Fusing Task-Oriented and Open-Domain Dialogues in Conversational Agents


  • Tom Young Nanyang Technological University, Singapore
  • Frank Xing National University of Singapore
  • Vlad Pandelea Nanyang Technological University, Singapore
  • Jinjie Ni Nanyang Technological University, Singapore
  • Erik Cambria Nanyang Technological University, Singapore




Speech & Natural Language Processing (SNLP)


The goal of building intelligent dialogue systems has largely been separately pursued under two paradigms: task-oriented dialogue (TOD) systems, which perform task-specific functions, and open-domain dialogue (ODD) systems, which focus on non-goal-oriented chitchat. The two dialogue modes can potentially be intertwined together seamlessly in the same conversation, as easily done by a friendly human assistant. Such ability is desirable in conversational agents, as the integration makes them more accessible and useful. Our paper addresses this problem of fusing TODs and ODDs in multi-turn dialogues. Based on the popular TOD dataset MultiWOZ, we build a new dataset FusedChat, by rewriting the existing TOD turns and adding new ODD turns. This procedure constructs conversation sessions containing exchanges from both dialogue modes. It features inter-mode contextual dependency, i.e., the dialogue turns from the two modes depend on each other. Rich dependency patterns such as co-reference and ellipsis are included. The new dataset, with 60k new human-written ODD turns and 5k re-written TOD turns, offers a benchmark to test a dialogue model's ability to perform inter-mode conversations. This is a more challenging task since the model has to determine the appropriate dialogue mode and generate the response based on the inter-mode context. However, such models would better mimic human-level conversation capabilities. We evaluate two baseline models on this task, including the classification-based two-stage models and the two-in-one fused models. We publicly release FusedChat and the baselines to propel future work on inter-mode dialogue systems.




How to Cite

Young, T., Xing, F., Pandelea, V., Ni, J., & Cambria, E. (2022). Fusing Task-Oriented and Open-Domain Dialogues in Conversational Agents. Proceedings of the AAAI Conference on Artificial Intelligence, 36(10), 11622-11629. https://doi.org/10.1609/aaai.v36i10.21416



AAAI Technical Track on Speech and Natural Language Processing