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Abstract

We introduce VAST, the Valence-Assessing Semantics Test,
a novel intrinsic evaluation task for contextualized word em-
beddings (CWEs). Despite the widespread use of contextu-
alizing language models (LMs), researchers have no intrin-
sic evaluation task for understanding the semantic quality of
CWEs and their unique properties as related to contextualiza-
tion, the change in the vector representation of a word based
on surrounding words; tokenization, the breaking of uncom-
mon words into subcomponents; and LM-specific geometry
learned during training. VAST uses valence, the association
of a word with pleasantness, to measure the correspondence
of word-level LM semantics with widely used human judg-
ments, and examines the effects of contextualization, tok-
enization, and LM-specific geometry. Because prior research
has found that CWEs from OpenAI’s 2019 English-language
causal LM GPT-2 perform poorly on other intrinsic evalua-
tions, we select GPT-2 as our primary subject, and include
results showing that VAST is useful for 7 other LMs, and can
be used in 7 languages. GPT-2 results show that the semantics
of a word incorporate the semantics of context in layers closer
to model output, such that VAST scores diverge between our
contextual settings, ranging from Pearson’s ρ of .55 to .77
in layer 11. We also show that multiply tokenized words are
not semantically encoded until layer 8, where they achieve
Pearson’s ρ of .46, indicating the presence of an encoding
process for multiply tokenized words which differs from that
of singly tokenized words, for which ρ is highest in layer 0.
We find that a few neurons with values having greater mag-
nitude than the rest mask word-level semantics in GPT-2’s
top layer, but that word-level semantics can be recovered by
nullifying non-semantic principal components: Pearson’s ρ in
the top layer improves from .32 to .76. Downstream POS tag-
ging and sentence classification experiments indicate that the
GPT-2 uses these principal components for non-semantic pur-
poses, such as to represent sentence-level syntax relevant to
next-word prediction. After isolating semantics, we show the
utility of VAST for understanding LM semantics via improve-
ments over related work on four word similarity tasks, with a
score of .50 on SimLex-999, better than the previous best of
.45 for GPT-2. Finally, we show that 8 of 10 WEAT bias tests,
which compare differences in word embedding associations
between groups of words, exhibit more stereotype-congruent
biases after isolating semantics, indicating that non-semantic
structures in LMs also mask social biases.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Introduction
Contextualizing language models (LMs) are among the most
widely used of the ”foundation models” described by Bom-
masani et al. (2021), a class of powerful but poorly un-
derstood AI systems trained on immense amounts of data
and used or adapted in many domains. LMs are widely de-
ployed: Google uses BERT for search (Nayak 2019), Face-
book uses Linformer for hate speech detection (Schroepfer
2020), and the LMs of the Transformers library of Wolf
et al. (2020) are downloaded by millions. However, despite
the popularity and use of LMs in consequential applications
like medical coding (Salian 2019) and mental health chat-
bots (Tewari et al. 2021), there is no intrinsic evaluation task
- a method to assess quality based on the correspondence of
vector geometric properties to human judgments of language
- made for contextualized word embeddings (CWEs). Other
research assesses CWE semantics using tasks for static word
embeddings (SWEs), like SimLex-999, but such tasks are
not designed to capture the dynamic behavior of CWEs.

We introduce VAST, the Valence-Assessing Semantics
Test, an intrinsic evaluation task for CWEs using valence
(association with pleasantness) to measure word-level se-
mantics. VAST is unique among intrinsic evaluation tasks,
as it is designed for LMs, and measures LM behavior related
to how contextualization (change in the vector representa-
tion of a word based on surrounding words), tokenization
(breaking of uncommon words into subcomponents), and
dominant directions (high-magnitude neurons) affect the se-
mantics of CWEs. VAST takes Pearson’s ρ of CWE valence
associations and human ratings of valence to quantify the
correspondence of CWE semantics with widely held human
judgments. We apply VAST to the 12-layer version of the
English-language causal LM GPT-2 (Radford et al. 2019).
The contributions of VAST are outlined below:

VAST measures the effects of contextualization on
word-level semantics. Adaptation to context allows CWEs
to differently represent the senses of polysemous words, and
CWEs from LMs like GPT encode information about a full
sentence (Radford et al. 2018). However, we lack methods
for distinguishing when a CWE reflects information related
to a word, its context, or both. VAST measures valence in
aligned (context has the same valence as the word), mis-
aligned, bleached (no semantic information but the word),
and random settings to isolate LM layers where the seman-
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tics of the word dominate, and layers where context alters
CWEs. GPT-2 VAST scores converge within .01 (ρ) for the
random, bleached, and misaligned settings in layer 8, but di-
verge in the upper layers, with the misaligned setting falling
to .55 in layer 11 while the bleached setting stays at .76.

VAST identifies differences in the LM encoding pro-
cess based on tokenization. Most LMs break infrequent
words into subwords to solve the out-of-vocabulary prob-
lem. With a large valence lexicon, one can study numerous
infrequent words subtokenized by an LM. VAST uses the
13,915-word Warriner lexicon to create large, balanced sets
of singly and multiply tokenized words, and isolates where
the semantics of multiply tokenized words are comparable
to the semantics of singly tokenized words. VAST reveals
that multiply tokenized words achieve their highest VAST
score in GPT-2 layer 8, at .46, while singly tokenized words
begin with a VAST score of .70 in layer 0.

VAST adjusts to dominant directions in CWEs to
isolate word-level semantics. Prior research by Mu and
Viswanath (2018) found that dominant frequency-related
directions distort semantics in SWEs, and that SWEs im-
prove on intrinsic evaluations after nullifying these direc-
tions. Other research suggests that the top layers of LMs spe-
cialize to their pretraining task (Voita, Sennrich, and Titov
2019), and CWEs from the top layers of causal LMs perform
poorly on semantic intrinsic evaluation tasks (Ethayarajh
2019). VAST uses valence to measure the effect of post-
processing CWEs using the method of Mu and Viswanath
(2018) to isolate word-level semantics. We find that VAST
scores fall to .32 in the top layer of GPT-2 in the bleached
setting, but that after post-processing, the score improves to
.76, with similar improvements for all contextual settings.
Moreover, we extract the top directions and use them in
experiments which indicate that they encode sentence-level
syntactic information useful for next-word prediction.

Drawing on insights from VAST, we outperform GPT-
2’s scores in prior work on 4 intrinsic evaluations for
SWEs. GPT-2 layer 8 CWEs achieve VAST scores of ρ = .87
(bleached) and ρ = .90 (aligned) with two directions nulled.
We use the layer 8 bleached setting CWEs to improve to
.66 on WordSim-353 over GPT-2’s prior best of .64, and
to .50 on SimLex-999 over its best of .45, indicating that
VAST also isolates semantic information relevant to word
similarity tasks. After isolating semantics, VAST measures
social biases, an important step for assessing the potential
for harmful associations to manifest in downstream tasks.
Isolating semantics allows us to accurately measure CWE
associations, and we find that 8 of 10 bias tests on GPT-2
exhibit higher bias effect sizes after doing so.

LMs and Code While an interpretability subfield known
as ”BERTology” has formed around autoencoders like
BERT (Rogers, Kovaleva, and Rumshisky 2021), less re-
search examines CWEs from causal LMs. We apply VAST
to GPT-2 because it is the last causal LM made open source
by OpenAI, and has scored poorly on intrinsic evaluations
despite strong performance on downstream tasks. We also
include an appendix of results for 7 LMs and in 7 lan-
guages for which we have valence lexica, showing that

VAST generalizes. Our code is available at https://github.
com/wolferobert3/vast aaai 2022. We use LMs from the
Transformers library (Wolf et al. 2020).

Related Work
We survey related work on word embeddings, evaluation
methods for those embeddings, and interpretability research
concerning the LMs which produce CWEs.

Word Embeddings SWEs are dense vector representa-
tions of words trained on co-occurrence statistics of a text
corpus, and have one vector per word (Collobert et al. 2011).
SWEs geometrically encode word information related to
syntax and semantics, and perform well on word relatedness
tasks by measuring angular similarity or performing arith-
metic operations on word vectors (Mikolov, Yih, and Zweig
2013). CWEs incorporate information from context (Peters
et al. 2018), and are derived from LMs trained on tasks such
as causal language modeling (next word prediction), as with
the OpenAI GPT LMs (Radford et al. 2018), or masked lan-
guage modeling (prediction of a hidden “masked” word), as
with Google’s BERT (Devlin et al. 2019).

Intrinsic and Extrinsic Evaluation Tasks Intrinsic eval-
uation tasks measure representational quality by how well
a word embedding’s mathematical properties reflect human
judgments of language. Most word similarity tasks measure
semantics by taking Spearman’s ρ between human ratings
and an embedding’s cosine similarity for a set of evaluation
words (Tsvetkov, Faruqui, and Dyer 2016). Extrinsic evalu-
ation tasks measure performance on downstream tasks, such
as sentiment classification (Zhai, Tan, and Choi 2016).

WEAT We measure valence using the Word Embed-
ding Association Test (WEAT) of Caliskan, Bryson, and
Narayanan (2017), which evaluates the differential associ-
ation of two groups of target words related to concepts (e.g.,
instruments and weapons) with two groups of polar attribute
words (e.g., pleasant and unpleasant words). Using groups
of attribute words, the WEAT quantifies deterministic biases
and differential associations between concepts. The single-
category WEAT (SC-WEAT) captures the differential asso-
ciation of one word with two groups of attribute words:

meana∈Acos(w⃗, a⃗)− meanb∈Bcos(w⃗, b⃗)
std devx∈A∪Bcos(w⃗, x⃗)

(1)

In Equation 1, A and B refer to polar attribute word groups,
while w⃗ refers to a target word vector, and cos refers to co-
sine similarity. The WEAT and SC-WEAT return an effect
size (Cohen’s d) indicating strength of association, and a p-
value measuring statistical significance. Cohen (1992) de-
fines effect sizes of .2 as small, .5 as medium, and .8 as
large. The WEAT uncovered human-like biases, including
racial and gender biases, in state-of-the-art SWEs (Caliskan,
Bryson, and Narayanan 2017).

The SC-WEAT is similar to lexicon induction methods
such as that developed by Hatzivassiloglou and McKeown
(1997), in that it can be used to obtain the semantic proper-
ties of words without the need for human-labeled data. Lex-
icon induction methods have been used to infer properties
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such as the subjectivity, polarity, and orientation of words
(Turney and Littman 2003; Riloff and Wiebe 2003).

Valence and ValNorm Valence is the association of
a word with pleasantness or unpleasantness, and is the
strongest semantic signal hypothesized by Osgood (1964) of
valence (referred to by Osgood as evaluation, or as conno-
tation in NLP contexts), dominance (potency), and arousal
(activity). Toney-Wails and Caliskan (2021) introduce Val-
Norm, an intrinsic evaluation task to measure the quality
of SWEs based on how well they reflect widely accepted
valence norms. ValNorm uses the SC-WEAT to obtain the
association of each word in a lexicon with the 25 pleasant
words and 25 unpleasant words used in the WEAT. It then
takes Pearson’s ρ of the SC-WEATs and the human-labeled
valence ratings. ValNorm obtains ρ up to .88 on SWEs, and
shows that valence norms (but not social biases) are consis-
tent across SWE algorithms, languages, and time periods.

Isotropy Isotropy measures how uniformly dispersed vec-
tors are in embedding space. Anisotropic embeddings have
greater angular similarity than isotropic embeddings (Arora
et al. 2016). Mu and Viswanath (2018) find that a few dom-
inating directions (vector dimensions) distort semantics in
off-the-shelf SWEs like GloVe and Word2Vec, and improve
SWE performance on semantic tasks by subtracting the
mean vector and nullifying (eliminating the variance caused
by) n/100 principal components (PCs), where n is dimen-
sionality (Mu and Viswanath 2018).

Transformer Architecture Most LMs adapt the trans-
former architecture of Vaswani et al. (2017), which uses
stacked encoder blocks and decoder blocks for encoding in-
put and producing output. Each block applies self-attention,
which informs a word how much information to draw from
each word in its context. The GPT LMs are decoder-only
causal LMs: they use decoder blocks to produce the next to-
ken as output, omitting encoder blocks (Radford et al. 2019).
Causal LMs are ”unidirectional,” and apply attention only
to context prior to the input word. LMs are “pretrained”
on one or several tasks, such as causal or masked language
modeling, which allow LMs to derive general knowledge
about language, and then apply that knowledge to other NLP
tasks like toxic comment classification in a process known
as ”fine-tuning” (Howard and Ruder 2018).

Subword Tokenization Most LMs use subword tokeniza-
tion to solve the out-of-vocabulary problem, which occurs
when an LM encounters a word without a correspond-
ing representation. Subword tokenization breaks uncommon
words into subcomponents, and ties each subword to a vec-
tor in the LM’s embedding lookup matrix, which is trained
with the LM. LMs form a vocabulary by iteratively adding
the subword which occurs most frequently or which most
improves the likelihood of the training corpus. This results in
two types of word representations: singly tokenized words,
which are in the model’s vocabulary and can be represented
with a single vector; and multiply tokenized words, which
are broken into subcomponents, each of which has an asso-
ciated vector. GPT-2 uses the Byte-Pair Encoding (BPE) al-
gorithm of Sennrich, Haddow, and Birch (2016), which adds

the most frequent bigram of symbols to the vocabulary until
reaching a defined size. Most intrinsic evaluations use com-
mon words to assess semantics, and are ill-adapted to cap-
ture the semantic properties of multiply tokenized words.

Representational Evolution Voita, Sennrich, and Titov
(2019) find that the layerwise evolution of CWEs in an LM
depends on pretraining objective, and show that causal LMs
lose information about the current token while predicting the
next token. Tenney, Das, and Pavlick (2019) find that BERT
approximates an NLP pipeline, with early layers performing
well on syntax, middle layers on semantics, and upper layers
on sentence-level tasks like coreference resolution.

Bias in LMs LM designers and users must consider worst-
case scenarios which might occur as a result using LMs. One
of these scenarios, highlighted by Bender et al. (2021) in
their work on the limitations of large LMs, involves behav-
ior reflecting human-like social biases that disproportion-
ately affect marginalized groups. Several techniques have
been designed for measuring bias in LMs. For example, Guo
and Caliskan (2021) treat contextualization in CWEs as a
random effect, and derive a combined bias effect size from
a meta-analysis of 10,000 WEAT tests. May et al. (2019)
insert WEAT target and attribute words into semantically
“bleached” templates, such as “This is TERM,” to convey
little meaning beyond that of the terms inserted to measure
bias in sentence vectors from LMs. Sheng et al. (2019) mea-
sure “regard” for social groups in LM text output. Nadeem,
Bethke, and Reddy (2020) find that LMs with more train-
able parameters exhibit better language modeling perfor-
mance, but prefer biased stereotypes more than smaller LMs.
Wolfe and Caliskan (2021) find that under-representation of
marginalized groups in the training corpora of four LMs
results in CWEs which are more self-similar, but undergo
more change in in the model, indicating that LMs general-
ize poorly to less frequently observed groups, and overfit to
often stereotypical pretraining contexts.

Data
VAST requires two data sources: sentences for input to LMs,
and lexica with human-rated valence scores.

Reddit Corpus We randomly select one context per word
from the Reddit corpus of Baumgartner et al. (2020), which
better reflects everyday human speech than the expository
language found in sources like Wikipedia.

Valence Lexica VAST measures valence against the
human-rated valence scores in Bellezza’s lexicon, Affective
Norms for English Words (ANEW), and Warriner’s lexicon.
The Bellezza Lexicon of Bellezza, Greenwald, and Banaji
(1986) collects 399 words rated by college students on pleas-
antness from 1 (most unpleasant) to 5 (most pleasant). VAST
scores are typically highest with the Bellezza lexicon, which
is designed by psychologists to measure valence norms, is
the smallest of the lexica, and includes mostly very pleas-
ant or unpleasant words. The ANEW lexicon of Bradley and
Lang (1999) includes 1,034 words rated on valence, arousal,
and dominance by psychology students. ANEW uses a scale
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of 1 (most unhappy) to 9 (most happy) for valence. ANEW is
commonly used for sentiment analysis. The Warriner Lex-
icon of Warriner, Kuperman, and Brysbaert (2013) extends
ANEW to 13,915 words rated on valence, dominance, and
arousal by Amazon Mechanical Turk participants.

Word Similarity Tasks We validate VAST by improv-
ing on other intrinsic evaluation tasks against scores for
CWEs in related work. These tasks use Spearman’s ρ be-
tween the cosine similarity of each word pair and human-
evaluated relatedness. WordSim-353 (WS-353) consists of
353 word pairs, and was introduced by Finkelstein et al.
(2001) to measure information retrieval in search engines,
but is widespread as a word relatedness task for SWEs.
SimLex-999 (SL-999) was introduced by Hill, Reichart, and
Korhonen (2015) and consists of 666 noun-noun word pairs,
222 verb-verb word pairs, and 111 adjective-adjective word
pairs. SimLex evaluates not relatedness but similarity, and
has been adapted for multilingual and cross-lingual evalua-
tions by Vulić et al. (2020). Stanford Rare Words (RW)
labels 2,034 rare word pairs by relatedness, and was de-
signed by Luong, Socher, and Manning (2013) to measure
how well a word embedding captures the semantics of un-
common words. Bruni, Tran, and Baroni (2014) introduce
the MEN Test Collection task, which consists of 3,000 word
pairs labeled by relatedness based on responses by Amazon
Mechanical Turk participants.

Approach
We provide details related to use of polar words, creation
of contextual settings, representation of multiply tokenized
words, and PC nullification. The VAST algorithm follows:
1. Select a contextual setting (random, bleached, aligned,
or misaligned), subword representation (first, last, mean, or
max), LM, language, and valence lexicon.
2. Obtain a CWE from every layer of the LM for every word
in a valence lexicon in the selected contextual setting, using
the selected subword representation. If using the misaligned
setting, obtain CWEs for polar words in the aligned setting.
See the appendix for details about the misaligned setting.
3. Compute the SC-WEAT effect size for the CWE from
each layer of the LM for every word in the lexicon, using
CWEs from the same layer for the polar attribute words in
the selected contextual setting. If using the misaligned set-
ting, use the polar word CWEs from the aligned setting.
4. Take Pearson’s ρ for each layer of SC-WEAT effect sizes
vs. valence scores from the lexicon to measure how well LM
semantics reflect widely shared human valence norms.
5. Repeat the steps above in different contextual settings,
using different subword representations, to derive insights
about the semantic encoding and contextualization process.

Polar Words VAST measures the strength of the valence
signal using the 25 pleasant and unpleasant words from the
WEAT, provided in full in the appendix. VAST tokenization
experiments use only singly tokenized polar words, as using
a set mixed with multiply tokenized words could result in the
encoding status of polar words influencing the VAST score
of the lexicon words. Most polar words are singly tokenized

by LMs; VAST removes all multiply tokenized words from
both polar groups, then randomly removes singly tokenized
words from the larger group until they are equal in size. For
GPT-2, this results in 23 words per polar group.

Contextual Settings To measure whether a CWE reflects
the semantics of a word or of its context, we devise four
contextual settings: random, semantically bleached, seman-
tically aligned, and semantically misaligned. Where VAST
scores diverge between settings, we hypothesize that CWEs
are more informed by context. Where VAST scores con-
verge, we observe that CWEs reflect word-level semantics.

In the Random setting, each word receives a context cho-
sen at random from the Reddit corpus. In the Semanti-
cally Bleached setting, each word receives an identical con-
text devoid to the extent possible of semantic information
other than the word itself. VAST uses the context “This is
WORD”, and replaces ”WORD” with the target word. In the
Semantically Aligned setting, each word receives a context
reflecting its human-rated valence score.

Templates are matched to words based on human-rated
valence scores:
1.0-2.49: It is very unpleasant to think of WORD
2.50-3.99: It is unpleasant to think of WORD
4.00-5.99: It is neither pleasant nor unpleasant to think of WORD
6.00-7.49: It is pleasant to think of WORD
7.50-9.00: It is very pleasant to think of WORD

In the Semantically Misaligned setting, each word re-
ceives a context clashing with its human-rated valence score.
For example, words with the 1.0-2.49 template in the aligned
setting are now assigned the 7.5-9.0 template, and vice
versa. Words with 4.0-5.99 valence keep their template.

Multiply Tokenized Words Multiply tokenized words are
represented by choosing a subtoken vector, or pooling over
vectors. We examine four representations: first subtoken, last
subtoken, elementwise mean, and elementwise max.

PC Nullification PCs are the “main axes of variance in a
dataset,” and are sensitive to scale, as obtaining PCs when a
few variables have larger magnitude than the rest ”recov-
ers the values of these high-magnitude variables” (Lever,
Krzywinski, and Altman 2017). Mu and Viswanath (2018)
subtract the mean vector and nullify (eliminate the vari-
ance caused by) top PCs to restore isotropy in SWEs,
which they find improves semantic quality by removing non-
semantic information. Ethayarajh (2019) finds that CWEs
are anisotropic, and so anisotropic in GPT-2’s top layer that
any two CWEs have cosine similarity greater than .99. We
find that anisotropy in GPT-2’s top layer is caused by a
few high-magnitude neurons, and apply the method of Mu
and Viswanath (2018) to nullify these neurons and restore
isotropy. We apply this method to the top and highest scor-
ing layers of GPT-2. While we are primarily interested in
uncovering semantics, we also extract the top PCs to study
their function in the LM, as described in the next section.

Experiments
VAST experiments measure the effects of contextualization,
differences in semantics due to tokenization, and improve-
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ments in semantic quality by nullifying top PCs.

Contextualization VAST measures valence against the
Bellezza, ANEW, and Warriner lexica using CWEs from
every layer of an LM in random, semantically bleached,
semantically aligned, and semantically misaligned settings.
Where the VAST score is high for all settings, the CWEs
reflect the semantics of the current word, rather than its con-
text. VAST scores improving as the layer index increases in-
dicate the semantics of the word being encoded. Divergence
of scores between settings points to contextualization.

Tokenization We create large balanced sets of singly and
multiply tokenized words. 8,421 Warriner lexicon words are
singly tokenized by GPT-2, and 5,494 words are multiply
tokenized, allowing for two 5,494-word sets created by ran-
domly selecting a subset of the singly tokenized words. This
allows us to examine differences in the semantic evolution
of singly and multiply subtokenized words by measuring the
layerwise VAST score for each set, and uncover differences
in the encoding process for uncommon words. We report re-
sults for the random setting.

Semantic Isolation We take an embedding from each
word in the Bellezza, ANEW, and Warriner lexica in the
semantically bleached setting, and obtain the VAST score
before and after applying the PC nullification method of Mu
and Viswanath (2018) to remove distorting non-semantic in-
formation. This experiment is most relevant to the upper lay-
ers of causal LMs, which Voita, Sennrich, and Titov (2019)
suggest lose the semantics of the input word while forming
predictions about the next word. We apply PC nullification
techniques to the top layer and to the highest scoring VAST
layer, as even semantically rich SWEs were improved by the
method of Mu and Viswanath (2018).

In GPT-2’s top layer, 8 neurons make up more than 80%
of the length of the 768-dimensional vector. If these neu-
rons solely encode context, the VAST score in bleached
and aligned settings should remain high. Our results show
that VAST scores fall regardless of setting. To understand
what these neurons encode, we extract them using PCA
and run two tests with the Corpus of Linguistic Accept-
ability (CoLA) (Warstadt, Singh, and Bowman 2019). First,
we train a logistic regression to predict the acceptability of
CoLA test sentences. We take a layer 12 CWE from GPT-2
for the last word in each sentence, and compare performance
of the unaltered CWEs, their top PCs, and the CWEs after
subtracting the mean and nullifying top PCs. Next we pre-
dict the part of speech (POS) of the last word in the sentence
using layer 12 CWEs for the last word and next to last word
in the sentence, with labels assigned by the NLTK tagger.
Power (2020) found that loss for a three-layer neural net-
work trained on POS prediction with layer 12 vectors fell
using the next word’s POS as a label, rather than the current
word’s, but this may not be related to top PCs. We first use
a binary task, and label classes as Nouns and Not Nouns.
Then, a multiclass regression is trained on the NLTK labels.
Only “acceptable” CoLA sentences are included.

Validations of VAST While comparison to human judg-
ments is itself a form of validation, we also validate VAST

by comparing results on common intrinsic evaluation tasks
for the highest scoring VAST layer and the top layer of GPT-
2, after semantic isolation in a bleached contextual setting.

Bias VAST uses the WEAT to examine whether human-
like biases exist after semantics have been isolated in the
top layer of GPT-2 using VAST. WEAT bias tests measure
bias on the word level, and use the semantically bleached
setting to minimize the influence of context. VAST measures
biases using the WEATs introduced by Caliskan, Bryson,
and Narayanan (2017). See the appendix for word lists.

Results
Results indicate a middle layer after which semantics of con-
text dominate; a different encoding process based on tok-
enization; and top PCs which obscure word-level semantics.
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Figure 1: Context alters CWE semantics in the top layers of
GPT-2. VAST scores diverge between settings after layer 8.

Contextualization VAST finds that layer 8 of GPT-2 best
encodes word-level semantics. ρ in bleached, misaligned,
and random settings are within .01 of each other in layer
8 for all three lexica. If representations depended on con-
text, notable differences would exist between settings. Fig-
ure 1 shows that differences do arise in the upper layers.
The decline by layer 11 is sharpest for the misaligned set-
ting, to .55, followed by the random setting, to .72. We ob-
serve broadly consistent results between runs for the ran-
dom setting, indicating that the natural distribution of con-
texts in which a word occurs are also reflective of its va-
lence. Scores for aligned and bleached settings stay high, at
.77 and .76, and drop in the top layer. Differences among
settings reveal a contextualization process for the current
word. The same pattern of convergence followed by diver-
gence exists in other causal LMs: for example, in XLNet
(Yang et al. 2019), VAST scores among contextual settings
are most similar in layer 4, and are the most dissimilar in
layer 11 (of 12). On the other hand, settings diverge in au-
toencoders like RoBERTa from the first layer. Further results
are included in the appendix.

Tokenization As seen in Figure 2, VAST reveals that
singly tokenized words are semantically encoded in the first
layers of GPT-2, with Pearson’s ρ on the Warriner lexicon
of .70 in the initial layer, but multiply tokenized words are
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not fully encoded until layer 8, with ρ of .46, revealing a
differing encoding process based on tokenization.
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Figure 2: Multiply tokenized words are not encoded until
layer 8, but singly tokenized words are encoded in layer 0.

While CWEs from the bottom layers are the least con-
textualized, and are semantically rich for singly tokenized
words, encoding is not complete until later in the LM for
multiply tokenized words. Thus, layer 8 CWEs are the most
rich for uncommon words, as multiply tokenized words are
less frequent in the LM’s training corpus. The last subtoken
outperforms the mean, indicating that first and middle subto-
kens contain incomplete semantic information in GPT-2. A
similar encoding pattern exists for other causal LMs: in XL-
Net, the VAST score peaks in layer 5 for multiply tokenized
words at .45, and for singly tokenized words in layer 0 at
.72. We include further results in the appendix.

Semantic Isolation VAST shows that word-level seman-
tics are changed by context in upper layers of causal LMs,
and nearly vanish in the top layer. Table 1 shows results of
nullifying top PCs. Word-level semantics are exposed in the
top layer after nullifying PCs, but are influenced by context,
as the Aligned VAST score improves to .85, but the Mis-
aligned score only to .54. Nullifying 2 PCs in layer 8 im-
proves scores to .87 and .90 for the bleached and aligned
settings, showing that non-semantic top PCs exist where the
semantic signal is strongest, and that context alters represen-
tations even where word-level semantics are most defined.
VAST scores improve after nullifying non-semantic PCs in
6 other LM architectures, in every causal LM studied, and in
7 languages in MT5. In XLNet, nullifying 5 PCs improves
top layer VAST scores from .56 to .76, with most of the im-
provement (to .74) coming after nullifying just one PC. Fur-
ther results are included in the appendix.

VAST (Pearson’s ρ) - Semantic Isolation - Bellezza
Status Random Bleached Aligned Misaligned
Before .17 .32 .42 .14
After .58 .76 .85 .54

Table 1: Nullifying 8 top PCs recovers word-level semantics.

On the CoLA sentence classification task, 11 top PCs
from GPT-2 achieve the highest weighted F1 score (.65) of

anything except the unaltered top layer CWEs (.65), indi-
cating that top PCs encode information about sentence-level
syntax. For POS tagging tasks, the top PCs of the prior word
always better predict the POS of the last word than the top
PCs of the last word itself. Moreover, 8 PCs of the prior word
CWE better predict the POS of the next word than the prior
word CWE with those PCs nullified, with an F1 score of .62
for the top PCs and .59 for the nullified CWE. In multiclass
POS tagging, the top PCs of the prior word outperform those
of the last word, and nearly match the F1 score of the CWE
with PCs nullified, which falls to .52 with 12 PCs nullified.
This indicates that top PCs in layer 12 encode sentence-level
information relevant to predicting the next word.
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Figure 3: Nullifying non-semantic top PCs exposes word-
level semantics in the top layer of GPT-2.

Validations of VAST Figure 4 shows results for GPT-2
layers 8 and 12 on WS-353, SimLex-999, RW, and MEN.
CWEs from a semantically bleached context in layer 8 with
the mean subtracted and two PCs nulled score .50 on SL-999
and .66 on WS-353, outperforming the previous best GPT-2
results of Bommasani, Davis, and Cardie (2020), who use
a pooling method to create an SWE matrix, and results by
Ethayarajh (2019), who use the first PC of a word’s CWEs.
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Figure 4: VAST isolates CWEs that outperform related work
on other intrinsic evaluations of GPT-2.

Moreover, Toney-Wails and Caliskan (2021) report Val-
Norm scores as high as ρ = .88 in SWEs. VAST in GPT-2
outperforms this in the aligned setting (ρ = .90), and VAST
in the 2.7-billion parameter version of EleutherAI’s GPT-
Neo (Gao et al. 2020) achieves scores of ρ = .89 (bleached)

11482



and .93 (aligned) in layer 12 (of 32), the best results ob-
served on a valence-based intrinsic evaluation task, whether
using ValNorm with SWEs or VAST with CWEs.

Bias As shown in Figure 5, isolating semantics with VAST
by nullifying non-semantic PCs in GPT-2’s top layer ex-
poses both word-level semantics and human-like biases.
That bias effect sizes increase as VAST scores improve indi-
cates that the same non-semantic top PCs which distort se-
mantic information in GPT-2 also mask differential biases,
which helps to explain why researchers such as Sheng et al.
(2019) have found bias in the text output of GPT-2.
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Figure 5: Nullifying dominating directions in the top layer
of GPT-2 exposes masked social biases.

Discussion
We suggest 6 reasons to use VAST with CWEs. First, va-
lence is a well-studied property of language related to
NLP tasks like sentiment analysis, whereas it is often un-
clear what similarity judgments measure. When VAST
scores are low, there is clearly a problem with the embed-
ding’s semantics. If an LM associates low-valence words
like “murder” and “theft” with the high-valence set (words
like “happy” and “joy”), then its associations do not corre-
spond well to human judgments of English semantics. Ob-
serving low VAST scores in all settings in layer 12 of GPT-2
led to the insight that the LM’s poor performance was not
due to the semantics of context, and prompted experiments
which found high-magnitude neurons encoding sentence-
level information relevant to next-word prediction.

Second, valence can be aligned or misaligned in con-
text to observe the effects of contextualization. Tasks us-
ing similarity offer no clear way to create contexts similar
or unsimilar to their words, and rate the similarity of word
pairs, hindering the creation of such an experiment. VAST
can help researchers to determine whether a word-level lin-
guistic association in an LM has been altered by context.

Third, valence is measured for thousands of words, al-
lowing VAST to show that the CWE encoding process
differs based on tokenization. Moreover, the lower VAST

score of multiply tokenized words (as high as .46 in layer
8, compared to .70 in layer 0 for singly tokenized words)
indicates that additional training could benefit these words.
Tasks like WS-353 and SL-999 contain more than 90%
singly tokenized words for GPT-2, and even though RW has
slightly more than half its words multiply tokenized, they
are grouped into pairs, resulting in a poorly controlled mix
of singly and multiply tokenized word comparisons from
which it is hard to draw conclusions about encoding.

Fourth, VAST reveals masked biases in CWEs. High-
magnitude neurons in GPT-2’s top layer distort word-level
semantics, preventing accurate measurement of word asso-
ciations. Thus, CWE bias measurements may be affected not
only by context, which may be controlled for using a meta-
analysis method like that of Guo and Caliskan (2021) or a
template like that of May et al. (2019), but also by distorting
dimensions useful to the LM but problematic for measuring
word associations with cosine similarity.

Fifth, VAST is more practical and efficient for mea-
suring CWE semantics than pooling methods. VAST re-
quires just four contexts for each word in a lexicon, resulting
in comparatively little compute to obtain useful results.

Finally, VAST can be used in many languages. We ap-
ply VAST to 7 languages, with results in the appendix.

Generalization We also apply VAST to the causal LMs
XLNet (Yang et al. 2019), GPT-Neo (Gao et al. 2020), and
GPT-J, an open-source replication by Wang and Komat-
suzaki (2021) of OpenAI’s GPT-3 (Brown et al. 2020); to
autoencoders BERT (Devlin et al. 2019) and RoBERTa (Liu
et al. 2019); to T5 (Raffel et al. 2020); and to 7 languages
(Chinese, Turkish, Polish, French, Spanish, Portuguese, and
English) in MT5, a state-of-the-art multilingual adaptation
of T5 (Xue et al. 2021). Further analysis is left to future
work, and results on these LMs are included in the appendix.

Limitations One limitation of our work is that sentence
structure may affect CWEs in ways that distort semantic
analysis beyond what VAST detects. Our work suggests the
presence of sentence-level information in top PCs, but a
more comprehensive study may reveal exactly what these
PCs encode. Moreover, while nullifying top PCs reveals
stereotype-congruent biases, the effect size for some biases,
especially for names, varies with the number of PCs nulli-
fied. Further, VAST does not deal with the senses of polyse-
mous words, which would require lexica which label senses
by valence. Finally, VAST’s tokenization experiment does
not control for word frequency, which may affect CWE ge-
ometry. We hope to address these limitations in future work.

Conclusion
We introduce VAST, a novel intrinsic evaluation task allow-
ing researchers to measure and isolate word-level semantics
in CWEs. VAST reveals how context changes CWE seman-
tics; how tokenization leads to a different encoding process
for uncommon words; and how high-magnitude neurons
mask word-level semantics - and social biases - in CWEs.
VAST allows researchers to extract rich representations from
LMs and accurately measure their properties.
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