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Abstract

Expert-layman text style transfer technologies have the poten-
tial to improve communication between members of scientific
communities and the general public. High-quality informa-
tion produced by experts is often filled with difficult jargon
laypeople struggle to understand. This is a particularly notable
issue in the medical domain, where layman are often confused
by medical text online. At present, two bottlenecks interfere
with the goal of building high-quality medical expert-layman
style transfer systems: a dearth of pretrained medical-domain
language models spanning both expert and layman terminolo-
gies and a lack of parallel corpora for training the transfer task
itself. To mitigate the first issue, we propose a novel language
model (LM) pretraining task, Knowledge Base Assimilation,
to synthesize pretraining data from the edges of a graph of
expert- and layman-style medical terminology terms into an
LM during self-supervised learning. To mitigate the second
issue, we build a large-scale parallel corpus in the medical
expert-layman domain using a margin-based criterion. Our
experiments show that transformer-based models pretrained
on knowledge base assimilation and other well-established
pretraining tasks fine-tuning on our new parallel corpus leads
to considerable improvement against expert-layman transfer
benchmarks, gaining an average relative improvement of our
human evaluation, the Overall Success Rate (OSR), by 106%.

Introduction

Incompatible knowledge backgrounds between experts and
laymen cause communication difficulties (Jerit 2009). These
difficulties are particularly problematic in the medical domain
when patients attempt to self-diagnose their ailments online
(White and Horvitz 2010). Their search terms might be too
vague, leading them to self-misdiagnose, followed by unnec-
essary treatment or tests, and potentially worse outcomes (Au
2019). Even if they find high-quality, correct online medical
resources that match their condition, the incomprehensible
medical jargon within can be confusing and frustrating (Be-
nigeri and Pluye 2003). Misunderstandings from online medi-
cal information seeking have been shown to lead to increased
health anxiety (White and Horvitz 2009). Expert-layman text
style transfer technologies offer a potential method to resolve
these problems. Accurate layman-to-expert style conversion
of vague searches into precise terminology could improve the
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quality of retrieved documents. In turn, high-quality expert-
to-layman translation of the retrieved documents would lead
to more comfort, better understanding, and hopefully better
overall outcomes.

Text style transfer is the task of transforming a passage
of text from a source style (e.g., expert medical language)
to a target style (e.g., layman language) while preserving
the underlying meaning (Jin et al. 2021). Prior work has
demonstrated impressive style transfer results across a vari-
ety of attributes, including sentiment (Li et al. 2018; Dai et al.
2019), formality (Rao and Tetreault 2018), and politeness
(Sennrich, Haddow, and Birch 2016). However, the aforemen-
tioned style-transfer tasks are fundamentally surface-level
transformations along fairly content-agnostic dimensions.
Expert-layman style transfer is different in that it requires
domain-specific terminological correspondence knowledge.
For a given domain, the model must contain sets of map-
pings between specific expert and layman-style expressions
for phenomena (e.g., “renal” and “relating to the kidneys”),
and a system intended for one domain has no guaranteed
applicability to another (e.g., linguistics to medicine).

In this paper, we tackle two core hurdles to building high-
quality medical expert-layman style transfer systems: a lack
of pretrained sequence-to-sequence language models contain-
ing medical domain-specific terminological correspondence
knowledge, and a lack of parallel expert-layman medical
corpora for fine-tuning. For the first hurdle, we introduce
a novel language model (LM) pretraining task, knowledge
base assimilation (KBA) to explicitly provide the LM with
a learning signal across expert-layman phrasal realizations of
concepts. We further augment our KBA training with the pre-
viously proposed Mask, Switch, and Delete self-supervised
pretraining tasks (Devlin et al. 2019; Lample et al. 2018;
Lewis et al. 2019) to build a robust medical LM containing
terminological correspondence knowledge. To the best of our
knowledge, this is the first work to investigate self-supervised
representation learning in expert-layman text style transfer.
To tackle the second hurdle, we produce a high-quality par-
allel extension of the non-parallel MSD medical text dataset
(Cao et al. 2020) containing 11,512 expert- and layman-style
medical sentences using a margin-based data mining criterion
(Schwenk 2018). To the best of our knowledge, this is the
first work to utilize supervised learning on a large data mined
parallel corpus of expert-laymen sentences. We release our



code and parallel corpus for future research. !

Proposed Approach

A knowledge domain D contains many concepts C;, which
are sets of sentences \S; ; of equivalent meaning. Sentences
can be labeled with attributes, including whether they belong
to the “expert” or “layman” style. We define the task of
expert-layman style transfer as follows: given a sentence
S € C; with either the expert- or layman-style, generate a
sentence S’ in the other style that is also a member of Cj.
This is not a simple task, as it requires the model to be aware
of the underlying medical concept that links semantically
equivalent but lexically unique medical phrases together.

To tackle this problem, we first pretrain a transformer lan-
guage model on an ensemble of tasks, including our novel
knowledge base assimilation (KBA) task and the previ-
ously demonstrated Mask, Delete and Switch self-supervised
learning (SSL) tasks, to simultaneously model medical lan-
guage in general while also capturing how specific concepts
are phrased in each style. Then, we fine-tune this language
model on a new corpus of parallel expert-layman medical
sentences we extract using a margin-based criterion from the
unaligned MSD dataset.

Dataset

We evaluate our proposed method and current SOTA models
using the MSD dataset (Cao et al. 2020). To our knowl-
edge, it is the only available dataset for the task of medical
expert-layman text style transfer. MSD contains 245k medi-
cal training sentences which are each labeled with either the
“expert” or “layman” style. Additionally, it contains a test set
of 675 expert-layman sentence pairs of equivalent meaning.
We extend the training set by producing 11,512 sentence
pairs using a margin-based criterion (Schwenk 2018). There
are 10810 medical concepts which are used by both expert
and layman sentences. We use our edge refinement to create
1124 triples in our Terminology Bijective Graph and build
40,892 expert and 31,083 layman pseudo training sentences
for KBA task. Specific statistics are listed in Table 1.

Pretraining Strategy

We use the standard transformer encoder-decoder (Vaswani
et al. 2017) with 4 layers, 4 attention heads, and a hidden
size of 256 as our language model. We perform a multi-
task pretraining procedure where we train a single shared
feedforward encoder-decoder framework across KBA and the
three SSL tasks, Mask, Switch and Delete. For the KBA task,
we construct 71,975 training sentences from MSD training
set using a Terminology Bijective Graph described below.
We construct training data for Mask, Switch, Delete tasks by
separately applying their respective noise functions for each
sentence in the MSD training dataset, as depicted in Figure
1. We optimize on all four pretraining tasks concurrently, by
minimizing negative log-likelihoods:

Lol = Lxa + Lvask + Lswicch + Lpelete 1

!Code available at https:/github.com/xul998hz/SSL_KBA_
Expert_Layman_Style_Transfer.
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Each mini-batch contains even distribution of each task’s
pretraining data. Details provided below.

Knowledge Base Assimilation

Knowledge Base Assimilation (KBA) resembles sequence-
to-sequence knowledge distillation, except it utilizes a KB
rather than a teacher model during training. In particular, we
generate a sentence S’ from a sentence S in either expert or
layman style, where each term in S (a node in the KB) is
replaced by a term with the same meaning but in the opposite
style (a node opposite the original term along an edge in
the KB) shown in Figure 1. The training task then becomes
reconstructing S from S’ by replacing all the terms, thereby
training the LM to model edges in the Terminology Bijective
Graph.

In particular, given a source sentence denoted by S =
{wy, mg, ws, wy, ms, ...w, }, where w; denotes a non-
medical word and m; denotes a medical phrase in the
source style. The target style medical phrase which has
the same meaning as m; is denoted by m;.. Both m; and
m’j are connected by an edge in the Terminology Bijec-
tive Graph. The input of the KBA task is the sentences
with the replaced medical phrases in the target style, S’ =
{w1, mh, ws, wyg, m, ...wy, }. The model is required to recon-
struct the original sentence from the replaced input sentence.
The purpose of the KBA is to enable the model to pick out
medical phrases which are misaligned with the sentence style
and learn the mapping of concept pairs with identical mean-
ing. We illustrate this process in Figure 1.

Terminology Bijective Graph

To perform KBA for expert-layman transfer in the medical
domain, we require a knowledge base of expert term-layman
term relation correspondence edges. To achieve this, we build
a child knowledge base of the Unified Medical Language
System (UMLS) (Bodenreider 2004) containing terms that
appear in the aforementioned MSD dataset (Cao et al. 2020).

The UMLS is a standardized knowledge base maintained
by the United States National Library of Medicine, contain-
ing a collection of Concept Unique Identifier (CUI) codes
and corresponding descriptions. CUI codes provide fixed ref-
erence to “medical concepts” that are invariant to language or
style (i.e., expert vs. layman). For example, CUI *’C0013404°
corresponds to both ‘dyspnea’ and ‘shortness of breath.” Cao
et al. (2018) match every medical term in the MSD dataset

Number of MSD Expert Layman Ratio
Training Sentences 130,349 114,674 0.88
Testing Sentences 657 657 1
KBA Synthesized Sentences 40892 31083 0.75
Data-Mined Sentences 11512 11512 1
Medical Concepts (CUI codes) 10810 10810 1

KB Triples 1124 1124 1

Table 1: MSD dataset statistics, and quantities for our derived
KBA pretraining and fine-tuning data.
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Figure 1: Multi-Task Self-Supervised Learning integrates KBA with Mask, Switch, Delete tasks. Four losses are optimized
concurrently. The parameters of input embedding layer, encoder-decoder network and output layer are shared between pretraining
and fine-tuning. On the right side, we demonstrate the construction of the Terminology Bijective Graph through edge refinement.

to its CUI code using QuickUMLS (Soldaini and Goharian
2016).

Knowing the CUI codes that appear in MSD a-priori, we
construct a child knowledge base of UMLS, the Terminology
Bijective Graph, exclusively containing pairs of terms with
shared CUI in the expert and layman styles connected by a
bidirectional “is in the other style” relation. To do this, we
first collect 10,810 CUI codes which are both found in expert
and layman sentences of MSD dataset. Based on those CUI
codes, we form 10,810 medical phrasing subsets in each of
expert and layman style. However, some phrasings for a CUI
appear in both the expert- and layman-labeled medical phras-
ing subsets. Furthermore, sometimes two phrasings shared
the same CUI code in opposite styles are just grammatical
variations. We indicate both cases in the right side of Figure
1. To select the best candidate for each style in these cases,
we apply a set of heuristics for edge refinement.

We first select our expert and layman terms from the can-
didates. For each CUI, we select one phrase to be the expert
term and the other to be layman by a simple majority vote
of the MSD style label for the sentences they appear in. For
each medical phrasing subset of expert and layman style, the
(term, style label) pair with the highest frequency is selected.
Thus, each CUI code provides a connection in the Termi-
nology Bijective Graph giving the correspondence between
the most frequently used expert and layman phrasing of the
underlying concept. Then, we apply Levenshtein distance
(Miller, Vandome, and McBrewster 2009) with a threshold
(d = 4) to exclude candidate phrasing pairs which are simply
grammatical variations. This process is shown in the right
side of Figure 1.

After the process of edge refinement we are left with a
high-quality Terminology Bijective Graph containing 1,124
expert-layman edges with which we perform KBA. Although
domain-specific terminological correspondence only requires
one relation in the Terminology Bijective Graph, future works
can extend KBA to assimilate more complex knowledge
graph structures into SSL to novel domains.

Self-Supervised Learning Tasks

In Figure 1, we further augment the KBA edge modeling task
with previously demonstrated self-supervised learning (SSL)
tasks Mask, Switch, and Delete on the full MSD training
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Figure 2: Data mining + Style Transfer Fine-tuning pipeline:
Style and Reconstruction losses are optimized concurrently.

corpus to build a more robust model of medical language.
All three are sequence-to-sequence denoising autoencoder
tasks, where an original sentence S is the reconstruction
target given a perturbed input sentence S’. Details for each
SSL task are provided below:

Mask The Mask task follows the BERT (Devlin et al. 2019)
masking scheme. 15% of the word tokens in S are randomly
replaced by <MASK> tokens to produce S’.

Switch The Switch task generates S’ by shuffling the word
order of a sentence. For each sentence S, we first select 15%
of words in S at random to be shuffled. Then, the selected
words are randomly reordered amongst themselves while
preserving the order of the unselected words to generate S’.
This is similar to Lample et al. (2018)’s noise function.

Delete In the Delete task, we randomly delete 15% of the
word tokens.In contrast to the Mask Task, the Delete task re-
quires the model to learn not only the contextual information
for the deleted tokens but also learn the possible positions to
insert words. This is similar to the token deletion pretraining
task for BART (Lewis et al. 2019).

Fine-tuning for Style Transfer
With our pretrained medical domain encoder-decoder lan-
guage model, we turn to supervised learning to train an expert-
layman medical style transfer model. This requires a parallel



corpus of medical sentences that share the same meaning,
(S, 1aymans Siexpert) € C;. We collect such a corpus by pairing
sentences in the MSD dataset using a margin-based criterion.

Since the transformer already has considerable in-domain
modeling capabilities from pretraining, fine-tuning converges
very fast. During the fine-tuning stage, the Transformer is
modeled by two losses: self-reconstruction and style transfer
loss. We use a similar encoding strategy as Style Transformer
(Dai et al. 2019), in which we encode a style embedding into
the input. Two losses are optimized concurrently, by minimiz-
ing two negative log-likelihoods, Equation 2. Therefore, the
model will preserve content while rewriting sentences into
the target style, shown in Figure 2.

@

Etolal = LSe]f—Reconstruction + LStyle

Data Mining with Margin Criterion

To collect training data for fine-tuning, we extract 11,512
paired sentences from 245k sentences (approximately 10%)
of the MSD training set (Cao et al. 2020) using margin-based
criterion (Schwenk 2018). This new parallel corpus is used
for fine-tuning of the Transformer model, in Figure 2.

We first extract LASER embeddings (Artetxe and Schwenk
2018) of all sentences in both the expert and layman sets. The
margin is defined as the ratio of cosine similarity of two
sentence embeddings and the average cosine similarities of
k-nearest neighbors in both forward and backward directions.
x stands for one sentence in the source style set and y stands
for one sentence in the target style set. Ny (z) stands for
unique nearest neighbors of x in the target style set. Similarly
for y, the k nearest neighbors are Ny (y).

cos(z, y)
M(zy) = S ®
ZzGNk(z) COS2(:7Z) + ZzeNk(y) 0052(27 )

We use the “max-strategy” from (Schwenk 2018) to calcu-
late margin in both directions (expert to layman and layman
to expert) for all sentences in both style sets. That allows us to
build candidate pairs for both directions (expert—to—layman
and layman—to—expert). Any sentence can occur, at most,
once in the candidate pairs. Therefore, other candidate pairs
of that sentence with smaller margin values will be excluded.
We use a threshold on the margin score to select candidate
sentence pairs that are mutual translations of each other. Dis-
cussion on mutual translations can be found in (Schwenk
2018). Margin criteria for our model is set as £ = 4 and
threshold = 1.06. Parallel corpus generation took 7.5 hours
on a single Titan 1080 Ti GPU.

Experiments

We assess the performance of our strategy by pretraining our
transformer encoder-decoder LM in four different conditions:

1. Basic, where the transformer model recieves only self-

reconstruction loss in pretraining.
2. SSL Only, where only the three SSL tasks are used.
. KBA Only, where only KBA pretraining is used.
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4. KBA+SSL, where the model is simultaneously pretrained
using KBA and the three SSL tasks.

For all four conditions, we fine-tune the resulting LM on the
expert-layman transfer task using the paired dataset. Further-
more, we compare our model with three prior baselines.

Baseline Models

Following Cao et al. (2020), we choose baseline models that
are commonly used and have publicly available code.

1. DAR (Li et al. 2018) reconstructs the input sequence after

source-target word replacement using edit distance.

Style Transformer (Dai et al. 2019) uses cyclic recon-

struction to preserve content while doing style transfer.

. Controlled Generation (Hu et al. 2018) uses a varia-
tional encoder to reconstruct the content representation
and an attribute discriminator to build the style vector.

2.

None of these baseline models specifically deal with style
transfer in the medical domain.

Training Details

We use the standard training settings for all models with
Adam optimizer (Kingma and Ba 2015) and early stops ap-
plied. Max sequence length, learning rate and drop out rate
are set to 100, le — 4 and 0.5 respectively. The three base-
lines, being unsupervised, are only trained on the non-parallel
MSD corpus; they cannot be fine-tuned on our parallel corpus
without modification.

Our model architecture follows Dai et al. (2019), with 4
layers, 4 attention heads per layer, and hidden size 256. We
add one style token into the input sequence with 256 hid-
den units after the embedding layer. The positional encoding
is applied to the entire input sequence except style embed-
ding. For different SSL task combinations, the pretraining
took 6 hours on average and fine-tuning took 1.5 hours on a
single Titan 1080 Ti GPU. We use clinical-BERT’s (Huang,
Altosaar, and Ranganath 2020) tokenization for all models.

Finally, we augment our expected “best” condition of KBA
+ SSL pretraining by making KBA + SSL Large, identical
to the other transformer models but for a hidden size of 512.
We pretrain and fine-tune this model identically to the others.

Human Evaluation

We hired crowdworkers on Amazon Mechanical Turk?
(AMT) to rate the output of all systems. We collected a ran-
dom subset of 500 MSD test set sentences to evaluate the
performance of all our models. For each source sentence and
its style-transferred output, workers were asked to rate the
output on three aspects: content preservation (the extent
to which the two sentences match), style transfer strength
(extent to which the desired change in style takes place), and
grammar fluency. Crowdworkers answer questions on each
aspect of a set of translations on a 5 point Likert scale.

To ensure the layman crowdworkers understood both sen-
tences, we include supplementary medical definitions for all

?Each crowdworker, from the English-speaking locales of {US,
CA, UK, AU, NZ, IE} was paid $0.80 per task and averaged 5.5 min-
utes of completion time with an average compensation of $8.73/hr.



medical terms in each sentence. Crowd-workers were able to
access those definitions with a mouse-over of the underlined
medical words in the interface (See Appendix Figure 3 and
Appendix “Implementation of Human Evaluation Interface”).

Due to the knowledge gap between expert and layman sen-
tences, the understanding comparison between the transferred
sentence and the source sentence is the most direct way to
assess the strength of expert-layman text style transfer. The
comparison is quantified by the number of times that crowd-
workers had to check supplementary definitions of medical
words in the sentence. Fewer checks in the transferred sen-
tence imply an easier-to-understand sentence compared to the
source sentence, and vice versa. In the expert to layman (E2L)
direction, higher understanding score means the transferred
sentence is easier for laymen annotators to understand, while
in the direction of layman to expert (L2E), a higher score
indicates the transferred sentence is harder to understand.

Following Li et al. (2018), we report six success rates. We
consider a transferred sentence “successful” in one evaluation
criteria if it is rated 4 or 5 by AMT workers.

Content Success Rate (CSR)—the percentage of sen-
tences that receive 4 or 5 rating in the content criterion.

Understanding Success Rate (USR)—the percentage of
sentences that receive 4 or 5 rating for “understand.”

Grammar Success Rate (GSR)—the percentage of sen-
tences that receive 4 or 5 rating for the grammar criterion.

Understanding + Content Success Rate (UCSR)—the
percentage of sentences that receive 4 or 5 rating for both
content and “understand” criteria.

Understanding + Grammar Success Rate (UGSR)—the
percentage of sentences that receive 4 or 5 rating for both
grammar and “understand” criteria.

Overall Success Rate (OSR)—the percentage of sen-
tences that receive 4 or 5 rating in all three criteria.

We use CSR, USR and GSR to directly assess the model’s
performance in content preservation, style transfer strength
and grammar fluency respectively. We further define a con-
cept, effective style transfer: An effective style transfer hap-
pens only when model can preserve the sentence meaning
or fluency during Style Transfer. We include UCSR, UGSR,
OSR to indicate the percentage of sentences that can achieve
effective style transfer and OSR can also reflect the overall
performance of models on three criteria.

Automated Evaluation

Following previous work by (Dai et al. 2019; Cao et al. 2020),
we compute three automatic evaluation metrics (see Table
4). We train a style classifier on the MSD training set us-
ing FastText (Joulin et al. 2016) to estimate the style accu-
racy of the transferred sentence. The style classifier score
indicates the percentage of the transferred sentences that la-
beled as corresponding style. We also use NLTK (Bird, Klein,
and Loper 2009) to calculate 4-gram BLEU (Papineni et al.
2002) scores between the transferred sentence and the orig-
inal sentence. We use KenLM (Heafield 2011) to train a
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5-gram language model on the MSD training set. We use
PPL to measure the fluency of the transferred sentence.

Results

From our human evaluation results in Table 2, our model
trained on the SSL task only achieves the highest CSR score.
Our KBA+SSL and KBA+SSL Large variants achieve the
highest USR, indicating their most progressive style trans-
fer strengths. Although, ControlledGen (CtrlGen) (Hu et al.
2018) achieves the highest GSR, it mostly copies input to
the output with limited style transfer, as indicated by its
low USR and OSR. All baseline models only achieve lim-
ited effective style transfer, as indicated by their low UCSR,
UGSR and OSR. In contrast, our KBA+SSL Large has rela-
tive improvements over the best performing baseline model
DeleteAndRetrieve (DAR) (Li et al. 2018) by 39% in UCSR,
59% in UGSR and 75.6% in OSR.To better understand the
characteristics of the models, we provide a case study of
an expert-to-layman input example and a layman-to-expert
example in Table 5.

Effects of KBA and SSL Tasks Table 2 shows that even
the basic transformer model without specialized SSL or
KBA pretraining achieves competitive USR compared to the
baseline models on fine-tuning alone. However, its outputs
tend to lose the original sentence meaning or fluency while
it adapts to our parallel corpus, indicated by its low CSR
and GSR. Moreover, its effective style transfer is limited,
indicated by its low UCSR, UGSR and OSR.

Adding KBA training (KBA only condition) improves
USR by learning terminological mappings between the styles.
Surprisingly, as the model learns to reconstruct sentences
from the replaced target style medical words both content
and grammar scores are improved. Those improvements over
all three criteria leads to the enhance of effective style transfer,
indicating by UCSR, UGSR and OSR.

Using the auxiliary learning of the SSL tasks significantly
improves CSR and GSR. This finding verifies our assump-
tions that context-aware learning gives rise to better apparent
content understanding and syntactic awareness. Interestingly,
this multitask context-aware learning also demonstrates ro-
bust performance in effective style transfer, leading to steep
increases of all UCSR, UGSR and OSR.

By adding context-aware learning into KBA (KBA+SSL
condition), we observe improvements across all criteria,
demonstrating the importance of context-aware learning
to the final pretraining scheme. By adding KBA to SSL,
we observe consistent improvements of USR, UCSR and
UGSR. This finding suggests that the shared representation
of context-aware understandings and terminology mappings
can improve style transfer strength and this improvement
is “effective” in considering content and fluency. However,
since the learning of KBA is directly enforced through our
Terminology Bijective Graph, KBA-generated representa-
tions only have limited sentence context, leading to drops
in CSR and GSR in the composed setting, compared to the
more context-aware SSL tasks. Therefore, investigating a
more sophisticated multi-task pretraining scheme to fully
incorporate the power of KBA and context-aware SSLs is a



Human Evaluation

Model CSR USR GSR UCSR UGSR OSR
Style Transformer (Dai et al. 2019) 0.70 0.28 0.62 0.18 0.06 0.11
DeleteAndRetrieve (Li et al. 2018) 0.70 0.32 047 0.23 0.15 0.12
ControlledGen (Hu et al. 2018) 085 020 0.74 0.10 0.15 0.09
Basic Tr. 0.68 030 047 0.16 0.09 0.07
KBA Pretraining Only 0.73 032 0.60 0.19 0.13 0.11
SSL Pretraining Only 0.87 030 0.73 0.26 0.22 0.20
KBA+SSL Pretraining 0.83 037 0.65 0.30 0.22 0.20
KBA+SSL Pretraining Large(512) 0.86 037 0.67 0.32 0.24 0.22

Table 2: Human Evaluation Table: Our supervised models are below the middle line, the unsupervised baselines are above.

Data CSR USR GSR UCSR UGSR OSR
40% 085 030 071 0.25 0.19 0.17
80% 085 032 072 026 0.20 0.18
100% 0.83 037 0.65 0.30 0.22 0.20

Table 3: Human evaluation of our KBA+SSL (256) model
output using different percentages of our parallel corpus.

good future research direction. We include further discussion
in the Appendix Section “Additive Effects of SSL Tasks” to
demonstrate how each individual SSL task contributes.

Fine-tuning Data Quantity Effects We repeat our fine-
tuning experiment for KBA+SSL (256) on 40% and 80%
subsets of our parallel corpus. We find that USR, UCSR,
UGSR, and OSR drop compared to using the complete set
of parallel sentences. Surprisingly, we found that both CSR
and GSR improve when fewer training samples are used. The
model might focus less on transferring into target sentence
style but more on reconstructing the original sentence in these
restricted data conditions. Compared to the three baseline
models, both 40% and 80% of parallel data mined sentences
outperform baseline models on UCSR, UGSR and OSR. This
finding demonstrates the importance of the KBA+SSL tasks
and mild parallel data dependency of the pipeline.

Effect of Embedding Size Table 2 shows that training a
larger LM on KBA+SSL improves CSR and GSR, leading
to a 9.6% relative improvement in OSR. Although USR
stays the same, KBA+SSL Large can further enhance ef-
fective style transfer, indicating by 6% relative improvement
in UCSR and 5% in UGSR. Increased size giving better re-
sults is consistent with previous work (Devlin et al. 2019;
Lewis et al. 2019; Wang et al. 2019).

Correlation to the Automatic Evaluation

To investigate the quality of autmoated metrics we compute
a system-level correlation between BLEU score and human
judgement CSR, between style accuracy and our human
judgement USR and between PPL and human judgement
GSR. Similar to previous results (Li et al. 2018; Cao et al.
2020), we find that the BLEU score has moderate correlation
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Model Style Acc BLEU PPL
Style Transformer 0.43 61.2 207
DeleteAndRetrieve 0.64 30.6 141
ControlledGen 0.14 80.4 171
Basic Tr. 0.66 19.8 338
KBA Only 0.62 37.1 240
SSL Only 0.41 59.2 163
SSL+KBA 0.63 39.2 159
SSL+KBA Large (512) 0.61 40.2 127

Table 4: Automatic evaluation results using Style Accuracy,
BLEU and PPL

to human evaluation CSR with Pearson correlation (PCC)
0.64 (p = 0.086). However, BLEU score is not a reliable
indicator in expert layman style transfer, as it tends to penal-
ize the semantically-correct phrases when they differ from
the surface form of the reference (Zhang et al. 2019). We
find that Style Accuracy has the moderate correlation to hu-
man evaluation USR with PCC 0.46 (p = 0.257). Similar to
previous finding (Cao et al. 2020), we observed that Style
Classifier can be easily fooled and achieving high accuracy
by adding random target style words, e.g. “patient”, into lay-
man sentences and “people” into expert sentences. However,
none of those transforms is valid because they don’t improve
layman or expert’s understandings of the original sentences.
Although, our KBA+SSL Large performs the best under PPL
evaluation, we find a weak correlation between PPL and our
human judgement GSR, with PCC —0.38 (p = 0.352). Over-
all, we conclude that three automatic evaluation metrics can
be useful for model developments as they exist some correla-
tion to the human evaluation. However, human evaluation is
non-replaceable at the current stage. We include further dis-
cussion and one concrete example in the Appendix Section
“Case Study of Automatic Evaluation” and Table 7.

Case Study

In the (E2L) of Table 4, both Style Transformer (Style Tr) and
ControlledGen make lexical substitutions to the target style



Model Name

Expert Input — Generated Layman Sentences

Expert Input

Fluid accumulation in the lungs may cause dyspnea and crackles on auscultation .

Style Transformer

Fluid accumulation in the lungs may cause attention and literally on 4.4 .

DeleteAndRetrieve

Fluid may cause various symptoms ( such as a head injury ) .

ControlledGen Fluid accumulation in the lungs may cause dyspnea and crackles on pupils .

Basic Tr. Fluid accumulation in the lungs may cause shortness of liquids during the pregnancy .

KBA+SSL The fluid accumulation in the lungs may cause difficulty breathing ( dyspnea ) and
airway narrowing ( auscultation )

KBA+SSL (Lg) Fluid may be surgically in the lungs and may cause shortness of breath .

Gold Reference If fluid accumulates in the lungs , people may become short of breath .

Table 5: Examples of baseline and our model outputs. All model’s and expected modifications on medical concepts are bold.

words. However, those changes cause complete deviation
from the sentence meanings. In most cases, ControlledGen
stays the same as input, which is the reason that it achieves
the high CSR and GSR. DeleteAndRetrieve and Basic Tr.
are the most progressive baseline models in changing sen-
tence style which seems to be the reason why both of them
achieve competitive USRs. However, neither of them achieve
effective style transfer, as the transferred sentences are both
disfluent and deviating from original meanings, indicated
by their low CSR, GSR, UCSR and UGSR. In our two best
performing systems, KBA+SSL and KBA+SSL Large, both
models are able to accurately translate “dyspnea” to either
“difficulty breathing” or “shortness of breath.” Moreover, our
KBA+SSL is able to deduce the reason of “crackles on aus-
cultation” as “airway narrowing” (See Appendix Table 8 for
more examples).

Related Work

Text Style Transfer Due to the limited availability of par-
allel corpora, most prior work relies unsupervised learning.
One approach disentangles style and content representations
to generate target-style text sequences by directly manip-
ulating latent representations (Shen et al. 2017; Hu et al.
2018; John et al. 2019). Another approach synthesizes par-
allel expert-layman sentence pairs through back translation
(Prabhumoye et al. 2018; Zhang et al. 2018; Lample et al.
2019) or cyclic reconstruction (Dai et al. 2019; Huang et al.
2020) to enable supervised learning.

Jin et al. (2020) iteratively harvest pseudo-parallel sen-
tences for supervised learning, but this small-scale data min-
ing cannot generate adequately large parallel corpora. Malmi,
Severyn, and Rothe (2020) replace source words to the target
words using two pretrained masked language models. Similar
to our KBA task, Li et al. (2018) reconstruct sentences after
source-target word replacement using edit distance. However,
simple pretraining scheme and inaccurate edit distance mea-
sures restrain their applications to our task. As a result, for
this defined task (Cao et al. 2020), domain-specific termino-
logical correspondence knowledge and large parallel corpus
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generation are our main focuses.

BiText Data Mining Margin-based criterion has demon-
strated good performance in low resources setting (Chaud-
hary et al. 2019; Koehn et al. 2019), LASER embedding
(Artetxe and Schwenk 2018) and margin-based bi-text min-
ing (Schwenk et al. 2020). Margin-based embedding has
been widely studied in bilingual and multilingual sentence
representations (Bouamor and Sajjad 2018; Grégoire and
Langlais 2017). But, there is limited prior works that applies
this idea to monolingual text style transfer and uses semantic
embedding to create pseudo parallel supervisions.

Self-Supervised learning SSL aims to train a neural net-
work with automatically generated data (Peters et al. 2018;
Devlin et al. 2019). There are two existing approaches for
pretrained language models, feature-based learning (Peters
et al. 2018) and fine-tuning (Devlin et al. 2019). To tackle
medical domain-specific terminologies, there are many vari-
ants (Peng, Yan, and Lu 2019; Alsentzer et al. 2019; Beltagy,
Lo, and Cohan 2019; Lee et al. 2019). But, all these works
either pretrain on an encoder or a decoder. Therefore, they are
not good fits for seq-to-seq generation. pretrained encoder-
decoder framework (Song et al. 2019; Lewis et al. 2019) has
been successful in many downstream sequence generation
tasks like text summary, machine translation and question
answering. SSL on text style transfer remains under-studied.

Conclusion

We built a large-scale parallel corpus extending the MSD
dataset using margin-based criterion. We introduced a novel
pretraining task, knowledge base assimilation, which com-
bined with established SSL tasks produces a high-quality LM
to fine-tune with the parallel corpus. This model outperforms
unsupervised baselines considerably on human evaluations.
We hope that future work will explore a more sophisticated
pretraining scheme to fully incorporate KBA and context-
aware SSLs and assimilate more complex knowledge graph
structures into LMs by extending KBA to novel domains.
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