, we show that such an approach
is highly inefficient, due to a cancellation effect among the
hard negatives.

To see this, consider the large N limit. When N is suf-
ficiently large, for every negative feature h′ of anchor h
with ](h, h′) ∈ [0, ω − φ], there is an h′′ located sym-
metrically to h′ with respect to h, namely, (h′ + h′′)/2
lies in the same direction as h (or (h′ + h′′)/2 = ρh
for some real value ρ < 1. The contribution to the gradi-
ent in Equation (1) by h′′ then cancels the contribution by
h′. But using large N inevitably increases the denominator
C = exp(hTi h

′
i/τ) +

∑N
j exp(hTi h

′
j/τ). The combination

of these effects reduces the gradient signal.
At this end, we have shown that the strategy of ran-

domly sampling the negative features is incapable of gen-
erating strong gradient signals for contrastive training, par-
ticularly when the initial distribution of the features is highly
anisotropic, such as that obtained from BERT.

2Note from Figure 2, this phenomenon does not require a very
large embedding dimension d.

(a) Mean of cos θ (b) Variance of cos θ

Figure 2: Mean and variance of cos θ in the setting of
Lemma 2, plotted with different ω and embedding di-
mension d and φ1 = π/4. The dotted line represents
cos(φ1) cos(ω), plotted as a (constant) function of embed-
ding dimension d for several ω values lower than π/2.

MixCSE
In this subsection, we propose a method, MixCSE, which
continuously injects artificial hard negative features into the
training process so as to maintain a strong gradient signal
throughout training. This resolves the limitation of the stan-
dard contrastive training and the issue of BERT resulting
from its anisotropic embedding distributions. We now de-
scribe MixCSE.

For an anchor feature hi, we construct a negative feature
h̃′i,j by mixing the positive feature h′i and a random negative
feature h′j :

h̃′i,j =
λh′i + (1− λ)h′j
||λh′i + (1− λ)h′j ||2

where λ is an hyperparameter to control the degree of mix-
ing. By including these mixed negatives, the contrastive loss
becomes

Lmix = − log
exp

(
hT
i h

′
i

τ

)
C +

∑N
j exp

(
hT
i SG(h̃′

i,j)
τ

) .
Here SG(·) denotes a “stop gradient” operator (Paszke et al.
2019) which ensures that back-propagation does not go
through the mixed negative h̃i,j .

Mixed negatives help maintain strong gradients As dis-
cussed earlier, the contribution to the gradient signal from a
negative feature h′ of an anchor h is an exponentially in-
creasing function of the inner product hTh′. The inner prod-
uct hTi h̃′i,j of the anchor feature and the mixed negative is

hTi h̃
′
i,j =

λ(hTi h
′
i) + (1− λ)(hTi h′j)

||λh′i + (1− λ)h′j ||

As discussed earlier, at some stage of training, hTi h
′
j ≈ 0.

Additionally, when alignment is achieved, we have hTi h
′
i ≈

1. It then follows that

hTi h̃
′
i,j ≈

λ√
λ2 + (1− λ)2

(2)
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Figure 3: An illusion of our MixCSE method (a) and the traditional contrastive learning (b).

Thus unlike the standard negatives h′j which gives rise to
hTi h

′
j ≈ 0, the mixed negatives ensures the inner product

value is consistently above zero. Such negative then serve to
maintain a stronger gradient signal.

The choice of λ From Equation (2), it might appear that a
larger λ is more beneficial. But this is only true when hi and
h′i have been nearly perfectly aligned.

Consider the case where we have two positive features
h′i, h

′′
i for h and ](hi, h′i) = 0 and ](hi, h′i) = γ. The

mixed negatives h̃′i,j is construsted by mixing h′i and a ran-
dom negative h′j . The angle between hi and h̃′i,j is:

arccos(hTi h̃
′
i,j) = arccos(

λ+ (1− λ)hTi h′j
||λh′i + (1− λ)h′j ||

)

Although we want to construct hard negatives which are
close to the anchor feature, we should still ensure that
the mixed negatives are farther away from the anchor as
compared to the corresponding positive features, namely,
](hi, h̃′i,j) ≥ γ. Or this should be regarded as a “mixed
positive feature”. Thus, λ should have an upper bound:

λ <
||λh′i + (1− λ)h′j ||cos(γ)− cos(hTi h′j)

1− cos(hTi h′j)

In practice, we do not know the value of γ, so we choose a
small λ to avoid generating the wrong hard negative.

The necessity of stop gradient for the mixed negatives
Let Lno−sg

mix represent the contrastive loss with a mixed neg-
ative without a stop-gradient. The derivative of Lno−sg

mix with
respect to h′i is given by

∂Lno−sg
mix

∂h′i
= − 1

C ′τ
((

N∑
j

exp(hTi h
′
j/τ) + exp(hTi h̃

′
i,j/τ))h

T
i

− ∂h̃′i,j
∂h′i

exp(hTi h̃
′
i,j/τ)h

T
i )

Notice that if h̃′i,j participates in the gradient
update process, the derivation has a direction

−∂h̃
′
i,j

∂h′
i
exp(hTi h̃

′
i,j/τ)h

T
i , which will push h′i away

from hi. In other words, if h̃′i,j participates in the gradient
update, the net effect is that the encoder pushes the positive

feature close to the anchor feature. So we stop the gradient
of h̃′i,j .

In practice, both hi and h′i can be regarded as the anchor
feature. So we also construct h̃i,j for h′i by mixing hi and hj
in the same way.

Experiment

Evaluation Setup

Following the standard evaluation protocol established
in (Gao, Yao, and Chen 2021), we use the SentEval
toolkit (Conneau and Kiela 2018) for evaluation purposes.

For Semantic Textual Similarity (STS), we evaluate on
seven datasets: STS12-16 (Agirre et al. 2012; Lee et al.
2013; Agirre et al. 2014, 2015, 2016), STS-B (Cer et al.
2017) and SICK-R (Marelli et al. 2014). We use the Spear-
man’s correlation coefficient as the performance metric.

For Transfer task (TR), we evaluate on seven datasets
with the default configurations from SentEval.: MR (Pang
and Lee 2005), CR (Kifer, Ben-David, and Gehrke 2004),
SUBJ (Pang and Lee 2004), MPQA (Wiebe, Wilson, and
Cardie 2005), SST-2 (Socher et al. 2013), TREC (Voorhees
and Tice 2000) and MRPC (Dolan and Brockett 2005).
Specifically, for each sentence representation method, Sen-
tEval uses the sentence representation it generates to train
a classifier on downstream tasks, and verifies the quality of
the sentence representation by the classification accuracy.

Implementation Details

We use the same training data and protocol in the work of
Gao, Yao, and Chen (2021). Training data contains one mil-
lion sentences crawled from Wikipedia. For each sentence,
we extract a sentence embedding using a fine-tuned BERT
model (Devlin et al. 2018) and use two independent dropout
masks to obtain augmented versions of the sentence embed-
ding. We set τ = 0.05, λ = 0.2 and use the Adam opti-
mizer (Kingma and Ba 2014) for optimization. We experi-
ment with the BERTbase and BERTlarge models using the
respective learning rates 3e − 5 and 1e − 5. For both mod-
els, we train for one epoch with batch size 64. We use early
stopping to avoid overfitting. Our code is implemented in
Python 3.6, using Pytorch 1.60 (Paszke et al. 2019), and the
experiments are run on a single 32G NVIDIA A100 GPU.
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg

Avg.Glove 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERTbase 35.20 59.53 49.37 63.39 62.73 48.18 58.60 53.86

BERTbase-flow 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERTbase-whitening 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28

IS-BERTbase 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58
ConSBERTbase 64.64 78.49 69.07 79.72 75.95 73.97 67.31 72.74

SimCSE-BERTbase 67.17±9.61 79.79±2.72 71.96±3.97 80.21±1.42 77.65±1.24 76.46±1.44 70.57±1.25 74.83±2.32
MixCSE-BERTbase 71.71±4.04 83.14±0.72 75.49±1.25 83.64±2.32 79.00±0.16 78.48±0.82 72.19±0.46 77.66±0.61

BERTlarge 33.06 57.64 47.95 55.83 62.42 49.66 53.87 51.49
BERTlarge-flow 65.20 73.39 69.42 74.92 77.63 72.26 62.50 70.76

BERTlarge-whitening 64.35 74.60 69.64 74.68 75.94 60.81 72.47 70.35
ConSBERTlarge 70.69 82.96 74.13 82.78 76.66 77.53 70.37 76.45

SimCSE-BERTlarge 70.21±1.49 83.97±1.18 75.92±0.56 83.9±0.49 78.87±0.75 79.0±1.0 73.89±1.08 77.97±0.7
MixCSE-BERTlarge 72.55±0.49 84.32±0.53 76.69±0.76 84.31±0.10 79.67±0.28 79.90±0.18 74.07±0.13 78.80±0.09

Table 1: Results on the STS datasets. We implement and reproduce results of SimCSE, and report the average and standard
variance of its results. The performances of other comparing models are from their original papers.

Model MR CR SUBJ MPQA SST TREC MRPC Avg

Glov.Avg 77.25 78.30 91.17 87.85 80.18 83.00 72.87 81.52
BERTbase 78.66 86.25 94.37 88.66 84.40 92.80 69.54 84.94

IS-BERTbase 81.09 87.18 94.96 88.75 85.96 88.64 74.24 85.83
SimCSE-BERTbase 71.12±5.94 85.92±0.41 98.56±2.05 88.61±0.18 85.34±0.37 88.4±0.59 73.48±1.26 84.49±0.59
MixCSE-BERTbase 81.3±1.75 86.77±0.4 99.64±0.01 89.71±0.17 85.87±0.49 84.91±0.24 76.08±0.68 86.33±0.26

BERTlarge 60.89 90.15 99.62 86.04 89.95 93.00 69.86 84.22
SimCSE-BERTlarge 73.93±2.79 88.87±0.75 99.6±0 89.49±0.16 90.59±0.96 91.72±0.95 75.49±0.88 86.8±0.42
MixCSE-BERTlarge 82.95±0.52 89.57±0.05 99.67±0.01 90.14±0.02 89.17±0.84 86.13±0.58 76.74±0.16 87.77±0.11

Table 2: Results on the TR datasets. Bold numbers indicate best performance based on the same pretrained model.

Experiment Results
Our results are reported in Tables 1 and 2 on the STS and
TR tasks respectively. Results are the mean and standard de-
viation computed over five runs for each dataset. We com-
pare our model with BERT-flow (Li et al. 2020), BERT-
whitening (Su et al. 2021), IS-BERT (Zhang et al. 2020),
ConSBERT (Yan et al. 2021), SimCSE (Gao, Yao, and
Chen 2021). As a naive baseline, we include Avg.Glove and
BERT, which generate a sentence embedding by a weighted
average of word embeddings.

STS task Experimental results on the STS datasets
are shown in Table 1. We find that Avg.Glove out-
performs BERTbase, showing the negative impact
of the anisotropy of BERT embeddings. We also
observe that BERTbase-flow/BERTlarge-flow and
BERTbase-whitening/BERTlarge-whitening outperforms
BERTbase/BERTlarge by alleviating the anisotropy. Interest-
ingly, we find that models based on contrasting learning,
including ConSBERTbase/ConSBERTlarge and SimCSE-
BERTbase/SimCSE-BERTlarge show a substantial boost in
model performance when compared to previous methods.
However, our contrastive model Mix-BERTbase/Mix-
BERTlarge not only show the best performance but also
produces more stable results than the current state-of-the-art
SimCSE-BERTbase/SimCSE-BERTlarge.

TR task Experimental results on the TR datasets are
shown in Table 2. We observe that BERTbase performs bet-
ter than Glove.Avg. On the TR task, we train a linear classi-
fier on fixed embeddings. Hence, BERT embeddings contain

Model STS(Avg) TR(Avg)

MixCSE-BERTbase 77.66±0.61 86.33±0.26
MixCSEsingle-BERTbase 76.43±0.11 85.86±0.04
MixCSEwo sg-BERTbase 75.74±0.87 84.55 ± 0.27

MixCSE-BERTlarge 78.80±0.09 87.77±0.11
MixCSEsingle-BERTlarge 78.11±0.20 87.21±0.23
MixCSEwo sg-BERTlarge 77.61±0.45 86.02±0.27

Table 3: Results of the Ablation Study.

rich semantic information as compared to Glove. That might
explain why we have such results. Meanwhile, IS-BERTbase

shows competitive performance with the contrastive learn-
ing models SimCSE-BERTbase and our own model Mix-
BERTbase by taking into account local word-level features
which may be useful for these transfer classification tasks.
However, our modMix-BERTlarge achieves the best perfor-
mance on six out of seven datasets and has a relatively low
variance, suggesting its effectiveness and stability.

Ablation Study
To analyze the impact of each model component, we con-
duct ablation experiments. Specifically, we design two vari-
ants of our model Mixsingle and Mixw grad and apply them to
our datasets using the same experimental setup and hyper-
parameters as in the main experiment. Brief descriptions of
these model variants are as follows:

MixCSEsingle Recall, in our model description we con-
struct a mixing hard negative for hi and h′i. For
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Figure 4: (a) The change for positive, negative and mix
scores. (b) The changes of biggest angle θ (y-axis) between
any two embedding in STS-B in every 125 steps (x-axis).

MixCSEsingle, we only construct a hard negative for hi to
see the effect of the parallel mix method.

MixCSEwo sg Recall, in our model description we noted
that if we update the gradient of h̃′i,j , the gradient direc-
tion of h′i changes. We remove the stop-gradient operation
of h̃′i,j to see its effect.

Ablation results are shown in Table 3. We find that
MixCSEsingle generally underperforms MixCSE, suggesting
that our hard negatives construction method is effective.
Then, MixCSEwo sg shows a further drop in performance, re-
vealing the importance of our stop gradient operation.

Analysis
In this section, we conduct further analysis to understand the
inner workings of MixCSE.

Analysis of the mix score In this part, we analyze whether
the mix negative feature h̃′i,j is more close to the anchor
feature hi. First, we define hTi hj/τ as the positive score,
hTi h

′
j/τ as the negative score, and hTi h̃

′
i,j/τ as the mix

score with τ = 0.05. These scores indicate the distance
between the two features. For each type, we log the corre-
sponding average score in a batch at every 10 training steps.

The results are shown in Fig 4 (a). In the beginning,
we observe that the scores for positive, negative, and mix
are high, which goes on to support the anisotropic property
of sentence embeddings from BERT. However, during the
training process, we observe that the positive scores consis-
tently remain high while both the negative and mix scores
decline. Specifically, as the negative scores reduce and ap-
proach zero, the angle between hi and h′j approximates π/2.
This is consistent with our previous derivation. On the other,
the mix scores decrease but it is significantly higher than the
negative scores, indicating that our method can indeed get
hard negative features.

Analysis of the change of embedding distributed Re-
call, we assume that the original sentence embedding is dis-
tributed within a spherical cap Oω . One aim of contrastive
learning is to make the sentence embedding distributed uni-
formly in the whole embedding space. So the size of the
spherical cap is enlarged during training, namely, ω keeps
increasing during training.

Figure 5: Alignment and uniformity for different sentence
embedding methods measured on the STS-B dev set. Color
of points represent average STS performance.

We observe the change of Oω in this part. For every 125
steps, we log the change of the biggest angle θ between any
two sentences’ embedding in the STS-B dataset, and regard
ω as θ. The result of SimCSE and our method are shown
in Fig 4 (b). We find that our method expands ω quickly
and converges at a high value as compared to SimCSE. This
indicates that our method makes the training more effective.

Alignment and Uniformity Wang and Isola (2020) pro-
posed two widely used metric in contrastive learning to eval-
uate the quality of the computer embedding: alignment and
uniformity. Alignment measures the expected distance be-
tween positive features:

Lalign , E(x,y) Ppos(x,y)[||f(x)− f(y)||
2
2]

Uniformity on the other hand measures the expected dis-
tances between embeddings of two random examples:

Luniform , logE(x,y) Pdata(x,y)[e
−2||f(x)−f(y)||22 ]

We plot the distribution of the “uniformity-alignment” map
for different sentence embedding models based on BERTbase
in Fig 5. The uniformity and alignment are calculated
on the STS-B dataset. For both uniformity and alignment,
lower values represent better performance. We observe that
MixCSE achieves a better trade-off compared with the orig-
inal BERTbase model and the post-processing method like
BERT-whitening and BERT-flow. Comparing with the con-
trastive learning methods such as SimCSE and ConSBERT,
our method shows a better uniformity with a close align-
ment. This result indicates that MixCSE mainly helps im-
prove the performance by learning better uniform features.

Conclusion
In this study, we prove that hard negatives play an important
role in contrastive learning to maintain a strong gradient sig-
nal while randomly sampling negative features is incapable
of generating strong gradient signals for contrastive training.
We propose a contrastive model, MixCSE, that constructs
hard negatives for sentence representation. Empirical stud-
ies on Semantic Textual Similarity datasets and Transfer task
datasets confirm the effectiveness of the proposed model.

11736



Acknowledgments
This work is supported partly by the National Key R&D Pro-
gram of China under Grant 2021ZD0110700, in part by the
National Natural Science Foundation of China under Grant
61772059, in part by the Fundamental Research Funds for
the Central Universities, in part by the State Key Labora-
tory of Software Development Environment and by a Lever-
hulme Trust Research Project Grant.

References
Agirre, E.; Banea, C.; Cardie, C.; Cer, D.; Diab, M.;
Gonzalez-Agirre, A.; Guo, W.; Lopez-Gazpio, I.; Maritx-
alar, M.; Mihalcea, R.; Rigau, G.; Uria, L.; and Wiebe, J.
2015. SemEval-2015 Task 2: Semantic Textual Similarity,
English, Spanish and Pilot on Interpretability. In Proceed-
ings of the 9th International Workshop on Semantic Evalua-
tion (SemEval 2015), 252–263. Denver, Colorado: Associa-
tion for Computational Linguistics.
Agirre, E.; Banea, C.; Cardie, C.; Cer, D.; Diab, M.;
Gonzalez-Agirre, A.; Guo, W.; Mihalcea, R.; Rigau, G.; and
Wiebe, J. 2014. SemEval-2014 Task 10: Multilingual Se-
mantic Textual Similarity. In Proceedings of the 8th Inter-
national Workshop on Semantic Evaluation (SemEval 2014),
81–91. Dublin, Ireland: Association for Computational Lin-
guistics.
Agirre, E.; Banea, C.; Cer, D.; Diab, M.; Gonzalez-Agirre,
A.; Mihalcea, R.; Rigau, G.; and Wiebe, J. 2016. SemEval-
2016 Task 1: Semantic Textual Similarity, Monolingual and
Cross-Lingual Evaluation. In Proceedings of the 10th In-
ternational Workshop on Semantic Evaluation (SemEval-
2016), 497–511. San Diego, California: Association for
Computational Linguistics.
Agirre, E.; Cer, D.; Diab, M.; and Gonzalez-Agirre, A. 2012.
SemEval-2012 Task 6: A Pilot on Semantic Textual Simi-
larity. In *SEM 2012: The First Joint Conference on Lexi-
cal and Computational Semantics – Volume 1: Proceedings
of the main conference and the shared task, and Volume 2:
Proceedings of the Sixth International Workshop on Seman-
tic Evaluation (SemEval 2012), 385–393. Montréal, Canada:
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C.; et al. 2018. Universal sentence encoder. arXiv preprint
arXiv:1803.11175.
Chen, T.; Kornblith, S.; Norouzi, M.; and Hinton, G. 2020.
A simple framework for contrastive learning of visual repre-
sentations. In International conference on machine learning,
1597–1607. PMLR.

Conneau, A.; and Kiela, D. 2018. SentEval: An Evalua-
tion Toolkit for Universal Sentence Representations. arXiv
preprint arXiv:1803.05449.
Conneau, A.; Kiela, D.; Schwenk, H.; Barrault, L.; and Bor-
des, A. 2017. Supervised learning of universal sentence
representations from natural language inference data. arXiv
preprint arXiv:1705.02364.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805.
Dinh, L.; Krueger, D.; and Bengio, Y. 2014. Nice: Non-
linear independent components estimation. arXiv preprint
arXiv:1410.8516.
Dolan, W. B.; and Brockett, C. 2005. Automatically Con-
structing a Corpus of Sentential Paraphrases. In Proceed-
ings of the Third International Workshop on Paraphrasing
(IWP2005).
Ethayarajh, K. 2018. Unsupervised Random Walk Sentence
Embeddings: A Strong but Simple Baseline. In Proceed-
ings of The Third Workshop on Representation Learning for
NLP, 91–100. Melbourne, Australia: Association for Com-
putational Linguistics.
Ethayarajh, K. 2019. How contextual are contextual-
ized word representations? comparing the geometry of
BERT, ELMo, and GPT-2 embeddings. arXiv preprint
arXiv:1909.00512.
Gao, J.; He, D.; Tan, X.; Qin, T.; Wang, L.; and Liu, T.-
Y. 2019. Representation degeneration problem in train-
ing natural language generation models. arXiv preprint
arXiv:1907.12009.
Gao, T.; Yao, X.; and Chen, D. 2021. SimCSE: Simple Con-
trastive Learning of Sentence Embeddings. arXiv preprint
arXiv:2104.08821.
He, K.; Fan, H.; Wu, Y.; Xie, S.; and Girshick, R. 2020.
Momentum contrast for unsupervised visual representation
learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 9729–9738.
Kalantidis, Y.; Sariyildiz, M. B.; Pion, N.; Weinzaepfel, P.;
and Larlus, D. 2020. Hard negative mixing for contrastive
learning. arXiv preprint arXiv:2010.01028.
Kifer, D.; Ben-David, S.; and Gehrke, J. 2004. Detect-
ing change in data streams. In VLDB, volume 4, 180–191.
Toronto, Canada.
Kim, T.; Yoo, K. M.; and Lee, S.-g. 2021. Self-Guided Con-
trastive Learning for BERT Sentence Representations. arXiv
preprint arXiv:2106.07345.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Kiros, R.; Zhu, Y.; Salakhutdinov, R. R.; Zemel, R.; Urta-
sun, R.; Torralba, A.; and Fidler, S. 2015. Skip-thought vec-
tors. In Advances in neural information processing systems,
3294–3302.
Lee, D.-H.; et al. 2013. Pseudo-label: The simple and effi-
cient semi-supervised learning method for deep neural net-
works. In Workshop on challenges in representation learn-
ing, ICML, volume 3.

11737



Li, B.; Zhou, H.; He, J.; Wang, M.; Yang, Y.; and Li, L.
2020. On the sentence embeddings from pre-trained lan-
guage models. arXiv preprint arXiv:2011.05864.
Marelli, M.; Menini, S.; Baroni, M.; Bentivogli, L.;
Bernardi, R.; and Zamparelli, R. 2014. A SICK cure for the
evaluation of compositional distributional semantic models.
In Proceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC’14), 216–223.
Reykjavik, Iceland: European Language Resources Associ-
ation (ELRA).
Pang, B.; and Lee, L. 2004. A sentimental education: Sen-
timent analysis using subjectivity summarization based on
minimum cuts. arXiv preprint cs/0409058.
Pang, B.; and Lee, L. 2005. Seeing Stars: Exploiting Class
Relationships for Sentiment Categorization with Respect to
Rating Scales. In Proceedings of the 43rd Annual Meeting
of the Association for Computational Linguistics (ACL’05),
115–124. Ann Arbor, Michigan: Association for Computa-
tional Linguistics.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information pro-
cessing systems, 32: 8026–8037.
Qiao, Y.; Xiong, C.; Liu, Z.; and Liu, Z. 2019. Under-
standing the Behaviors of BERT in Ranking. arXiv preprint
arXiv:1904.07531.
Robinson, J.; Chuang, C.-Y.; Sra, S.; and Jegelka, S. 2020.
Contrastive learning with hard negative samples. arXiv
preprint arXiv:2010.04592.
Socher, R.; Perelygin, A.; Wu, J.; Chuang, J.; Manning,
C. D.; Ng, A. Y.; and Potts, C. 2013. Recursive deep models
for semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods in
natural language processing, 1631–1642.
Su, J.; Cao, J.; Liu, W.; and Ou, Y. 2021. Whitening
sentence representations for better semantics and faster re-
trieval. arXiv preprint arXiv:2103.15316.
Voorhees, E. M.; and Tice, D. M. 2000. Building a question
answering test collection. In Proceedings of the 23rd an-
nual international ACM SIGIR conference on Research and
development in information retrieval, 200–207.
Wang, F.; and Liu, H. 2021. Understanding the behaviour
of contrastive loss. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2495–
2504.
Wang, T.; and Isola, P. 2020. Understanding contrastive rep-
resentation learning through alignment and uniformity on
the hypersphere. In International Conference on Machine
Learning, 9929–9939. PMLR.
Wiebe, J.; Wilson, T.; and Cardie, C. 2005. Annotating ex-
pressions of opinions and emotions in language. Language
resources and evaluation, 39(2): 165–210.
Xuan, H.; Stylianou, A.; Liu, X.; and Pless, R. 2020. Hard
negative examples are hard, but useful. In European Confer-
ence on Computer Vision, 126–142. Springer.

Yan, Y.; Li, R.; Wang, S.; Zhang, F.; Wu, W.; and
Xu, W. 2021. ConSERT: A Contrastive Framework for
Self-Supervised Sentence Representation Transfer. arXiv
preprint arXiv:2105.11741.
Zhang, Y.; He, R.; Liu, Z.; Lim, K. H.; and Bing, L. 2020.
An Unsupervised Sentence Embedding Method by Mutual
Information Maximization. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), 1601–1610.

11738


