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Abstract

Deep and large pre-trained language models (e.g., BERT, GPT-
3) are state-of-the-art for various natural language processing
tasks. However, the huge size of these models brings chal-
lenges to fine-tuning and online deployment due to latency
and cost constraints. Existing knowledge distillation methods
reduce the model size, but they may encounter difficulties
transferring knowledge from the teacher model to the student
model due to the limited data from the downstream tasks. In
this work, we propose AD?, a novel and effective data aug-
mentation approach to improving the task-specific knowledge
transfer when compressing large pre-trained transformer mod-
els. Different from prior methods, AD? performs distillation
by using an enhanced training set that contains both original
inputs and adversarially perturbed samples that mimic the out-
put distribution from the teacher. Experimental results show
that this method allows better transfer of knowledge from the
teacher to the student during distillation, producing student
models that retain 99.6% accuracy of the teacher model while
outperforming existing task-specific knowledge distillation
baselines by 1.2 points on average over a variety of natural
language understanding tasks. Moreover, compared with alter-
native data augmentation methods, such as text-editing-based
approaches, AD? is up to 28 times faster while achieving com-
parable or higher accuracy. In addition, when AD? is combined
with more advanced task-agnostic distillation, we can advance
the state-of-the-art performance even more. On top of the
encouraging performance, this paper also provides thorough
ablation studies and analysis. The discovered interplay be-
tween KD and adversarial data augmentation for compressing
pre-trained Transformers may further inspire more advanced
KD algorithms for compressing even larger scale models.

Introduction

There has been a huge paradigm shift in Al: large-scale foun-
dation models (Bommasani et al. 2021), such as BERT (De-
vlin et al. 2019) and GPT-3 (Brown et al. 2020), are trained on
massive data at scale and then are adapted to a wide range of
different domains with additional task-specific data. One in-
teresting trend of these foundation models is their sizes grow
at an unprecedented speed, from a few hundred million pa-
rameters (e.g., BERT) to over one hundred billion parameters
(e.g., GPT-3), a three-orders-of-magnitude increase. Recent
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studies from OpenAl have shown that the model scale has
been increasing exponentially with roughly a 3.4-month dou-
bling time and the performance of these models continues
to improve with their sizes (Kaplan et al. 2020). Despite
their remarkable performance in accuracy, huge challenges
have been raised when deploying applications on top of these
foundation models due to latency and capacity constraints.

One effective approach for reducing the model size is
knowledge distillation (KD) (Hinton, Vinyals, and Dean
2015), where a stronger model (called teacher) guides the
learning of another small model (called student) with an ob-
jective to minimize the discrepancy between the teacher and
student outputs. Since its debut, KD has been extensively
applied to computer vision and NLP tasks (Wang and Yoon
2020; Gou et al. 2021). On the NLP side, several variants
of KD have been proposed to compress BERT (Devlin et al.
2019), including how to define the knowledge that is sup-
posed to be transferred from the teacher BERT model to the
student variations. Examples of such knowledge definitions
include output logits (e.g., DistilBERT (Sanh et al. 2019))
and intermediate knowledge such as feature maps (Sun et al.
2019; Aguilar et al. 2020; Zhao et al. 2021) and self-attention
maps (Wang et al. 2020b; Sun et al. 2020) (we refer KD
using these additional knowledge as deep knowledge distilla-
tion (Wang et al. 2020b)). Unfortunately, the gap between the
teacher and the student is sometimes large, even with deep
distillation, especially when the downstream task data is lim-
ited. To mitigate the accuracy gap, existing work has explored
applying knowledge distillation in the more expensive pre-
training stage, which aims to provide a better initialization
to the student for adapting to downstream tasks. As an ex-
ample, MiniLM (Wang et al. 2020b) and MobileBERT (Sun
et al. 2020) advance the state-of-the-art by applying deep
knowledge distillation and architecture change to pre-train
a student model on the general-domain corpus, which then
can be directly fine-tuned on downstream tasks with good
accuracy. TinyBERT (Jiao et al. 2019) proposes to perform
deep distillation in both the pre-training and fine-tuning stage
and shows that these two stages of knowledge distillation are
complementary to each other and can be combined to achieve
state-of-the-art results on GLUE tasks.

Despite the great progress, there remains one big chal-
lenge — while the pre-training distillation may benefit from
unsupervised learning over a huge amount of general domain



data, the fine-tuning distillation often has only limited labeled
data from the target domain for a certain task. Indeed, large
amounts of labeled data are usually prohibitive or expensive
to obtain. Due to the limited data from the target task/domain,
fine-tuning distillation can cause the adapted model overfit
the training data and therefore does not generalize well. Exist-
ing methods such as TinyBERT try to overcome this issue by
enlarging the training datasets with text-editing-based data
augmentation. However, such a method requires generating
multiple samples for each input to have adequate variations,
which leads to excessive data augmentation time and drasti-
cally increases the training cost. In this paper, we will show
that instead of doing text-editing data augmentation, we can
achieve better distillation performance on low-resource down-
stream tasks with much cheaper cost by the original KD loss
combined with a strong and more principled adversarial data
augmentation scheme.

Our Contributions. (1) We introduce AD?, a novel task-
specific knowledge distillation method for compressing pre-
trained Transformer networks via a strong adversarial data
augmentation scheme. (2) We conduct a comprehensive com-
parison of AD? with prior task-specific KD methods on a
wide range of NLP tasks and demonstrate that AD? teaches a
student to get little or no loss in accuracy and retains 99.6%
accuracy of the teacher model on average over GLUE bench-
mark, outperforming existing task-specific knowledge dis-
tillation methods by 1.2 points in accuracy under the same
compression ratio. (3) We also perform a comparison with an
existing text-edit-based data augmentation (DA) method used
in TinyBERT (Jiao et al. 2019). Our results show that AD?
achieves better accuracy than DA while being 8.6-28 times
faster than DA. (4) We show that our approach complements
existing pre-training distillation and enhances state-of-the-
art pre-training distillation methods to advance the state-of-
the-art further (e.g., up to 1.1 points higher accuracy when
combined with MiniLM). (5) We perform detailed ablation
studies to assess the impact of our method.

Background and Related Work

Knowledge distillation (KD) was first introduced by (Bucila,
Caruana, and Niculescu-Mizil 2006) and later generalized by
(Hinton, Vinyals, and Dean 2015). It has been demonstrated
as an empirically very successful technique. In particular, the
challenge of deploying large-scale pre-trained Transformer-
based language models (e.g., BERT) motivates many works
to improve the knowledge distillation technique for Trans-
former models, by exploiting additional intermediate knowl-
edge (Sun et al. 2019; Aguilar et al. 2020; Tang et al. 2019),
task-agnostic pre-training distillation (Wang et al. 2020b; Sun
et al. 2020), and multi-stage distillation (Wang et al. 2020b;
Jiao et al. 2019). In contrast to previous works, our goal in
this paper is to improve the task-specific KD performance
for pre-trained Transformer models where downstream task
data resources are limited with the help of adversarial data
augmentation. We empirically show that this path is effective
while being lightweight.

On a separate line of research, data augmentation has been
a prevailing technique to overcome overfitting and improve
generalization. For example, in image classification tasks,
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data augmentation applies label-invariant transformations
(such as cropping, flipping, color jittering) to images in the
training so that the model can learn representations robust
to those nuisance factors. Text data augmentation has also
been extensively studied in NLP. For example, prior work
proposes to improve neural machine translation models with
back-translation (Sennrich, Haddow, and Birch 2016). Other
work propose to replace words with other words that are
predicted using a language model at the corresponding word
positions (Kobayashi 2018; Wu et al. 2019). EDA proposes
to augment text data through synonym replacement, ran-
dom swap, random insertion, and random deletion, which
shows improved performance on text classification tasks
using LSTMs (Wei and Zou 2019). Unlike these methods,
which focus on general data augmentation for NLP tasks, our
work is the first to investigate the interplay between adver-
sarial data augmentation and knowledge distillation loss for
compression of pre-trained Transformer models, with limited
data from downstream task.

The work most similar to our research is TinyBERT(Jiao
et al. 2019). TinyBERT uses a text-editing technique for data
augmentation by randomly replacing words in a sentence
with their synonyms, based on their similarity measure on
GloVe embeddings. It then uses the augmented dataset for
task-specific distillation of BERT models. While this kind of
augmentation can keep semantics at the word level, it still has
one big limitation: to generate new sentence samples with
adequate variations, it needs to sample multiple times. For ex-
ample, to achieve improved accuracy, the data augmentation
used by (Jiao et al. 2019) increases training sets by a factor
of 10-30, which not only leads to high augmentation cost
but also increases the distillation training cost by close to an
order of magnitude. Unlike (Jiao et al. 2019), we consider a
worst-case formulation over data distributions and propose an
adversarial data augmentation method for distillation, which
results in better improvement while incurring a much cheaper
cost on distilling task-specific student models.

Proposed Method
Problem Statement

Consider a pre-trained large-scale language model To(+)
for adapting to natural language understanding tasks, such
as sentiment analysis, question and answering and se-
mantic textual similarity, where the labeled input data
is {xi,y;}N.1; x; represents the i™ input (typically sen-
tences) where a special token [SEP] is used to indicate
the sentence boundary and a [C'LS] symbol appended to
the front of the input used for tasks such as classifica-
tion, and y; is the corresponding ground-truth label. In the
standard fine-tuning framework, the model 7' is initialized
with pre-trained parameters ©( and fine-tuned with labeled
data by minimizing the task-specific objective (e.g., cross-
entropy for classification tasks): ming E(, ,y~pLece(©) =

ming Zivzl le”zll yijlog(softmax(Te(z;));). The large-
scale (teacher) model has unwieldy computation and memory
requirements. Therefore, the goal is to learn a task-specific
smaller model, S (parameterized by ), without degrading
the accuracy in comparison to the teacher model 7.



Adversarial Training

Adversarial training has been proposed and studied exten-
sively in the computer vision literature mainly for improving
model robustness and withstand adversarial attacks (Good-
fellow, Shlens, and Szegedy 2015; Madry et al. 2018). The
key idea is to apply small perturbation to input images that
maximizes the adversarial loss:

mginE(z’y)ND[maX I(f(z+0;0),y)] Q)

lloll<e

While adversarial training has been successfully mitigating
adversarial attacks, traditional understanding is that adver-
sarial training could hurt generalization performance. How-
ever, there has been an increasing amount of attention paid
to leverage adversarial training for better clean data perfor-
mance (Xie et al. 2020; Zhu et al. 2020; Gan et al. 2020).
In particular, there are some studies show that adversarial
training helps improve the generalizability of language mod-
eling (Cheng, Jiang, and Macherey 2019; Wang, Gong, and
Liu 2019; Jiang et al. 2020; Liu et al. 2020). However, few
works have studied its interplay with knowledge distillation.
Given that both could improve model generalization, it poses
the question: to what extend does distillation of pre-trained
Transformers benefit from task-specific adversarial training?

The AD? Algorithm

Adversarial training is a form of data augmentation. In this
section, we introduce AD?, Adversarial Data Augmentation
for Distillation (AD?), to exploit adversarial data augmenta-
tion techniques for knowledge distillation.

Due to the intrinsic difference between the image and text
data, adversarial training methods for images cannot be di-
rectly applied to the latter one. First, the image (e.g., pixels)
is continuous-valued, but text data is discrete. In a pre-trained
language model, raw text data is first vectorized, such as
one-hot encoding, before getting fed into the model. When
applying gradient-based adversarial training method adopted
from images on these representations, the generated adversar-
ial samples contain invalid tokens or word sequences (Alzan-
tot et al. 2018). Second, while the perturbation of images is
small changes of pixel values that are hard to be perceived
by human eyes and label-preserving, word replacement (e.g.,
even with synonyms) would generate syntactically incorrect
sentences and may change the semantics of a sentence drasti-
cally (Jia and Liang 2017).

To address this issue, we create adversarial samples by
applying perturbations to the continuous lexical embeddings
of inputs to the student model instead of directly to discrete
words or tokens. Using BERT as an example, for a raw input
x;, we pass it to the lexical encoding layer of the student
model gemp(x;) = LexicalEncoder(z;), which combines a
token embedding (e.g., one-hot), a position embedding, and a
segment embedding through element-wise summation. Then
we add gemp(2;) with a vector

dp = arg max ?(So(gemv (i) +6),To(z:))  (2)
which represents the worst-case perturbations against the
teacher model’s outputs. We choose the teacher model’s out-
put instead of the hard labels for two reasons. First, a data
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augmentation scheme has to supply corresponding labels as
supervisory information. Therefore, our data augmentation
scheme needs not to worry about the labels as they are as-
signed by the teacher model. Second, the teacher’s output
provides richer information about the relationship between
samples. Therefore, we consider it a better reference point for
the adversarial direction, which is the direction in the input
space in which the label probability of the model is most
sensitive to small perturbations. Finally, from a semantic-
preserving perspective, we cannot perform very “extreme”
transformations for data augmentation. Therefore, we restrict
the magnitude of the perturbation to € (e.g., by simple clip-
ping), such that the perturbation lies within an Ls-norm ball
with a radius of €. For optimization, Equation 2 can be solved
by project gradient ascent (PGA) (Madry et al. 2018), which
is commonly used for large-scale constrained optimization.

After we generate adversarial samples, unlike common
data augmentation where only the transformed inputs are fed
into the network, we pass both the original input z; and the
adversarial sample &, = gemp(x;) + 0 for training (thus, the
number of input samples during training is increased by a
factor of 2). The consideration of keeping both inputs is to
maintain the information path for the original input z; so
that we can easily see how the added information path 2’
leads to a different result. Figure 1 shows how AD? applies
adversarial token embeddings to the student and how they
are used during distillation.

For the z; part, its loss is still the original KD loss (i.e.,
L p), which is a weighted sum of (1) the conventional cross-
entropy loss between predictions and the given hard label and
(2) the Kullback—Leibler divergence (KL) loss between the
predictions and the teacher’s soft label. For the « part, we use
the KL divergence to calculate the adversarial data augmenta-
tion loss (ADA), i.e., Lapa(x;, 6;0) := KL(Sg(gemp (i) +
0), To(x;)) for classification tasks. For regression tasks, both
S and T output a scalar, and we set L4p4 as the squared
loss,i.e., Lapa (SCZ', o; 0) = (59 (gemb(xi) + 5) —To (,’L‘i)>2.
Thus, our approach encourages a student network to produce
the softmax output from the teacher network when exposed to
adversarial samples, i.e., to minimize the following objective:

meinE(m’y)ND[EKD(x;H) +al 4o (a';0)] 3)
where « is a hyperparameter that controls the trade-off be-
tween KD loss from original data and adversarial data. In our
experiments, we set = 1 except otherwise noted.

Computational cost of augmentation. Given that one pri-
mary interest is to also improve the distillation efficiency,
we are motivated to also look into the computational cost of
adversarial data augmentation. Generating adversarial exam-
ples requires K PGA iterations, where each iteration takes
approximately the same time as making three forward passes
through the network. This is because one step of PGA re-
quires to make one forward and backward pass over the entire
network. When K is large, the data augmentation cost can
still be expensive. Inspired by prior work on reducing the
training cost of adversarial training, we employ a variant of
PGA called PGA-1 (Gupta, Dube, and Verma 2020) (K=1)
to craft adversarial samples with one perturbation step. The
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Figure 1: AD? architecture. A text input is first fed to a teacher
model to generate the soft labels. AD? then creates adver-
sarial samples by applying perturbations to the continuous
lexical embeddings of inputs. Both the original inputs and
the adversarial samples are passed to the student model for
knowledge distillation.

key insight here is that we can often find sufficiently good
adversarial samples while being much more computationally
efficient with small K for many tasks. More advanced adver-
sarial training approaches, such as Curriculum Adversarial
Training (CAT) (Cai, Liu, and Song 2018) and Annealing-
based Adversarial Training (Amata) (Ye et al. 2020), may
help further reduce the adversarial training cost while main-
taining good accuracy by adjusting the strength of adversaries
at different stages of the training. We leave the exploration of
these methods as future work.

Practical considerations. Since we study the effectiveness
of adversarial data augmentation for KD, we still use a com-
mon temperature term ¢ to control how much to rely on the
teacher’s soft predictions, where we divide the logits of both
student and teacher by ¢ (e.g., y; = P(y;/t|x;)) for both
raw data and adversarial samples during distillation. A high
temperature has the effect of generating a softer distribution
of output probabilities among the classes (Hinton, Vinyals,
and Dean 2015). And we scale the gradient of the loss with
respect to the model weights by a factor of ¢? such that the
relative contributions of the loss term remain roughly un-
changed even when the temperature is adjusted.

Inspired by MobileBERT (Sun et al. 2020), which per-
forms deep knowledge distillation of the teacher model dur-
ing the pre-training distillation, we let the student imitate the
prediction output, feature maps, and self-attention maps with
adversarial data augmentation at the task-specific distillation
stage. We show that adversarial data augmentation is benefi-
cial to KD with and without deep knowledge distillation, but
they can be combined together to deliver better results. The
full procedure of AD? is provided in Algorithm 1.

Algorithm 1: AD?

1: Input: Teacher network 7', coefficient «, temperature ¢,
maximum perturbation radius e.

2: Output: Converged model parameters 6 of the distilled
student network S
3: for epoch € 1,2, ..., Nepochs do
4: for Each (z,y) € mini-batch (X,Y) ~ D do
5: g« TE(x) > Soft labels from the teacher
6: Lop < CE(Syp(x),y) > The standard loss.
7: Lkp <+ KL(S§(x),y) > KD loss on clean data
8: dp = argmax|5|<e P(So(gems(z) +90),y) >
Compute data perturbation
9: &' = gemp(x) + ¢ > Create adversarial sample
10: Lapa <+ KL(Si(2"),y) > Calculate the KD
loss on adversarial data
11: L,p2 < Log+ Lxp +aLlapa v Final loss
12: Update student model parameters
Experiments

In this section, we describe our experiments on the proposed
adversarial data augmentation for knowledge distillation.

Evaluation Methodology

Datasets. Following previous work on distilling pre-trained
language model (Sanh et al. 2019; Sun et al. 2019; Dong
et al. 2019), we evaluate the effectiveness of AD? using the
GLUE (General Language Understanding Evaluation) bench-
mark (Wang et al. 2019), a collection of linguistic tasks in
different domains such as textual entailment, sentiment anal-
ysis, and question answering. It is designed to favor sample-
efficient learning and knowledge transfer across a range of
different linguistic tasks in different domains.
Experimental settings. We focus our comparison under a
task-specific compression setting (Sun et al. 2019; Turc et al.
2019) instead of a pretraining distillation setting (Sanh et al.
2019; Wang et al. 2020b; Sun et al. 2020). That is, we do
not use the massive general domain corpus but only the
training set of each task in GLUE to compress the model.
The reason is that we intend to straightforwardly verify the
effectiveness of our adversarial data augmentation-based
distillation method. Moreover, our motivation comes from
improving compression efficiency for low-resource down-
stream tasks (e.g., no longer than a few GPU hours for
any task of GLUE). If task-specific distillation already pro-
vides satisfactory accuracy, one may be spared from explor-
ing more time-consuming pre-training distillation schemes
(e.g., pre-training distillation-based methods, such as Mobile-
BERT (Sun et al. 2020) and MiniLM (Wang et al. 2020b),
take hundreds of GPU hours to obtain improved accuracy).
That said, we will show that our method can be combined
with pre-training distillation to achieve better results.
Implementation Details. Previous work (Sanh et al. 2019;
Sun et al. 2019; Wang et al. 2020b) usually distil
BERT},se (Devlin et al. 2019) into a 6-layer (BERTg) model
with 768 hidden size. To make the results comparable to
other work, we conduct distillation experiments using the
same teacher and student architecture. We use the uncased



version of BERT},s. ' (denoted as BERT5), which consists
of 12-layer Transformer blocks with 768 hidden dimension
size, and 12 attention heads, with about 109M parameters.
We fine-tune BERT}, . on a downstream task as the teacher
model to compute soft labels for each task independently.
We initialize the student model (BERT() with model weights
from DistilBERT checkpoints 2. Note that DistilBERT still
uses a pre-training distillation setting. We choose DistilBERT
because it provides a better baseline for BERT-PKD than
initializing with weights selected from the teacher BERT.
Hyperparameters. In order to reduce the hyperparameter
search space, we fix the number of epochs as 6 for all the ex-
periments and tune the batch size from {16, 32} and learning
rate from {le-5, 3e-5, 5e-5, 7e-5, 9e-5, le-4} for all config-
urations on each task. The maximum sequence length is set
to 512. We use a linear learning rate decay schedule with a
warm-up ratio of 0.1 for all experiments. We clip the gradi-
ent norm within 1. For AD?, we set the perturbation radius
e = le-5, PGA step size le-3, temperature t=1, and o = 1.
The model with the best validation accuracy is selected for
each task, and we report the median of 5 runs with different
random seeds for each selected configuration.

Experimental Results

We first compare the following schemes: (1) Fine-tune: we
directly fine-tune the student model on GLUE tasks to ob-
tain a natural fine-tuning baseline. (2) Vanilla KD: This is
the knowledge distillation in its purest form as in (Hinton,
Vinyals, and Dean 2015) and (Sanh et al. 2019). (3) BERT-
PKD (Sun et al. 2019): a task-specific distillation technique
that exploits intermediate knowledge for better compression.
(4) AD?: This is our approach as described in Algorithm 1,
using adversarial data augmentation. Table 1 shows the com-
parison results. For a fair comparison, we reproduce results
for BERT-PKD, because several results on the GLUE devel-
opment set were missed from their paper. Our reproduced
results of BERT-PKD are comparable and sometimes stronger
than the originally reported results in (Sun et al. 2019).

Improving distillation accuracy with AD?*:  Overall, AD?
retains 99.6% (83.6 vs. 83.9) of the BERT-base performance,
and we have the following observations. (1) AD? consistently
outperforms the fine-tuning baseline on every GLUE task and
achieves 1.6 points higher accuracy (82.0 vs. 83.6), indicat-
ing that our method can effectively transfer knowledge from
the teacher model to the student. (2) Comparing AD? with
vanilla KD and BERT-PKD, we see the proposed scheme of
adopting adversarial data augmentation for distillation im-
proves the accuracies of all teacher-student pairs. On 5 out of
the 8 pairs, the improvement is more than 1 point. Notably,
we observe that AD? achieves 1.1 points higher accuracy
for SST-2, 1.6 points for CoLA, 1.8/1.3 points for STS-B in
PCC/SCC, 1.3 points for MRPC in accuracy, and 1.5 points
for RTE. (3) AD? is particularly effective in improving KD
on low-resource datasets, which contain fewer samples (e.g.,
<100K samples). We hypothesize that this is because AD?

Uhttps://huggingface.co/bert-base-uncased.
*https://huggingface.co/distilbert-base-uncased.
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provides a more diverse data view via strong adversarial data
augmentation, such that more of the teacher’s knowledge
can get exposed to the student, which is challenging when
the number of samples is small. (4) We highlight that on
SST-2 and MRPC, our method achieves nearly identical per-
formance to BERT-base, and on QQP and RTE, our method
even outperforms BERT-base by 0.4 points (90.8 vs. 91.2)
and 4 points (64.2 vs. 68.2), respectively. This is presumably
because adversarial data augmentation can effectively help
prevent overfitting of the student model on downstream tasks,
leading to improved generalization. (5) Finally, on both large
datasets with more than 100K samples (e.g., MNLI, QQP,
QNLI) and low-resource datasets, AD? achieves consistent
improvements, verifying the robustness of our approach.

Exploring alternative data augmentation schemes. It
has been show that adversarial data augmentation improves
accuracy of KD. In Figure 2, we compare AD? with alterna-
tive data augmentation method. Following TinyBERT (Jiao
et al. 2019), we employ its text-editing technique (e.g., syn-
onym replacement) and use the recommended parameters
listed in their code repository {p;=0.4, N,=[10 (MNLI,
QQP), 20 (QNLI, SST-2), 30 (CoLA, MRPC, RTE)], K=15}
for compressing BERT models. We notice that text-editing-
based data augmentation only seems to provide sparse and
inconsistent improvements on GLUE tasks (e.g., we observe
worse performance on MRPC, SST2 with text-edit-based DA)
for the BERT¢ student model, despite with several hyperpa-
rameter tuning. In those cases, we report the best accuracy we
observe from fine-tuning TinyBERT checkpoint or through
task-specific distillation but with clean data.

By our analysis, AD? boosts KD performance more than
TinyBERT on all tasks except RTE (the text-edit-based data
augmentation does bring extra accuracy improvement for
RTE). Our approach provides better accuracy because the
replacement-based augmentation with synonyms can only
produce limited diverse patterns from the original texts, and
it is almost impossible to leverage all the possible candidates
due to the large vocabulary size in languages. In contrast, we
consider a worst-case formulation over data distributions in
the semantic space. Thus, AD? augments the dataset with
examples that are ’hard” under the current model. We find
that such stronger data augmentation can efficiently transfer
teacher knowledge to the student.

On the other hand, while it takes TinyBERT 85 hours on
one NVIDIA V100 GPU to perform task-specific distillation
on MNLLI, it takes 5.9 hours for AD? to achieve higher ac-
curacy (83.5 vs. 83.7). The task-specific distillation part in
TinyBERT is slow because it needs to perform a kNN search
over the GloVe embeddings to find synonyms for a word
replacement, which can be extremely expensive for large vo-
cabulary and high embedding dimensions. Furthermore, the
data augmentation scheme in TinyBERT increases the train-
ing set by at least a factor of 10 to cover enough variations.
As a result, AD? is able to achieve 0.7 points better accuracy
on average than TinyBERT while being 8.6-28 times faster.

Interplay between pre-training distillation and AD?Z.
Our approach provides additive improvements on top of state-
of-the-art pre-training based distillation methods, shown in



MNLI-m QQP QNLI | SST-2 | CoLA |STS-B MRPC |RTE
Model Arch. #Params. | -/mm (Acc.) | (F1/Acc.) | (Acc.) | (Acc.) | (MCC) | (PCC/SCC) | (F1/Acc.) | (Acc.)| Avg
393K 368K | 108K | 67K | 8.5K 57K 37K 2.5K
BERT 12L x 768H| 109M 84.5/84.8 [87.7/90.8| 90.5 | 92.6 | 55.2 | 90.3/89.7 [90.6/86.2| 64.2 | 83.9
Fine-tune | 6L x 768H | 66M 82.4/82.5 |87.1/90.3] 89.1 | 909 | 534 | 85.6/85.5 [89.6/85.0| 63.5 |82.0
Vanilla KD | 6L x 768H | 66M 82.9/82.8 |87.3/90.5| 89 91.3 | 52.4 | 84.7/84.7 |90.3/86.0| 66 |82.3
BERT-PKD| 6L x 768H | 66M 83.2/82.9 |87.6/90.7| 89.1 | 91.5 | 53.1 | 84.6/84.7 |90.0/85.2| 66.7 | 82.4
AD? 6L x 768H | 66M 83.7/84.1 |88.2/91.2| 91 92.6 | 54.7 | 86.4/86.0 |90.6/86.5| 68.2 | 83.6

Table 1: The evaluation results of the GLUE benchmark on the development set. The number below each task denotes the number
of training examples. AD? outperforms existing task-specific knowledge distillation techniques by 1.2 points on average.

Model MNLI|QQP|QNLI|SST-2{CoLA|MRPC|RTE| Avg
TinyBERT| 83.5 [90.6] 90.5 | 91.6 | 49.5 | 88.4 |72.9(81.0
AD? 83.7 [91.2| 91 | 92.6 | 54.7 | 90.6 (68.2(81.7
80 = TinyBERT
=3 AD?

[=2]
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[
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Figure 2: KD evaluation accuracy and training cost com-
parison when using different data augmentation schemes.
TinyBERT uses text-editing based data augmentation for KD.
AD? uses adversarial data augmentation for KD.

Table 2. To assess whether the gains from AD? is additive
to more recent deep knowledge distillation schemes (Wang
et al. 2020b; Jiao et al. 2019; Sun et al. 2020) using general-
domain data at the pre-training stage, we take a checkpoint
from the latest version of MiniLM (Wang et al. 2020a), a
12-layer model with 384 hidden sizes (33M parameters) dis-
tilled from a BERT},. size model®. We choose MiniLM
because it achieves state-of-the-art accuracy. We take its pub-
licly released checkpoint to initialize the student model, and
we fine-tune BERT-base on each task independently as the
teacher model. We then apply AD? to perform adversarial
data augmentation and use those data for task-specific dis-
tillation. We exclude MobileBERT (Sun et al. 2020) in this
comparison due to its redesigned Transformer block and dif-
ferent model size. From Table 2, we can see that AD? further
enhances the performance of MiniLM. Overall, AD? con-
sistently brings non-trivial accuracy improvement on GLUE
tasks and improves the accuracy by 0.5 points on average,
which demonstrates its versatility in terms of combining with
pre-training distillation to further collect performance gains
and advance the state-of-the-art.

Analysis

In this section, we first perform an ablation study and analyze
the effectiveness of AD?. We then evaluate how the proposed

3https://huggingface.co/microsoft/MiniLM-L12-H384-uncased

Model | MNLI-m | QQP | QNLI | SST-2 | MRPC | RTE | Avg
MiniLM| 856 [909| 91.3 | 92.8 | 90.1 |71.8|87.1
+AD*| 86.0 |91.4|91.8 | 93.1 | 90.1 |72.9|87.6

Table 2: Evaluation results on pre-training distillation check-
point, w/o and with AD? based task-specific distillation.

method works with alternative initialization methods for the
student model. Finally, we study how effective our method is
as the teacher model evolves.

Ablation studies. In this section, we study the effective-
ness of AD? by comparing the following schemes. (1) AD?:
This is our adversarial data augmentation based task-specific
distillation technique. (2) -DKD: Like the above configura-
tion but disables deep knowledge distillation, e.g., learning
from the teacher’s feature maps and self-attention maps. (3)
-KD: Like the above configuration but disables knowledge
distillation completely so we fine-tune the student directly
with adversarial data augmentation. (4) -AD: We further
disable adversarial data augmentation so that we directly
performs task-specific fine-tuning to a student model.

The results are reported in Table 3. Overall, the removal
of either component results in a performance drop. For exam-
ple, removing deep knowledge distillation (i.e., -DKD) leads
to 0.3 points lower accuracy (86.2 vs. 85.9), indicating that
deep knowledge distillation is not only useful for pre-training
distillation but can also bring benefits to task-specific distilla-
tion when adversarial samples are presented. Removing KD
completely (i.e., -KD) leads to another 0.7 points of accuracy
drop (85.9 vs. 85.2), indicating that KD is still crucial for
transferring knowledge from the teacher to the student and ad-
versarial data augmentation alone is not sufficient to close the
generalization gap between the teacher and the student model.
Finally, removing adversarial data augmentation (i.e., -AD)
leads to a big accuracy drop (e.g., 0.9 points drop from 85.2
to 84.3), indicating that adversarial data augmentation is im-
portant to obtain stronger performance, especially for small
tasks with limited data (e.g., SST-2, MRPC). These results
demonstrate that these components complement each other
and are important to obtain high accuracy for compressing
the pre-trained Transformer models.

Exploring different model initialization schemes. In
Sec. , we evaluated how our method performs with check-
points from pre-training distillation. However, the pre-
training compression is still quite time-consuming. Recent
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MNLIm [QQP  [QONLI[SST-2[MRPC |RTE
Modell ;1 (Ace)|(F1/Ace.)|(Ace.)|(Ace.)|(F1/Ace.)|(Ace.)| AVE
AD?| 83.7/84.1 [88.2/91.2 91 | 92.6 |86.5/90.6] 68.5 |86.2
DKD| 83.5/83.5 [88.1/91.2] 91 | 92.5 [86.0/90.3 67.5 [85.0
_KD| 83.0/83.2 (88.2/91.2| 90.3 | 92.5 |85.2/89.9| 63.8 |85.2
_AD| 82.4/82.5 |87.1/90.3| 89.1 | 90.9 |86.6/86.3| 63.5 [84.3

Table 3: Ablation results of BERTg student model distilled
from BERT;5 on GLUE. The results show that removing
either deep knowledge distillation, KD, or adversarial data
augmentation hurts the accuracy of the student model.

work (Sajjad et al. 2020) proposes a lightweight way to obtain
a compressed Transformer model by directly selecting a sub-
set of pre-trained Transformer weights to form a compressed
model. This method can be useful for compressing very large-
scale models, such as GPT-3, where pre-training distillation
might be very expensive and not even feasible. To investi-
gate the usefulness of this layer selection technique and also
how effective AD? is for models initialized with layer selec-
tion, we look into three selection strategies: (1) Skip-layer
selection strategy (Skip): selects every other layer of the
pre-trained teacher network, starting from the first layer of
the network. (2) Top-layer selection strategy (7Top): selects
the top layers of the network. (3) Bottom-layer selection
strategy (Bottom): selects the bottom layers of the network.

We apply the above selection strategies to a 6-layer Distill-
BERT to initialize a 3-layer student model and then fine-tune
the student model on each downstream task. Table 4 shows
that bottom-layer selection (Bottom) in general outperforms
Skip and Top by 2.2 points (80.6 vs. 78.4) and 5.0 points (80.6
vs. 75.6) on average, respectively. Top leads to the worst ac-
curacy, indicating that lower layers are the most important
ones for adapting to downstream tasks. This is expected be-
cause bottom layers are closer to the input, which are more
crucial for capturing the basic contextual information among
tokens (Liu et al. 2019). Removing top layers yields the least
accuracy drop. This is because top layers are biased towards
the pre-training objective, which needs to be updated to adapt
to downstream tasks anyway, as also observed by (Voita, Sen-
nrich, and Titov 2019). Given these observations, we apply
AD? to the best performing 3-layer model (Bottom) and ob-
serve that AD? provides consistent improvements in accuracy
on all tested tasks. This result indicates that our approach
is compatible and complementary with alternative student
model initialization methods such as layer selection, which
offers a solution to compress large-scale pre-trained Trans-
former models with flexibility and low cost (e.g., without
pre-training distillation).

Impact of an evolving teacher. To evaluate how AD? per-
forms as the teacher model evolves (e.g., by having larger
sizes and stronger performance), we measure the difference
between BERT 5. and BERT;,;.4. teacher for model com-
pression without and with AD?. Results are summarized in
Table 5. We observe that by simply changing the teacher
model from BERT, 5. to BERT;4,¢c, there is not much dif-
ference in student’s performance when using just knowledge
distillation. This observation is consistent with prior stud-
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Model MNLI-m |QQP QNLI|SST-2MRPC |RTE
-/mm (Acc.)|(F1/Acc.)[(Acc.)|(Acc.)|(F1/Acc.)|(Acc.)

Skip | 76.9/76.5 [85.6/89.2| 84.6 | 89.4 |73.7/82.4] 54.5 |78.4

Top | 71.4/71.6 |83.2/87.7| 77.3 | 86.1 {72.0/81.4| 55.5 |75.6

Bottom| 77.4/78.0 |86.4/89.8| 85.8 | 89.1 |78.1/85.1| 60.2 [80.6
+AD?| 79.4/79.8 |87.2/90.5| 87.4 | 90.4 (81.3/87.4 62 (82.3

Avg.

Table 4: Comparison results of different layer selection strate-
gies for initializing the student model. The results show that
bottom-layer selection is more effective than other strategies,
and AD? brings 1.7 points accuracy improvement to bottom
layer selection based initialization.

Teacher MNLI |QQP|QNLI|SST-2|]MRPC|RTE|Avg.
BERT12 + KD |82.9/82.8/90.5| 89 | 91.3 | 90.3 | 66 |84.2
BERT24 + KD [82.8/82.8/90.6| 88.7 | 90.8 | 90.1 [65.3|84.0
BERT24 + AD?(84.0/84.291.0| 90.1 | 92.3 | 90.6 |67.5/85.3

Table 5: Performance of the student model as the teacher
evolves, without and with AD?. The results show that while
the student struggles to learn from a better teacher using
existing knowledge distillation, AD? helps the student to
achieve better accuracy as the teacher evolves.

ies (Cho and Hariharan 2019; Sun et al. 2019), which shows
that when the gap between the teacher and the student is
large, it becomes more challenging for the student model to
learn knowledge from the teacher. Interestingly, with adver-
sarial data augmentation, we observe an overall 1.2 points
improvement (85.7 vs. 84.5) when we have a stronger teacher,
which indicates that AD? allows the student model to absorb
more knowledge from stronger teachers. This is desirable be-
cause it allows the student model to adapt to the current state
of the teacher model and supports a continuously evolving
teacher that can better teach the student. More interestingly,
we would like to highlight that AD? allows the BERT; stu-
dent model to outperform BERT; 5 on QQP, MRPC, and RTE,
by distilling knowledge from BERT5,, indicating that our ap-
proach can also help a small model to achieve comparable or
better performance than its larger counterpart when advised
by an even stronger teacher.

Conclusion

In this work, we propose a lightweight and effective knowl-
edge distillation approach, AD?, for compressing pre-trained
transformer models on low-resource downstream tasks. AD?
leverages adversarial data augmentation in the distillation
process, presenting more diverse data views to the student
when transferring knowledge from the teacher model. Such a
scheme prevents the student from overfitting on small domain-
specific datasets, leading to improved generalization ability.
Our empirical results suggest that AD? effectively and effi-
ciently compresses pre-trained Transformers, improving the
student model’s accuracy. Our detailed analysis shows that
this path has much potential for future work.
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