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Abstract
Multimodal summarization with multimodal output (MSMO)
generates a summary with both textual and visual content.
Multimodal news report contains heterogeneous contents,
which makes MSMO nontrivial. Moreover, it is observed that
different modalities of data in the news report correlate hierar-
chically. Traditional MSMO methods indistinguishably han-
dle different modalities of data by learning a representation
for the whole data, which is not directly adaptable to the het-
erogeneous contents and hierarchical correlation. In this pa-
per, we propose a hierarchical cross-modality semantic corre-
lation learning model (HCSCL) to learn the intra- and inter-
modal correlation existing in the multimodal data. HCSCL
adopts a graph network to encode the intra-modal correla-
tion. Then, a hierarchical fusion framework is proposed to
learn the hierarchical correlation between text and images.
Furthermore, we construct a new dataset with relevant image
annotation and image object label information to provide the
supervision information for the learning procedure. Extensive
experiments on the dataset show that HCSCL significantly
outperforms the baseline methods in automatic summariza-
tion metrics and fine-grained diversity tests.

Introduction
With the rapid development of multimedia data on the In-
ternet, multimodal summarization is a research direction
worthy of attention and has broad development prospects.
Therefore, some researches (Zhu et al. 2018; Li et al. 2020b;
Zhu et al. 2020) focus on studying multimodal summariza-
tion with multimodal output (MSMO) to help readers im-
prove reading efficiency and satisfaction. However, these ap-
proaches abstract the summary from the raw data directly,
which is ineffective in learning the latent and vital informa-
tion from both the text and image content.

Usually, the visual image and text article have heteroge-
neous structures. Directly mapping visual input and textual
input as global vectors (Zhu et al. 2018; Li et al. 2020b; Zhu
et al. 2020) is not effective to learn the important information
for both modalities from each other, and even noisy infor-
mation is added to decrease the performance of summariza-
tion. Previous experiments (Zhu et al. 2018) have shown that
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…… Robben broke through to the small penalty
area and shot the ball. Mascherano lunged to
block the shot …… He bent down and looked
painful ……

Robben broke through to the small
penalty area and shot the ball.

Mascherano lunged to block the
shot.

Source Images:

Source Text:

Mascherano

He

Correlation in objects and words： Correlation in scenes and sentences：

ball

Robben

HCSCL Output: 

Mascherano was injured in 
the World Cup semi-final.

Mascherano was injured 
to block Robben's shot in 
the World Cup semi-final.

Traditional Model Output:

Figure 1: An example of the cross-modality semantics cor-
relation in multimodal data.

multimodal input models may decrease summarization met-
ric scores compared to text-only input models. Our experi-
ments also show that some multimodal input model meth-
ods perform worse than traditional text-only input models.
Therefore, one of the core problems of MSMO is how to ef-
fectively learn from each other modalities of data to obtain
high-quality summaries.

Meanwhile, the correlation between the visual content
and text article presents unique characteristics, providing
clues to learning the important information from the two
modalities complementarily to improve MSMO. As shown
in Figure 1, the low-level objects in an image constitute
the high-level semantics called scenes through the interac-
tion between them. Therefore, by analyzing the objects and
hence the scenes, we can know what the image describes
from different levels. In the other data space, words are also
the basic textual information in an article, while the com-
bination of words, called sentences, present more abstract
semantics information. Besides the intra-modal correlation,
the semantics objects in the image and article are correlated
in different levels. For example, in Figure 1, each person
in the image may be related to a name in the article, and
the football sport in the image is also described by a sen-
tence in the article. By learning the inter-modal correlation,
it can be known what is the important information in both
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of the modalities. Moreover, even there are some incom-
plete descriptions in one modality, it can be learned from
the other modality by exploiting the inter-modal correlation.
As shown in Figure 1, we can generate the more complete
information about the relation between the player “Mascher-
ano” and the event “block Robben’s shot”. Therefore, by ex-
ploiting the hierarchical cross-modality correlation, we can
extract the important information from both image and arti-
cle more effectively.

However, there is still a great challenge to learn the hierar-
chical cross-modality correlation. First, different modalities
have different feature spaces and structures among the ele-
ments. It is nontrivial to learn an effective representation to
reflect both the different content and structure information.
Second, much noisy information might exist, while some
important information might be missed in one of the modal-
ities. However, there is no explicit knowledge about the cor-
relation between different modalities of data.

To tackle the challenge, we propose a novel Hierarchical
Cross-Modality Semantic Correlation Learning model (HC-
SCL) to learn the intra- and inter-modality correlation for
MSMO. In particular, two modality encoders are proposed
to learn the intra-modal correlation for image and article,
respectively. Then, a hierarchical fusion framework is pro-
posed to learn the hierarchical correlation between image
and article. A hierarchical attention method is proposed to
combine the different levels of features learned by the hier-
archical fusion framework to generate the summary. Further-
more, we construct a new dataset1 with relevant image anno-
tation to provide the supervision information for the learning
procedure. Extensive experiments on the dataset show that
HCSCL significantly outperforms the baseline methods in
automatic summarization metrics and fine-grained diversity
tests. Our main contributions are as follows:

• We propose a hierarchical learning model HCSCL to
learn the intra- and inter-modality correlation in the mul-
timodal data. To the best of our knowledge, this is the
first work that guides multimodal summarization by ex-
ploiting the fine-grained semantics and their correlation
information inside the multimodal data.

• We propose a multimodal visual graph learning method
to capture the structure and the content information and
reinforce the inter-modality interaction.

• We construct a large-scale multimodal summarization
dataset with relevant image annotations and object labels
to evaluate the performance of MSMO.

Related Work
Multimodal Summarization with Text Only Output. Un-
like text summarization (Zhang et al. 2018; Xiao and
Carenini 2019; See, Liu, and Manning 2017; Gao et al.
2019), multimodal summarization (UzZaman, Bigham, and
Allen 2011) is defined as a task to generate a condensed
summary from a multimodal input, such as text, image, and
video. Several works focus on generating a better text sum-
mary with the help of images (Chen and Zhuge 2018; Li

1https://github.com/LitianD/HCSCL-MSDataset/

et al. 2018, 2020a). Palaskar et al. (2019) first release the
How2 dataset for open-domain multimodal summarization.
Liu et al. (2020) focus on reducing noise in longer text and
video summarization and propose a forget gate method to
control redundant information. Li et al. (2017) and Khullar
and Arora (2020) aim to generate a text summary from more
than three modalities: text-video-audio or text-image-audio-
video.
Multimodal Summarization with Multimodal Output.
Some other works generate a summarization containing both
textual and visual content. Zhu et al. (2018) first propose to
output a text summary and select the most relevant image.
Then Zhu et al. (2020) add a multimodal loss function to im-
prove the relevance between text summaries and images. Be-
sides, Li et al. (2020b) and Fu, Wang, and Yang (2020) fuse
the text-video feature and generate a text summary with a
significant image from its associated video. Multimodal out-
put summarization can facilitate readers to obtain crucial in-
formation efficiently. Most of these approaches fuse the dif-
ferent modalities of data directly, which neglects the latent
correlation and heterogeneity of internal structure among
them. Therefore, their performance of summarization is af-
fected and even worse than text summarization.

Problem Formulation
Our HCSCL model takes a long article and the associated
images as the input and generates a summarization con-
taining both the textual summary and the most representa-
tive image. Xt = {S1, S2, ..., Sn} is used to denote the
textual input, which consists of n sentences, and Xv =
{I1, I2, ..., Ip} is used to denote the visual input associated
p images. Si = {xi,1, xi,2, ..., xi,m} means the sentence Si

has m words. The summarization can be divided into text
output and visual output. The textual output is denoted as
a sequence of words Y t = {y1, y2, ..., yt}, and the visual
output is Y v = {I}. In order to generate a multimodal sum-
marization, the model can be formulated as an optimization
problem as follows:

argmax
θ

HCSCL(Y t, Y v|Xt, Xv; θ)

where θ is the set of trainable parameters in the model.

Model
The current multimodal summarization methods have two
drawbacks: 1) They neglect the heterogeneity of internal
structure between visual content and text. 2) They mainly
consider the visual content as the whole, which ignores the
hierarchical correlation between different modalities of data.

Therefore, in this work, we propose a hierarchical cross-
modality semantic correlation learning model, as shown in
Figure 2, to improve multimodal summarization. HCSCL
comprises three modules: the Modality Feature Encoder
is used to encode each modality, the Hierarchical Seman-
tic Correlation Fusion module is used to learn the hierar-
chical intra- and inter-modality correlation, and the Mul-
timodal Output Summarizer is used to generate the multi-
modal summary by exploiting the hierarchical correlation.
Table 1 presents the key variables used in different modules.
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Figure 2: (a) is the overview of HCSCL. It consists of three parts: Modality Feature Encoder, Hierarchical Semantic Relation
Fusion, and Multimodal Output Summarizer. (b) is the Cross Modality Encoder used for hierarchical fusion. (c) is the Image
Graph Encoder to connect relevant objects into scenes.

Var. Description
Modality Feature
Encoder

h0
i,j The jth word in the ith sentence

v0i The ith object feature for the article
Word-object
Fusion

h1
i,j The jth word fused with object feature

v1i The ith object feature fused with word

Sentence-scene
Fusion

h2
i The ith sentence embedding for the article

v2i The ith scene feature for the article
h3
i The ith sentence fused with scene feature

v3i The ith scene feature fused with sentence

Table 1: Description of key variables.

Modality Feature Encoder
Text Encoder. We employ LSTM to encode an input

article to a vector representation. Specifically, given an
input article Xt = {S1, S2, · · · , Sn}, the embedding of the
words in the ith sentence Si = {xi,1, · · · , xi,m} is learned
as follows:

−→
h0
i,j= LSTM(E[xi,j ],

−→
h0
i−1,j) (1)

←−
h0
i,j= LSTM(E[xi,j ],

←−
h0
i+1,j) (2)

where E[xi,j ] is the embedding vector of word xi,j . h0
i,j =

[
−→
h0
i,j ;
←−
h0
i,j ] represents the hidden state of the jth word in

the ith sentence. The ith sentence’s word embedding is{
h0
i,1, h

0
i,1, ..., h

0
i,m

}
.

Image Encoder. Given a set of images Xv =
{I1, I2, · · · , Ip} as the visual input, we apply a Faster R-
CNN (Ren et al. 2016) initialized with ResNet-101 (He et al.

2016) to obtain object proposals for each image. For each
object proposal, a triple set (oi, li, ai) is extracted. oi is a
feature vector extracted from the region of interest (ROI)
pooling layer in the Region Proposal Network. li is a 4-
dimensional bounding box location representation. ai is a
one-hot attribute class feature. Then we use the triple set to
form a representation of the ith object as follows:

v0i = Concat(oi,W
lli,W

aai), (3)

where W l and W a are trainable embedding matrices.{
v01 , v

0
2 , ..., v

0
q

}
is a set of q objects’ features.

Hierarchical Semantic Correlation Fusion
Most existing approaches embed the whole image as a
global vector, ignoring the internal and cross-modal cor-
relation in the multimodal data. It is not effective to inte-
grate the important information from different modalities.
We propose a hierarchical semantic correlation fusion mod-
ule, which can capture the hierarchical intra- and inter-
modal correlation. It learns the important information in
each modality by exploiting the intra-modal correlation at
different grains and hence learns the important information
in the multimodal content by exploiting the inter-modal cor-
relation to reinforce each other, as Figure 2 shows. This
module learns the correlation in two levels: word-object
fusion and sentence-scene fusion. The word-object fusion
component learns the correlation between words and objects
to add visual information into the text entity features. In the
sentence-scene fusion component, a visual relation graph is
built on the objects to form a sub-scene graph fused with
the sentences to learn the inter-modal correlation. Notably,

11678



an attention-based cross-modality encoder (CME) (Tan and
Bansal 2019) is employed to learn the inter-modality cor-
relation, which enhances the critical information by each
other.

Word-object Fusion. The framework of CME is shown
in Figure 2(b). Instead of directly using the attention mech-
anism, we employ cross-modality attention to generate a
fused representation for the multimodal content. CME con-
sists of three parts: cross-attention layer, self-attention layer,
and feed-forward layer.

To fuse the ith sentence’s word embeddings{
h0
i,1, h

0
i,1, ..., h

0
i,m

}
and objects’ features

{
v01 , v

0
2 , ..., v

0
q

}
,

the cross-attention layer is defined as:

ak = score(h0
i,j , v

0
k) (4)

αk = exp(ak)/
∑
q

exp(ak) (5)

CrossAtth→v =
∑
q

αkv
0
k (6)

where h0
i,j is a query word vector, v0k is visual object vec-

tors and score is defined as product function to calculate the
similarity value ai. The three steps of CME is defined as
follows:

hCross
i,j = CrossAtth→v(h

0
i,j ,

{
v01 , v

0
2 , ..., v

0
q

}
) (7)

hSelf
i,j = SelfAtth→v(h

Cross
i,j ,

{
hCross
i,j

}
) (8){

hout
i,j

}
= FF (

{
hSelf
i,1 , hSelf

i,2 , ..., hSelf
i,m

}
) (9)

where hCross
i,j is the result after cross-attention layer, hSelf

i,j is
the result after self-attention and FF (∗) is the feed-forward
layers. Residual connection and layer normalization are also
added after each sub-layer. Three steps are repeated Nx

times.
The inter-modal correlation between the textual words

and the visual objects is learned by cross-modality attention.
The learned multimodal representation is as follows:

h1
i,j = CME(h0

i,j ,
{
v01 , v

0
2 , ..., v

0
q

}
) (10)

v1i = CME(v0q ,
{
h0
i,1, h

0
i,2..., h

0
i,m

}
) (11)

where h1
i,j is the representation of the jth word in the

ith sentence after the fusing procedure, and v1i is the
fused representation of the ith object.

{
h1
i,1, h

1
i,2, ..., h

1
i,m

}
is the word embeddings fused with object features and{
v11 , v

1
2 , ..., v

1
q

}
is the object features fused with word vec-

tors.
Sentence-scene Fusion. After obtaining the fused word

features, for each sentence, we use LSTM to obtain a repre-
sentation of the entire sentence. Then, the sentence represen-
tations are further fused with the visual feature by exploit-
ing the correlation. Specifically, the representation of the ith
sentence is computed as follows:

h2
i = LSTM(h1

i,1, h
1
i,2, ..., h

1
i,m). (12)

On the other side, a part of objects in an image is corre-
lated, forming a scene to denote a more abstract concept or

activity. The scenes are critical components of a summary.
We propose an Image Graph Encoder to learn the scene rep-
resentation, which can capture both the structure and the
content information, as shown in Figure 2(c). First, based on
the bounding box extracted by the image encoder, an Inter-
section over Union (IOU) score is calculated for every two
objects. Next, a relation graph with adjacency matrix A is
constructed, where Aij = 1 if the IOU score exceeds the
threshold value and Aij = 0 else.

Then, we calculate the edge weight as follows. Given two
target node feature v1i and v1j , the feature score sfeatureij from
node i to j is first calculated:

sfeatureij = wT
1 σ(w2 · Concat(v1i , v

1
j )) (13)

where w1 and w2 are learned parameters, σ is the activa-
tion function. For every directed edge of node i, we apply a
softmax function over the IOU score sIOU

ij and feature score
sfeatureij to obtain the edge weight sedgeij :

sedgeij = exp(sIOU
ij · sfeatureij )/

∑
t∈N(i)

exp(sIOU
it · sfeatureit )

(14)
where N(i) is the neighbors of i. Next, node feature is up-
dated and combined with the connected node feature to for-
mulate a sub-scene graph representation:

ṽ1i = σ(v1i +
∑

j∈N(i)

sedgeij Aijw3v
1
j ) (15)

{
v2p
}
= readout(ṽ11 , ṽ

1
2 , ..., ṽ

1
q ) (16)

where w3 is the learned parameters, readout is a node value
aggregation function used to combine nodes’ vectors to gen-
erate sub-scene graph vectors.

{
v21 , v

2
2 , ..., v

2
p

}
is a set of p

scene vectors. We define the readout function as:

{
v2p
}
=

1

N

∑
i∈N(i)

ṽ1i +Maxpooling(ṽ11 , ṽ
1
2 , ..., ṽ

1
q ) (17)

Finally, the sentence-scene fused features are generated
by CME as follows:

h3
i = CME(h2

i ,
{
v21 , v

2
2 , ..., v

2
p

}
), (18)

v3i = CME(v2i ,
{
h2
1, h

2
2, ..., h

2
n

}
). (19)

where h3
i is the representation of the ith sentence after the

fusing procedure, and v3i is the representation of the ith

scene.
{
h3
1, h

3
2, ..., h

3
n

}
is the set of sentence embedding

fused with scene graph feature and
{
v31 , v

3
2 , ..., v

3
p

}
is the

set of scene graph feature fused with sentence feature.

Multimodal Output Summarizer
The summarizer generates a text summary associated with
the most relevant image. In the text summary generation,
hierarchical attention is built to combine both word and sen-
tence features. In the image selector, an object-scene gate
mechanism is proposed to select an image as the visual out-
put.
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Text Summary Generation. In the hierarchical fusion
module discussed above, visual objects and scenes features
are respectively fused into words and sentences. In this sum-
marizer, a hierarchical attention method is proposed to ex-
ploit the two levels of correlation in the decoder stage.

First, LSTM is used to decode sentence features, and the
hidden state h′i is generated as follows:

{h′1, h′2, ..., h′t} = LSTM(h3
1, h

3
2, ..., h

3
n) (20)

For the sentence level, the ith sentence weight βsent
i is

calculated as follows:

βsent
i = softmax

i
(score(h3

i , h
′
t−1)) (21)

For the word level, the weight βword
i,j of the jth word in

the ith sentence is calculated as follows:

βword
i,j = softmax

i,j
(βsent

i · score(h1
i,j , h

′
t−1)) (22)

where h3
i and h1

i,j are sentence and word features respec-
tively. Then the context vector ct at timestep t and the word
probability of yt are calculated as follows:

ct =
N∑
i=1

M∑
j=1

βword
i,j h1

i,j (23)

p(yt|y1:t−1) = softmax(V TFF (h′t, ct)) (24)
where V is the vocabulary weight matrix. The total loss of
textual summary is calculated as follows:

Ltext = −
∑
t

log p(yt) (25)

Image Selector. The most relevant image should match
the summary semantic in both the object level and the scene
level. Therefore, the summary image is selected based on
both the object features and the scenes graph features. First,
the hidden state features h′t are used to calculate the rele-
vance score with object features v1i and scene features v3j .
Then, an object-scene gate mechanism is proposed to calcu-
late the weights of the two types of features. The score of
image I is calculated as follows:

sobji = σ(FF (v1i h
′
t)) (26)

sscenej = σ(FF (v3jh
′
t)) (27)

λ∗ = σ(FF (h′t)) (28)

simage
I = λ∗

∑
i∈I

sobji + (1− λ∗)
∑
j∈I

sscenej (29)

where
∑

i∈I s
obj
i is the sum of all scores of the object fea-

tures in image I ,
∑

j∈I s
scene
j is the sum of all scores of

the scene graph features in image I , and λ∗ is a balance
weight between them. The image with the highest score is
considered as the image output. The image summary loss is
calculated as follows:

Limage = − log(softmax(simage
I )) (30)

Finally, the total loss is calculated as follows:
L = Ltext + λLimage (31)

Train Valid Test
Document Number 52656 5154 5070

Average Words Number 953.72 956.29 970.21
Average Sentences Number 19.52 19.57 19.86
Average Summary Length 36.66 36.33 36.36
Average Caption Length 25.07 25.10 25.10
Average Objects Number 7.25 7.16 7.32
Average Scenes Number 4.74 4.70 4.80

Table 2: Corpus statistics of our dataset.

Experimental Setup
Dataset
There is currently one dataset (Zhu et al. 2018) for MSMO
tasks. However, this dataset is marked only on the test set
due to the unsupervised image selection method. It is not
suitable for our HCSCL, which needs the image objects in-
formation and annotating the most relevant image. There-
fore, we construct a large-scale Chinese summarization
dataset with complete image annotations and fine-grained
object information. Specifically, documents and summaries
are selected from TTNews (Hua, Wan, and Li 2017) and
THUCNews (Sun et al. 2016), including sports, entertain-
ment, current politics, society, technology, etc. For each se-
lected document, we search it in Baidu Image Searcher2,
and then about ten images with their captions are crawled
from the website. Next, we delete noisy images such as gifs,
thumbnails, and advertisements.

Image annotation from large amounts of data and images
is a time-consuming and laborious task. Since the images
we crawled have image captions, we use automatic selection
and manual selection methods for image annotation. A Bert
(Devlin et al. 2018) and ESIM (Chen et al. 2016) semantic
matching model pretrained on LCQMC corpus (Liu et al.
2018) is used to infer the relevance of article summary and
image caption. Then, for automatic selection, we select the
three images with the highest relevance in each document
and discard the remaining images. For manual selection, five
volunteers are employed to select one of the three images as
the most relevant image. In addition, for each image, a Faster
R-CNN feature extractor (Anderson et al. 2017) is applied to
extract the object features, bounding box locations, and at-
tribute classes. Then, the bounding box locations are used to
calculate the IOU between objects to generate the adjacency
matrices of relation graphs. Finally, a multimodal summa-
rization dataset with complete image annotations and image
object features is constructed, including 52656 for training,
5154 for validation, and 5070 for testing. More details about
our dataset is illustrated in Table 2.

Baseline Models
We compare our model in three categories of baselines, a
total of nine models.

Multimodal Summarization Output Models. MSMO (Zhu
et al. 2018) is the first model on multimodal summariza-
tion with multimodal output task, which applies attention

2https://image.baidu.com/
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R-1 R-2 R-L B-1 B-2 B-3 B-4 IP
Traditional Textual Model
PG (See, Liu, and Manning 2017) 42.54 28.25 39.95 38.26 30.78 24.55 19.92 -
S2S (Luong, Pham, and Manning 2015) 30.13 14.40 28.61 26.36 17.55 11.07 7.44 -
TextRank (Mihalcea and Tarau 2004) 22.22 10.39 18.49 28.32 8.48 4.47 2.78 -
Multimodal Summarization Model
MAtt (Li et al. 2018) 41.30 24.70 37.55 37.41 28.44 21.13 16.02 -
HOW2 (Palaskar et al. 2019) 39.53 20.28 35.55 35.44 24.42 17.81 13.71 -
MSE (Li et al. 2020a) 42.99 28.78 41.79 39.02 31.51 25.21 20.50 -
Multimodal Summarization Output Model
MSMO (Zhu et al. 2018) 42.89 28.25 39.86 39.06 31.26 24.78 19.93 33.50
MOF (Zhu et al. 2020) 42.41 28.10 39.60 38.04 30.55 24.38 19.71 33.16
VMSMO (Li et al. 2020b) 42.68 28.35 41.34 38.75 31.20 24.75 19.99 32.86
our models
HCSCL text output only 42.11 27.57 39.52 37.90 30.26 23.84 19.13 -
HCSCL multimodal output 43.64 29.00 40.94 39.64 31.91 25.40 20.54 40.98

Table 3: Rouge, BLEU and IP scores comparison with summarization baselines.

to text and images during generating textual summary and
uses coverage mechanism to select image. MOF (Zhu et al.
2020) is the model based on MSMO, which considers im-
age accuracy as another loss. VMSMO (Li et al. 2020b) is a
video-based news summarization model, which proposes a
Dual-Interaction-based Mutilmodal Summarizer.

Multimodal Summarization Models. MAtt (Li et al. 2018)
is an attention-based model, which utilizes image filtering to
select visual content to enhance sentence features. HOW2
(Palaskar et al. 2019) the first model proposed to generate a
textual summary by exploiting video content. MSE (Li et al.
2020a) is a model which focuses on enhancing the ability of
the encoder to identify highlights of the news.

Traditional Textual Models. PG (See, Liu, and Man-
ning 2017) is a sequence-to-sequence framework combined
with attention mechanism and pointer network. S2S (Lu-
ong, Pham, and Manning 2015) is a standard sequence-to-
sequence architecture using a RNN encoder-decoder with a
global attention mechanism. TextRank (Mihalcea and Tarau
2004) is a graph-based extraction summarizer which repre-
sents sentences as nodes and uses edges to weight similarity.

Evaluation Metrics
As a widely used evaluation metric in text summarization,
ROUGE (Lin 2004) and BLEU (Papineni et al. 2002) are ap-
plied to evaluate the quality of the generated text summary.
Besides, image precision (IP) is used to evaluate the quality
of the output image (Zhu et al. 2018), which is as follows:

IP =
1

N

∑
i

I(annimg
i = recimg

i ) (32)

where annimg and recimg denote the annotated image and
the output image respectively.

Implementation Detail
The experiments are conducted in Pytorch on NVIDIA Tesla
V100 GPUs. We freeze the basic version of pre-trained Bert-
base-Chinese (Devlin et al. 2018) for the original text em-

bedding, which has 12 layers, 12 heads, 768 hidden dimen-
sions, and 110M parameters. The Faster R-CNN feature ex-
tractor (Anderson et al. 2017) is used for image object de-
tection, and objects with confidence greater than 0.55 are se-
lected. Each object has a 2048-dimensional representation.
The IOU threshold is set to 0.2. To train the model, we em-
ploy Adam (Kingma and Ba 2014) as the optimizer, and the
batch size is set at 16. The initial learning rate is set to 5e−4

and multiply by 0.8 every six epochs.

Results and Analysis
Overall Performance
To validate the effectiveness of our model, we compare our
model with three kinds of baselines: Traditional Textual
Model, Multimodal Summarization model, and Multimodal
Summarization Output Model. Table 3 shows the result of
comparative models on the dataset. We can obtain several
conclusions from this table. First, it shows that HCSCL
achieves state-of-the-art performance in almost all evalua-
tion metrics. HCSCL outperforms baselines 1.51%, 0.76%
in terms of Rouge-1, Rouge-2 and 1.48%, 1.27%, 0.75%,
0.20% in terms of BLEU-1, BLEU-2, BLEU-3, BLEU-4
and 22.32% in IP. It demonstrates the superiority of the hi-
erarchical cross-modality correlation learning model. By ex-
ploiting the intra-modality correlation learning and the inter-
modality feature aligning, the visual content can reinforce a
specific part of the representation of text content, and the text
content can reinforce to select the relevant image. Second, in
Rouge-L, HCSCL (40.94) is slightly worse than the text out-
put model MSE (41.79). After analyzing the cases, we find
that the text outputs of HCSCL are more relevant to image
semantics. Therefore, the longest common subsequence (R-
L) is less matched with the text description, affecting this
metric’s evaluation.

Ablations Study
Four comparative experiments are designed to verify the
effectiveness of word-object fusion, sentence-scene fusion,
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R-1 R-2 B-1 IP
HCSCL Word-Object only 41.70 25.37 38.01 32.31
HCSCL Sentence-Scene only 38.99 20.41 35.58 33.36
HCSCL w/o Sentence-Scene Fusion 41.05 24.04 37.44 31.94
HCSCL w/o Word-Object Fusion 38.35 19.94 34.97 30.83
HCSCL 43.64 29.00 39.64 40.98

Table 4: The ablation results for HCSCL. “Word-Object
only” means a model only contains Text Encoder, Image
Encoder, and Word-Object Fusion. “Sentence-Scene only”
means a model only contains Sentence Encoder, Image
Graph Encoder, and Sentence-Scene Fusion.

HCSCL PGN MSMO MSE HOW2 MAtt VMSMO S2S
Ent. 4006 3972 3844 3778 3746 3691 3566 3489
Rel. 1911 1900 1836 1814 1801 1764 1702 1643

Table 5: The total number of name entities and relations in
output text summaries.

and hierarchical structure. The result is shown in Table 4.
We can see that with the hierarchical structure, the model
has better performance. With the word-object fusion, the R-
1, R-2, and B-1 are higher. With the sentence-scene fusion,
the image selection metric IP is higher. However, when skip-
ping the low-level word-object fusion module and using the
sentence-scene fusion module directly, the model’s perfor-
mance worsens text evaluation metrics. It demonstrates that
the low-level semantic correlation helps learn the high-level
semantics and improve the summarization quality.

Fine-grained Semantic Diversity Analysis
To test fine-grained degree (Yang et al. 2020), we calculate
the number of named entities and relations in the output
text summaries. The pre-trained relation extraction model
NEZHA (Wei et al. 2019) is trained on the LIC2021 Com-
petition dataset3, which extracts 24 types of name entities
and 42 types of relations in our dataset. Then, the text sum-
maries are input to the relation extraction model. Next, 24
name entities are divided into five categories: PER, ORG,
LOC, WORK and OTHER, and 42 relations are divided into
six categories: P-P, O-O, P-O, O-P, P-ATTR, and O-ATTR.
The statistic result of the experiment is shown in Figure 3.
Note that when the ROUGE is similar or slightly lower (as
shown in Table 3), PGN can extract more name entities and
relations than the other multimodal summarization models,
which shows that the summaries generated by the previ-
ous multimodal summarization models have a certain loss
of semantic information. Compared with the baselines, the
summaries generated by HCSCL have the largest number of
named entities and relations. From these results, we find that
HCSCL can generate summaries with the richest semantic
information. This is because HCSCL learns the correlation
between the objects in the multimodal data, which is more
effective in discovering the relationships and entities even if
some critical information is missed in the text data.

3https://aistudio.baidu.com/aistudio/competition/detail/65
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Figure 3: The histogram statistics of the number of named
entities and the relations in output text summary.
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Figure 4: The pie charts for human evaluation.

Human Evaluation
To further evaluate our model’s performance, 100 multi-
modal summaries generated by MSMO, MOF, VMSMO,
and HCSCL are selected for human evaluation. Then five
graduate students are volunteered to choose the most Di-
verse, Coherent, and Relevant (how the image matches the
textual summary). The evaluation is shown in Figure 4.
Compared with MSMO, MOF, and VMSMO, the multi-
modal outputs generated by HCSCL are the most diverse,
coherent, and relevant, obtaining 39.8%, 37.8%, and 50.8%
votes. It further demonstrates that HCSRF can learn the most
representative and abundant semantic information from the
article.

Conclusion
In this paper, we propose a Hierarchical Cross-Modality Se-
mantic Correlation Learning Model for multimodal summa-
rization, which exploits the intra- and inter-modality corre-
lation in the multimodal data to learn the summary informa-
tion from both modalities complementarily. The experimen-
tal results on the well-designed dataset show that our model
can generate the most diverse and coherent text summary
with the most relevant image. The novelty of this work is to
tackle the multimodal summarization by proposing a mul-
timodal model to learn the heterogeneous structure of dif-
ferent modalities, and hence the correlation between them.
This complements the current research, which is not effec-
tive to mine the latent and important information inside the
multimodal content.
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