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Abstract

Graph convolutional networks have been successfully ap-
plied to the task of event detection. However, existing works
rely heavily on a fixed syntactic parse tree structure from
an external parser. In addition, the information content ex-
tracted for aggregation is determined simply by the (syn-
tactic) edge direction or type but irrespective of what se-
mantics the vertices have, which is somewhat rigid. With
this work, we propose a novel graph convolutional method
that combines an adaptive graph generation technique and a
multi-channel selection strategy. The adaptive graph genera-
tion technique enables the gradients to pass through the graph
sampling layer by using the ST-Gumbel-Softmax trick. The
multi-channel selection strategy allows two adjacent vertices
to automatically determine which information channels to get
through for information extraction and aggregation. The pro-
posed method achieves the state-of-the-art performance on
ACE2005 dataset.

Introduction
Event detection (ED) is a fundamental information extrac-
tion task in natural language processing, which aims to de-
tect the event triggers and classify them to corresponding
event types from given texts. Each event trigger is a word or
phrase that identifies an event mention. For example, in the
sentence presented in Figure 1, event detection model should
identify “delivered” to be a trigger word of “Life:Be-Born”
event, but not “Movement:Transport”. In the age of deep
learning, sequence-based neural methods have been first de-
veloped for event detection (Chen et al. 2015; Nguyen, Cho,
and Grishman 2016). These methods empower the ED sys-
tems with the ability of generalization to unseen words and
automatic extraction of task-specific features (Nguyen, Cho,
and Grishman 2016), but are confronted with the difficulty
of capturing long-range dependencies.

Most recently, graph convolutional approaches have been
applied to event detection task (Nguyen and Grishman 2018;
Liu, Luo, and Huang 2018; Yan et al. 2019; Lai, Nguyen,
and Nguyen 2020; Cui et al. 2020) and achieved state-of-
the-art performance, which rely on dependency parse trees
as the graph structures. It has been shown that the syntac-
tic connections between words provide effective constraints
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Figure 1: An example sentence of event type Life:Be-Born.

in boosting the performance of event detection (Nguyen and
Grishman 2018). However, such a fixed syntactic parse tree
structure is unlikely to be the best for the task at hand.
For a given trigger candidate, its relevant words are often
multi-hop away. For example, for the sentence illustrated
in Figure 1, the shortest path between the trigger “deliv-
ered” and the relevant word “pregnant” is of length 4: “de-
livered–see–call–daughter–pregnant”. It was also reported
that more than half of event-related entities need more than
one hop to get to the corresponding trigger words (Yan et al.
2019). To capture the multi-hop dependencies, one way is
to stack multiple GCN layers (Nguyen and Grishman 2018;
Liu, Luo, and Huang 2018; Lai, Nguyen, and Nguyen 2020;
Cui et al. 2020), and another way is to extend first-order
graph to high-order graphs (Yan et al. 2019). Both ways
make it possible that the relevant words can pass useful in-
formation through multi-hops to the trigger candidate, but
they also introduce more spurious information from irrele-
vant words, suffering from the so-called “over-smoothing”
problem (Li, Han, and Wu 2018). Therefore, it is desirable
that the graph structure is adaptive such that the relevant
words are only one-hop from the trigger candidate, and thus
a single graph convolutional layer will be sufficient to re-
trieve enough information from the one-hop neighborhood
for effective event detection. However, in existing GCN-
based event detection methods as shown in Figure 2a, graph
structures are usually syntactic dependency parse trees gen-
erated by an external off-the-shelf dependency parser. The
process of graph construction is not differentiable and can-
not be optimized specifically for the event detection task
by gradient-based optimization techniques. Additionally, the
whole system is pipelined and the performance of event de-
tection may suffer from the errors propagated from the ex-
ternal parser.

On the other hand, let us investigate how a GCN network
extracts and aggregates information from its neighborhood
to produce a global representation for each trigger candi-
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date. In existing GCN-based event detection methods, the
information content extracted for aggregation is simply de-
termined by the (syntactic) edge direction or type (Nguyen
and Grishman 2018; Liu, Luo, and Huang 2018). Consider-
ing that there are usually 3 edge types (along, rev and self-
loop), they associate a linear transformation with each edge
type, as its information extractor which is called an infor-
mation channel in this paper. Specifically, the information
channels are selected simply according to syntactic relation-
ships (instead of semantic ones) for extracting relevant in-
formation. Such a semantics-agnostic manner is a little bit
rigid.

To overcome these problems, this paper proposes
AGGED, an event detection method based on adaptive graph
generation, which employs a single graph convolutional
layer (instead of stacked multiple layers) to aggregate infor-
mation for event detection. Its modular structure is depicted
in Figure 2b. The AGGED method features an adaptive
graph generation module and a gated-multi-channel graph
convolutional (GMC-GCN) mechanism:

• Firstly, the adaptive graph generation module is in
charge of building up a probabilistic head-selection ma-
trix, from which a random graph can be sampled. To
make the graph sampling process be differentiable, we
employ the ST-Gumbel-Softmax trick such that the gra-
dients can backpropagate through it.

• Secondly, the gated-multi-channel mechanism is respon-
sible for information extraction and aggregation on the
generated graph by two techniques: the multi-channel se-
lection allows two adjacent vertices to automatically de-
termine which information channels to get through, and
the information gating modulates the amount of informa-
tion to be passed.

Put colloquially, sampling a graph from probabilistic head-
selection matrix is analogous to building up a highway, and
multi-channel selection determines the content to be trans-
mitted on the highway, where information gating controls
the amount of the transmitted content. To the best of our
knowledge, this is the first work that simultaneously learns
the graph structure and the parameters of a graph convolu-
tional network for event detection, or even for natural lan-
guage processing.

Related Work
Due to the fact that syntactic relations can capture the mutual
relationship among triggers and related entities, Nguyen &
Grishman (2018) and Liu et al. (2018) are the first to apply
GCN on dependency trees where syntactic relations are em-
bodied as directed arcs. In terms of graph structures, (Yan
et al. 2019) extended first-order syntactic graph to high-
order ones and used a graph attention mechanism to calcu-
late the multi-order representations, in order to overcome the
over-smoothing problem in stacking multiple graph convo-
lutional layers. In terms of information flow on the graph,
(Cui et al. 2020) used additional dependency label informa-
tion, under the consideration that dependency labels can be
important for indicating triggers; (Lai, Nguyen, and Nguyen

(a) Traditional GCN-based ED methods

(b) The proposed AGGED method

Figure 2: Modular structures of GCN-based ED methods,
where the solid arrows denote the forward pass of informa-
tion, and the dashed arrows denotes the backpropagation of
gradients.

2020) designed a gate mechanism based on the trigger can-
didate to filter the noise and let only relevant information to
pass through.

With the help of dependency parse trees, these GCN-
based methods have achieved state-of-the-art performance
on the event detection task. However, the parse trees are
fixed and static, which can not be adjusted with respect to
the downstream learning task. The problem we are facing is
how to adaptively learn the graph structure together with the
downstream GCN network in an end-to-end manner.

Little attention has been paid to this problem. To the
best of our knowledge, there are only two exceptions.
(Franceschi et al. 2019; Kazi et al. 2020). Franceschi et
al. (2019) made the first attempt to simultaneously learn
the graph structure and a GCN network for semi-supervised
classification. Kazi et al. (2020) introduced a differentiable
graph module as a learnable predictor of edge probabilities
and applied it to several tasks such as disease prediction and
gender classification.

Method
The overall AGGED architecture is illustrated in Figure 3.
Let S = [w1, w2, ..., wn] be an input sentence of length n.
We use wi and pi to denote the word embedding and the
POS-tag embedding of the i-th token wi, respectively. Fol-
lowing previous work (Chen et al. 2018), the word embed-
dings are pretrained by Skip-Gram algorithm on the NYT
Corpus. We obtain the part-of-speech tags by using the Stan-
ford CoreNLP (Manning et al. 2014). The POS-tag embed-
ding matrix is randomly initialized. Thereupon, in the input
layer, each token wi is represented as a vector xi = [wi;pi]
by concatenating its word and POS-tag embeddings.

Adaptive Graph Generation Module
Given an input sentence S, a dependency graph is a directed
graph where vertices are the word tokens in S, and a directed
edge wj → wi (or (wi, wj)) going from the head word wj
to the dependent word wi indicates there is some (seman-
tic or syntactic or both) dependency relation from wi to wj .
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Figure 3: Model architecture. After the input layer, the initial vector representation of input sentence is fed into two modules: one
is the adaptive graph generator that outputs a discrete graph structure based on Deep Biaffine Attention and Gumbel-Softmax
sampling; the other is the text encoder implemented by a BiLSTM network that generates node embeddings (or equivalently,
the contextualized embeddings of words). In turn, both the graph structure and the node embeddings flow into the proposed
GMC-GCN module for aggregating information from one-hop neighborhoods. Finally, the updated representations are used for
event classification as sequence labeling.

To limit the complexity, this paper is confined to 1-indegree
graphs where each vertex has one and only one incoming
edge.

The graph generation module is to learn a dependency
graph with regards to the event detection task (that is, a task-
specific graph structure) in the gradient-based optimization
framework. To do so, the module consists of two compo-
nents:
• The first one learns a probabilistic head-selection (PHS)

matrix P, in which each row pi corresponds to a word
wi and denotes the probability distribution for selecting
its head;

• The second component employs the so-called “ST-
Gumbel-Softmax” trick to sample a graph from the PHS
matrix, where the argmax is used in the forward pass
and the gradients are approximated by the normal Gum-
bel Softmax in the backward pass.

Deep biaffine attention for PHS matrix. As shown in
Figure 3, the PHS matrix is obtained by using the neural
network architecture of the Deep Biaffine Attention (DBA)
parser proposed by (Dozat and Manning 2017). After re-
ceiving the input sequence of vectors [x1,x2, . . . ,xn], a
stacked BiLSTM first converts it to the context representa-
tion [r1, r2, . . . , rn].

Next, two multi-layer perceptrons(MLPs) are used to ob-
tain the representations of word wi being the head or the
dependent in any dependency relation:

hhead
i = MLPhead

arc (ri) (1)

hdep
i = MLPdep

arc (ri) (2)

Given a dependent word wi, the scores of each possible de-
pendency relation from wi to any possible head are calcu-

lated as:

si =
(
Hhead)>Uarch

dep
i +

(
Hhead)> varc (3)

where Hhead = [hhead
i ]1≤i≤n is the head representations of

all the words, Uarc is a parameter matrix and varc is a param-
eter vector.

Finally, we obtained the probabilistic head selection ma-
trix P, with each element pi,j to be:

pi,j =
exp (si,j)∑n

k=1 I[k 6=i] exp (si,k)
(4)

where I[k 6=i] ∈ {0, 1} is an indicator function that equals 1
only if k 6= i and pi,j represents the probability of word wj
being the head of word wi.

ST-Gumbel-Softmax trick for sparse-graph sampling.
Deterministic Sparse Graphs. Based on the probabilistic
head selection matrix, an arc can be generated by choos-
ing the highest scoring head for each dependent node, as
done at the training time of graph-based dependency parsing
neural models (Dozat and Manning 2017). Or instead, the
Maximum Spanning Tree (MST) algorithm can be applied
to generate a well-formed parse tree structure, as done at
the testing time. However, both the graph-generation meth-
ods prevent gradients from passing through. As to the task
of event detection, all the existing graph convolution based
methods (Nguyen and Grishman 2018; Liu, Luo, and Huang
2018) rely on such a fixed parse tree structure from depen-
dency parsers.

Fully-Connected Probabilistic Graphs. The probabilistic
head selection matrix can be thought of as a fully-connected
weighted graph structure, which can be directly passed
to the downstream task. However, this fully-connected-
graph based method has several shortcomings compared
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with parse-graph-sampling method (Franceschi et al. 2019).
Firstly, the evaluation of sparse GCN on sampled graphs
is much faster than the evaluation of dense GCN on fully-
connected graphs. Secondly, the downstream event detection
module is usually nonlinear, which makes the two meth-
ods have different results. Thirdly, graph-sampling method
is more intuitive to interpret than a dense probabilistic ma-
trix.

Stochastic Sparse-Graph. This paper adopts the approach
of sparse-graph-sampling and employs the ST-Gumbel-
Softmax trick (Jang, Gu, and Poole 2017) to reparameterize
the discrete choice of a (n−1)-way categorical variable. For
each word wi, we randomly sample a head according to pi,
and its one-hot representation is:

ai = one-hot

(
argmax
k 6=i

[log pi,k + gi,k]

)
(5)

where gi,k (1 ≤ k ≤ n and k 6= i) is i.i.d sampled from
Gumbel(0, 1) 1. Let φ stand for the set of all the parameters
in the deep biaffine module for calculating PHS matrices. In
the backward pass, by using the softmax function as a con-
tinuous, differential approximation to the argmax in Equa-
tion 5, the ST-Gumbel-Softmax trick approximates ai with
âi = [âi,1, . . . , âi,n], and thus obtains a continuous approx-
imation of the gradients∇φai ≈ ∇φâi:

âi,k =
exp((log pi,k + gi,k)/τ)∑n

k′=1 I[k′ 6=i] exp((log pi,k′ + gi,k′)/τ)
(6)

where τ is the temperature parameter.
During testing time, each dependent word wi find its head

as wj : j = argmaxk 6=i pi,k. That is, the word wj with the
highest probability is deterministically chosen as the head.

Gated-Multi-Channel GCN
A graph convolutional network (GCN) (Kipf and Welling
2017) usually takes two inputs: a graph structure G = (V, E)
with V as the vertex set and E as the edge set, and a feature
matrix H of the vertex set, where the ith column hi of H is
the vector representation of the ith vertex vi ∈ V . The fea-
ture matrix H is usually obtained from the initial embedding
representations xi (1 ≤ i ≤ n) by using a stacked-BiLSTM
network. In turn, the GCN constructs a new representation
hconv
i for each vertex vi by extacting and aggregating infor-

mation from its adjacent vertices (i.e., by allowing informa-
tion to flow among vertices through edges).

The subsection is devoted to a so-called gated-multi-
channel (GMC) mechanism to control the information flow
among vertices. Before delving into the details of GMC, let
us begin with some background knowledge of vanilla graph
convolutional network for event detection.

Vanilla GCN for event detection. For event detection, a
vanilla GCN uses dependency parse tree as the graph struc-
ture G = (V, E). To allow the convolution for each token wi
in G to involve the word wi itself as well as its head word,
the self-loops (wi, wi) and the inverse edges (wj , wi) for

1gi,k = − log(− log(ui,k)) and ui,k ∼ Uniform(0, 1)

each (wi, wj) ∈ E are also added into the initial edge set E ,
resulting in an extended edge set E∗. Previous GCN-based
ED methods (Nguyen and Grishman 2018; Liu, Luo, and
Huang 2018; Yan et al. 2019) operate on the extended graph
G∗ = (V, E∗). Each edge (wi, wj) ∈ E∗ is assigned an edge
type as follows:

γi,j = γ(wi, wj) =

{
0 if i = j (self-loop)
1 if (wi, wj) ∈ E (along)
2 if (wj , wi) ∈ E (rev)

(7)

The information aggregation equation that computes the
graph convolution vector hconv

i for a vertex wi is:

hconv
i = f

 ∑
(wi,wj)∈E∗

ICγi,j (hj)

 (8)

where the activation function f(·) is ReLU, and each infor-
mation channel ICc (0 ≤ c ≤ 2), characterized by a ma-
trix Mc and a vector bc, defines what information content
should be extracted from a vertex and be passed:

ICc(hj) = Wchj + bc (9)

Clearly, exiting methods (Nguyen and Grishman 2018;
Liu, Luo, and Huang 2018) make use of three information
channels: one for along edges, one for rev edges, and the
other for loop edges. Given a vertex wi and one of its neigh-
bors wj in G∗, the information extracted and aggregated is
determined solely by the edge type of (wi, wj), which is ag-
nostic of the semantic of wi and is somewhat rigid.

Gated-Multi-Channel GCN. Once a graph structure G
is generated (or sampled) by the adaptive graph genera-
tion module described in Section , the proposed GMC-GCN
works on it as follows.

In GMC-GCN, there are (C + 1) information channels,
{ICc : 0 ≤ c ≤ C}. As defined in Equation 9, each in-
formation channel can be thought of as an information ex-
tractor. For a self-loop edge (wi, wi), we extract the infor-
mation IC0(hi) for aggregation by the information channel
IC0, which is the same as in the vanilla GCN. For an along
or rev edge (wi, wj), the information to be extracted from
wj and aggregated to wi is calculated by a multi-channel se-
lection mechanism based on the following biaffine attention:

αi,j = softmax
(
h>i U

γi,j
s hj + (hi ⊕ hj)

>
Mγi,j

s + bγi,js

)
(10)

where αi,j ∈ RC represents the attention distribution
over the C information channels, U1

s,U
2
s ∈ Rd×C×d,

M1
s,M

2
s ∈ R(2d)×C and b1

s,b
2
s ∈ RC are parameters.

Clearly, the channel selection depends not only on the edge
type, but also the semantics of two vertices. In this way,
each vertex will aggregate the information contents from its
neighboring vertices, which are extracted by automatically
selecting the information channels:

hconv
i = f

IC0(hi) +
∑

(wi,wj)∈E∗
j 6=i

C∑
c=1

αi,j,c · ICc(hj)


(11)
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The graph generation module tries to adaptively capture
task-specific dependency relations among tokens and thus
forms their neighborhoods, and the multi-channel mecha-
nism empowers our model the ability to adaptively choose
the appropriate information channels to extract the informa-
tion content to get aggregated. Last but not the least, we also
employ a gating mechanism to modulate the amount of in-
formation content to be passed and aggregated, for two fol-
lowing reasons. Firstly, different neighbors should have dif-
ferent influences on a given vertex, and it is unfair to assign
them the same weight. Secondly, such a gating mechanism
is also helpful to correct possible mistakes made in the graph
generation phase.

gi,j = σ
(
(hi ⊕ hj)

>
vg + bg

)
(12)

where σ is the sigmoid function, vg is a vector and bg is a
scalar.

Combined with the information gate and multi-channel
mechanism, information aggregation equation (11) can be
rewritten as follows:

hconv
i = f

IC0(hi) +
∑

(wi,wj)∈E∗
j 6=i

gi,j

C∑
c=1

αi,j,c · ICc(hj)


(13)

Please note that the multi-channel selection mechanism is
applied only to the along and rev edges.

Event Classification
We treat event detection as a classification task using the
traditional BIO scheme. The aggregated representation hconv

i
of each tokenwi in S is fed into a fully-connected layer with
the softmax activation function to calculate its probability
distribution yi on all the label types:

yi = softmax (Woh
conv
i + bo) (14)

where yi ∈ R2Ne+1, and Ne denotes the number of event
types.

Training
Model optimization phase. On ACE2005 dataset, we
train the proposed event detection model to minimize the
cross-entropy loss function:

L = −
∑
S∈D

nS∑
i=1

log yi,ti (15)

where D is the train dataset, nS is the length of sentence S
and ti denotes the gold label for the ith word in S.

Burn-in phase. We find that a good initial PHM matrix
can be helpful to obtain better performance. For this reason,
before the model optimization phase above, we use a “burn-
in” phase for the Deep Biaffine Attention module, where it is
trained as a part of the DBA dependency parser developed in
(Dozat and Manning 2017), on the Universal Dependencies
English Web Treebank v2.6 2.

2https://github.com/UniversalDependencies/UD English-EWT

Experimental Results
Experiment Settings
Dataset, resources and evaluation metrics. We perform
experiments on ACE2005 dataset, which is composed of 599
documents and includes 33 predefined event types. For com-
parison, we follow the data split of previous works (Li, Ji,
and Huang 2013; Liu, Luo, and Huang 2018), where 529
documents (14956 sentences) are used as the train set, 30
documents (851 sentences) as the development set, and 40
documents (668 sentences) as the test set.

The pretrained word embedding library of dimension 100
is from (Chen et al. 2018)3, which was trained by using Skip-
Gram algorithm on the NYT corpus. To “burn-in” the Deep
Biaffine Attention module, we use the Universal Dependen-
cies English Web Treebank v2.6 to train the dependency
parser.

Finally, we use micro-averaged Precision (P), Recall (R)
and F1 score (F1) as the evaluation metrics, the same as pre-
vious works. All the reported experimental results are aver-
aged on 10 runs.

Hyperparameter setting. For the Graph Generation
Module, we basically follow the config of original paper
(Dozat and Manning 2017). For other parameters of the
model, we tune them according to the development set. And
the final setting is as follows:

As for the model training, we use Adam algo-
rithm (Kingma and Ba 2015) as the optimizer and set the
learning rate to 10−3. For the DBA network, the learning
rate is set to 2× 10−4 in the model optimization phase. The
duration of the “burn-in” phase is set to 4 epochs. The batch
size is set to 30. Because of the overfitting problem, we also
use the early stop strategy.

The dimension of word embeddings is 100, and the di-
mension of POS-tag embeddings is 50. The numbers of hid-
den states of BiLSTM layer and GMC-GCN are set to 300.
The temperature parameter of the ST-Gumbel-Softmax trick
is set to 1.0. The number of information channels is set to 3,
which is tuned on the development set.

Overall Performance
We compare our method with the following state-of-the-arts:
• GCN-ED. (Nguyen and Grishman 2018) used GCN first

to learn context representation for event detection and
propose argument-aware pooling.

• JMEE. (Liu, Luo, and Huang 2018) applied highway
connection and self-attention pooling to improve context
information aggregation.

• MOGANED. (Yan et al. 2019) adopted multi-order
graphs to integrate information rather than just 1-order
graph.

• EE-GCN. (Cui et al. 2020) took dependency label infor-
mation into consideration during graph convolution.

• DMBERT. (Wang et al. 2019) used adversarial training
to expand more data from unstructured text.

3https://github.com/yubochen/NBTNGMA4ED/blob/master/
100.utf8
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Model P R F1
GCN-ED (Nguyen and Grishman 2018) 77.9 68.8 73.1
JMEE (Liu, Luo, and Huang 2018) 76.3 71.3 73.7
MOGANED (Yan et al. 2019) 79.5 72.3 75.7
EE-GCN (Cui et al. 2020) 76.7 78.6 77.6

DMBERT (Wang et al. 2019) 77.9 72.5 75.1
SS-VQ-VAE (Huang and Ji 2020) 75.7 77.8 76.7
GatedGCN (Lai, Nguyen, and Nguyen 2020) 78.8 76.3 77.6
EKD (Tong et al. 2020) 79.1 78.0 78.6

Our AGGED Method 77.8 82.2 79.9

Table 1: Performance comparison with existing event detec-
tion methods.

Model P R F1
Full AGGED Model 77.8 82.2 79.9

–MC 77.9 81.0 79.4
–IG 77.5 80.0 78.7
–MC & IG 77.8 80.3 79.0
–AG 76.8 79.9 78.3

Table 2: Ablation study on ACE test set.

• SS-VQ-VAE. (Huang and Ji 2020) employed VAE to
learn the latent event type representation.

• GatedGCN. (Lai, Nguyen, and Nguyen 2020) combined
the gate, diversity and structure consistency to integrate
syntactic information.

• EKD (Tong et al. 2020) introduced open-domain trigger
knowledge to improve event detection.

Table 1 lists the results. We find that our method achieves
substantial gain on the recall, and maintains a satisfactory
precision value competitive to the state-of-the-arts. It can
be seen that our method achieves a new state-of-the-art re-
sult on both Recall and F1 score, with 3.6% and 1.3% im-
provement respectively. The MOGANED method achieves
the best precision result that is 1.9% higher than the pre-
cision of ours, but its recall is nearly 10% lower than our
method. Such a high recall may be credited to the effective
information aggregation mechanism of our method. On the
one hand, the adaptive graph generation module can gener-
ate task-specific graph structure which eases the information
pass between the trigger candidate and its relevant words.
On the other hand, gated-multi-channel mechanism modu-
lates the information content and its amount to be passed.

Ablation Study
To check the impacts of the adaptive graph generation mod-
ule and the gated-multi-channel mechanism, we make the
following ablation study by removing each component from
the full method. Table 2 presents the results of 4 situations:
• –MC: multi channels are removed before information

propagation, which means information just flows along
the specific direction. The rigid restriction results in a
0.5% drop of F1 score, demonstrating the rationality of
the multi channels.

P R F1
without burn-in 75.7 80.3 77.9

with burn-in 77.8 82.2 79.9

Table 3: Performance of our method with or without the
burn-in phase for the adaptive graph generation module

• –IG: We remove the information gate. In this scenario,
for each trigger candidate, all its adjacent nodes can prop-
agate their information to it without control. The possible
noise in the previous stages may also interfere with the
information extraction and aggregation. As a result, F1
score drops by 1.2%.

• –IG & MC: We remove both the multi-channel selection
and the information gate. An interesting observation is
that the F1 score is 0.3% higher than removing only the
information gate. We conjecture that the multi-channel
selection is highly dependent on the information gate, for
the information gating can effectively control the addi-
tional complexity introduced by the multi-channel mech-
anism. Without information gates, the multi-channel can
not work well alone,

• –AG: We remove the graph generation module, and sim-
ply use the dependency parse tree as the static graph
structure. It is observed that the F1 score drops by 1.6%,
which manifests that the task-specific dependency graph
plays a most important role in the success of our method.

Finally, in all these situations, the performance gets lower
than the full model, which suggests that both the adap-
tive graph generation module and the gated-multi-channel
mechanism play indispensable roles in our event detection
method.

Effect of “Burn-in” Phase

As a fundamental module, adaptive graph generator works
on the basis of the probabilistic head-selection matrix that
is the output of a Deep Biaffine Attention network. To ini-
tialize the DBA network, there are two alternatives: one is to
randomly initialize its parameters, and the other is to burn-in
the DBA network as part of a dependency parser induction
task. We test the performance of our method in these two
situations, and present the results in Table 3. Without the
burn-in phase, it is observed that F1 score drops about 2.0%.
The possible reason is that the burn-in phase sets the adap-
tive graph generation module to a good initial point, which
makes the subsequent task-specific adjustment much easier.

We also examine the induced graph structures from the
adaptive graph generation module. Without burn-in, the
words in a sentence tend to link to the end of the sen-
tence, because the randomly initialized probabilistic head-
selection matrix makes each word more likely interact with
the most informative node(e.g. the end of the sentence). It
explains the performance drop when randomly initializing
the DBA module without burn-in.
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Sentence Prediction Ground-Truth

Dependency Parser
Mirjana Markovic, the power behind the scenes during Milosevic’s
13-year reign, is accused of illegally providing their grandson’s nanny
with a state-owned luxury apartment in Belgrade in 2000.

7 None

Transfer-Ownership

Adaptive Generator
Mirjana Markovic, the power behind the scenes during Milosevic’s 13-
year reign, is accused of illegally providing their grandson’s nanny
with a state-owned luxury apartment in Belgrade in 2000.

3 Correct

Table 4: A case study of the graph structures from the dependency parser and the adaptive graph generator, where the trigger
word “providing” is marked in bold font, and its adjacent words in the graph structures are italicized and underlined.
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Figure 4: Event dection performance with respect to the
number of information channels

Effect of the Number of Information Channels
In this section, we study how the number of information
channels affect the event detection performance. The F1
scores on the validation and the test data are shown in Fig-
ure 4. We can see that our method achieves the best perfor-
mance on both the validation and the test datasets when the
number of information channels is set to 3. As the number
of channels increases, the performance first increases and
then begins to drop. It can be explained as follows: when
the number of channels is less than 3, the channels are fewer
than necessary for capturing relevant information; but after
the number of channels exceeds 3, there is a risk of over-
fitting so that the generalization performance of the model
gets hurt.

Case Study
To give an intuitive understanding of the adaptive depen-
dency graph generated by our method, a simple case study
is shown in Table 4. In the example sentence, there is a
mention of the event type Transfer-Ownership, which is
indicated by the trigger word “providing”(marked in red
color). This event is also accompanied with five relevant ar-
guments: “Mirjana Markovic”, “nanny”, “apartment”, “Bel-
grade” and “2000”, which play the roles of “Seller”, “Bene-
ficiary”, “Artifact”, “Place” and “Time-within” respectively.

The parse tree generated by the Stanford CoreNLP depen-
dency parser is shown in the row of “Dependency Parser”,
where the words with direct syntactic relationship with
the trigger “providing” are marked in blue color. We find
that only two of the five relevant arguments, “nanny” and
“2000”, have a direct syntactic relationship with the trigger,

and thus are one-hop away. With this dependency parse tree
as the graph structure, the word “providing” is wrongly pre-
dicted as “None”, possibly because the single graph convo-
lutional layer fails to capture sufficient relevant information
for make the correct prediction.

With our adaptive graph generation module, as shown in
the row of “Adaptive Generator”, it is observed that four of
the five arguments (except “Mirjana Markovic”) have direct
links to the trigger word “providing”. It means that relevant
information from the four arguments can be aggregated into
the final representation of the word “providing” by a single
graph convolutional layer, which leads to the correct pre-
diction “Transfer-Ownership” made by our method. In ad-
dition, it is worth noting that the word “providing” does not
appear as a trigger in the train set, but our method does still
detect it correctly in the test set.

Conclusions
To summarize, this paper makes an attempt to simultane-
ously learn the graph structure and the downstream graph
convolutional network in an end-to-end manner for the event
detection task. The proposed AGGED method features two
novel components: (1) an adaptive graph generation module
that enables the gradients of errors from the downstream task
to backpropagate through, and (2) a gated-multi-channel
GCN module that couples the multi-channel selection and
the information gating mechanisms together for informa-
tion extraction and aggregation on the graph. It achieves the
SOTA performance on ACE2005 dataset. Future works may
include:
• More advanced network structure for generating graphs

of controlled sparsity, such as employing reinforcement
learning to obtained task-specific paths; and

• Application of the proposed adaptively-generated net-
works to other NLP tasks, such as entity and relation
recognition.
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