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Abstract

Regenerating natural language explanations in the scientific
domain has been proposed as a benchmark to evaluate com-
plex multi-hop and explainable inference. In this context,
large language models can achieve state-of-the-art perfor-
mance when employed as cross-encoder architectures and
fine-tuned on human-annotated explanations. However, while
much attention has been devoted to the quality of the ex-
planations, the problem of performing inference efficiently
is largely under studied. Cross-encoders, in fact, are intrin-
sically not scalable, possessing limited applicability to real-
world scenarios that require inference on massive facts banks.
To enable complex multi-hop reasoning at scale, this paper
focuses on bi-encoder architectures, investigating the prob-
lem of scientific explanation regeneration at the intersection
of dense and sparse models. Specifically, we present SCAR
(for Scalable Autoregressive Inference), a hybrid framework
that iteratively combines a Transformer-based bi-encoder
with a sparse model of explanatory power, designed to lever-
age explicit inference patterns in the explanations. Our exper-
iments demonstrate that the hybrid framework significantly
outperforms previous sparse models, achieving performance
comparable with that of state-of-the-art cross-encoders while
being ≈ 50 times faster and scalable to corpora of millions of
facts. Further analyses on semantic drift and multi-hop ques-
tion answering reveal that the proposed hybridisation boosts
the quality of the most challenging explanations, contributing
to improved performance on downstream inference tasks.

Introduction
Explanation regeneration is the task of retrieving and com-
bining two or more facts from an external knowledge source
to reconstruct the evidence supporting a certain natural lan-
guage hypothesis (Xie et al. 2020; Jansen et al. 2018). As
such, this task represents a crucial intermediate step for
the development and evaluation of explainable Natural Lan-
guage Inference (NLI) models (Wiegreffe and Marasović
2021; Thayaparan, Valentino, and Freitas 2020). In partic-
ular, explanation regeneration on science questions has been
proposed as a benchmark for complex multi-hop and ex-
plainable inference (Jansen and Ustalov 2019; Jansen et al.
2016). Scientific explanations, in fact, require the articula-
tion and integration of commonsense and scientific knowl-
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edge for the construction of long explanatory reasoning
chains, making multi-hop inference particularly challenging
for existing models (Clark et al. 2018; Khot et al. 2019).
Moreover, since the structure of scientific explanations can-
not be derived from the decomposition of the questions,
the task requires the encoding of complex abstraction and
grounding mechanisms for the identification of relevant ex-
planatory knowledge (Valentino, Thayaparan, and Freitas
2021; Thayaparan, Valentino, and Freitas 2021).

To tackle these challenges, existing neural approaches
leverage the power of the self-attention mechanism in Trans-
formers (Devlin et al. 2019; Vaswani et al. 2017), training
sequence classification models (i.e., cross-encoders) on an-
notated explanations to compose relevant explanatory chains
(Cartuyvels, Spinks, and Moens 2020; Das et al. 2019;
Chia, Witteveen, and Andrews 2019; Banerjee 2019). While
Transformers achieve state-of-the-art performance, cross-
encoders make multi-hop inference intrinsically inefficient
and not scalable to large corpora. The cross-encoder archi-
tecture, in fact, does not allow for the construction of dense
indexes to cache the encoded explanatory sentences, result-
ing in prohibitively slow inference time for real-world appli-
cations (Humeau et al. 2019).

In this work, we are interested in developing new mecha-
nisms to enable scientific explanation regeneration at scale,
optimising, at the same time, quality of the explanations
and inference time. To this end, we focus our attention on
bi-encoders (or siamese networks) (Reimers and Gurevych
2019), which allow for efficient inference via Maximum
Inner Product Search (MIPS) (Johnson, Douze, and Jégou
2019). Given the complexity of multi-hop reasoning in the
scientific domain, bi-encoders are expected to suffer from a
drastic drop in performance since the self-attention mecha-
nism cannot be leveraged to learn meaningful compositions
of explanatory chains. However, we hypothesise that the or-
chestration of latent and explicit patterns emerging in natural
language explanations can improve the quality of the infer-
ence while preserving the scalability intrinsic in bi-encoders.

To validate this hypothesis, we present SCAR (for
Scalable Autoregressive Inference), a hybrid architecture
that combines a Transformer-based bi-encoder with a sparse
model of explanatory power, designed to capture explicit in-
ference patterns in corpora of scientific explanations. Specif-
ically, SCAR integrates sparse and dense encoders to define

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

11403



Figure 1: We propose a hybrid, scalable explanation regeneration model that performs inference autoregressively. At each
time-step t, we perform inference integrating sparse and dense bi-encoders (1) to compute relevance and explanatory power
of sentences in the Facts Bank (2) and expand the explanation (3). The relevance of a fact at time-step t is conditioned on the
partial explanation constructed at time t− 1, while the explanatory power is estimated leveraging inference patterns emerging
across similar hypotheses in the Explanations Corpus.

a joint model of relevance and explanatory power and per-
form inference in an iterative fashion, conditioning the prob-
ability of selecting a fact at time-step t on the partial expla-
nation constructed at time-step t− 1 (Fig. 1). We performed
an extensive evaluation on the WorldTree corpus (Jansen and
Ustalov 2019), presenting the following conclusions:

1. The hybrid framework based on bi-encoders significantly
outperforms existing sparse models, achieving perfor-
mance comparable with that of state-of-the-art cross-
encoders while being ≈ 50 times faster.

2. We study the impact of the hybridisation on semantic
drift, showing that it makes SCAR more robust in the
construction of challenging explanations requiring long
reasoning chains.

3. We investigate the applicability of SCAR on multi-hop
question answering without additional training, demon-
strating improved accuracy and robustness when per-
forming explainable inference iteratively.

4. We perform a scalability analysis by gradually expanding
the adopted facts bank, showing that SCAR can scale to
corpora containing millions of facts.

To the best of our knowledge, we are the first to propose
a hybrid autoregressive model for complex multi-hop infer-
ence in the scientific domain, demonstrating its efficacy for
explanation regeneration at scale.

Multi-Hop Explanation Regeneration
Given a scientific hypothesis h expressed in natural language
(e.g., “Two sticks getting warm when rubbed together is
an example of a force producing heat”), the task of expla-
nation regeneration consists in reconstructing the evidence
supporting h, composing a sequence of atomic sentences

Eseq = f1, . . . , fn from external corpora (e.g., f1:“friction
is a kind of force”; f2:“friction causes the temperature of
an object to increase”). Explanation regeneration can be
framed as a multi-hop abductive inference problem, where
the goal is to construct the best explanation supporting a
given natural language statement adopting multiple retrieval
steps. To learn to regenerate scientific explanations, a recent
line of research relies on explanation-centred corpora such
as Worldtree (Jansen and Ustalov 2019), which are typically
composed of two distinct knowledge sources (Fig. 1):
1. A facts bank of individual commonsense and scientific

sentences including the knowledge necessary to con-
struct explanations for scientific hypotheses.

2. An explanations corpus consisting of true hypotheses
and natural language explanations composed of sen-
tences from the facts bank.

Hybrid Autoregressive Inference
To model the multi-hop nature of scientific explanations, we
propose a hybrid architecture that performs inference autore-
gressively (Fig. 1). Specifically, we model the probability of
composing an explanation sequence Eseq = f1, . . . , fn for
a certain hypothesis h using the following formulation:

P (Eseq|h) =
n∏

t=1

P (ft|h, f1, . . . ft−1) (1)

where n is the maximum number of inference steps and ft
represents a fact retrieved at time-step t from the facts bank.
We implement the model recursively by updating the hy-
pothesis h at each time-step t, concatenating it with the par-
tial explanation constructed at time step t− 1:

ht = g(h, f1, . . . ft−1) (2)
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where g(·) represents the string concatenation function. The
probability P (ft|ht) is then approximated via an explana-
tory scoring function es(·) that jointly models relevance and
explanatory power as:

es(ft, ht) = λ · r(ft, ht) + (1− λ) · pw(ft, h) (3)

where r(·) represents the relevance of ft at time step t, while
pw(·) represents the explanatory power of ft. As shown in
recent work (Valentino, Thayaparan, and Freitas 2021), sci-
entific explanations are composed of abstract sentences de-
scribing underlying explanatory laws and regularities that
are frequently reused to explain a large set of hypotheses.
To leverage this feature during inference, we measure the
explanatory power pw(·) of a fact as the extent to which it
explains similar hypotheses in the explanations corpus. The
relevance r(·) is computed through a hybrid model that com-
bines a sparse s(·) and a dense d(·) sentence encoder:

r(ft, ht) = sim(s(ft), s(ht)) + sim(d(ft), d(ht)) (4)

with sim(·) representing the cosine similarity between two
vectors. In our experiments, we adopt BM25 (Robertson,
Zaragoza et al. 2009) as a sparse encoder, while Sentence-
BERT (Reimers and Gurevych 2019) is adopted to train the
dense encoder d(·).

Explanatory Power
Recent work have shown that explicit explanatory pat-
terns emerge in corpora of natural language explanations
(Valentino, Thayaparan, and Freitas 2021) – i.e., facts de-
scribing scientific laws and regularities (i.e., laws such as
gravity, or friction that explain a large variety of phenom-
ena) are frequently reused to explain similar scientific hy-
potheses. These patterns can be leveraged to define a com-
putational model of explanatory power for estimating the
relevance of abstract scientific facts, providing a framework
for efficient explainable inference in the scientific domain.
Given a test hypothesis h, a sentence encoder s(·), and a
corpus of scientific explanations, the explanatory power of
a generic fact fi can be estimated by analysing explanations
for similar hypotheses in the corpus:

pw(fi, h) =

K∑
hk∈kNN(h)

sim(s(h), s(hk)) · 1Ek (fi) (5)

1Ek (fi) =

{
1 if fi ∈ Ek

0 if fi /∈ Ek
(6)

where kNN(h) = {h1, . . . , hK} represents a list of hy-
potheses retrieved according to the similarity sim(·) be-
tween the embeddings s(h) and s(hk), and 1Ek

(·) is the
indicator function verifying whether fi is part of the expla-
nation Ek for the hypothesis hk. Specifically, the more a fact
fi is reused for explaining hypotheses that are similar to h
in the corpus, the higher its explanatory power. In this work,
we hypothesise that this model can be integrated within a
hybrid framework based on dense and sparse encoders, im-
proving inference performance while preserving scalability.
In our experiments, we adopt BM25 similarity between hy-
potheses to compute the explanatory power efficiently.

Dense Bi-encoder

To learn a dense encoder d(·), we fine-tune a Sentence-
BERT model using a bi-encoder architecture (Reimers and
Gurevych 2019). The bi-encoder adopts a siamese network
to learn a joint embedding space for hypotheses and facts in
the facts bank. Following Sentence-BERT, we obtain fixed
sized sentence embeddings by adding a mean-pooling oper-
ation to the output vectors of BERT (Devlin et al. 2019).
We employ a unique BERT model with shared parame-
ters to learn a sentence encoder d(·) for both facts and hy-
potheses. At the cost of sacrificing the performance gain
resulting from self-attention, the bi-encoder allows for effi-
cient multi-hop inference through Maximum Inner Product
Search (MIPS). To enable scalability, we construct an index
of dense embeddings for the whole facts bank. To this end,
we adopt the approximated inner product search index (In-
dexIVFFlat) in FAISS (Johnson, Douze, and Jégou 2019).

Training. The bi-encoder is fine-tuned on inference chains
extracted from annotated explanations in the WorldTree cor-
pus (Jansen and Ustalov 2019). Since the facts in the an-
notated explanations are not sorted, to train the model au-
toregressively, we first transform the explanations into se-
quences of facts sorting them in decreasing order of BM25
similarity with the hypothesis. We adopt BM25 since the
facts that share less terms with the hypothesis tend to re-
quire more iterations and inference steps to be retrieved.
Subsequently, given a training hypothesis h and an expla-
nation sequence Eseq = f1, . . . , fn, we derive n positive
example tuples (ht, ft), one for each fact ft ∈ Eseq , using
ht = g(h, f1, . . . , ft−1) as hypothesis. To make the model
robust to distracting information, we construct a set of nega-
tive examples for each tuple (ht, ft) retrieving the top most
similar facts to ft that are not part of the explanation. We
found that the best results are obtained using 5 negative ex-
amples for each positive tuple. We use the constructed train-
ing set and the siamese network to fine-tune the encoder via
contrastive loss (Hadsell, Chopra, and LeCun 2006), which
has been demonstrated to be effective for learning robust
dense representations.

Multi-Hop Inference

At each time-step t during inference time, we encode the
concatenation of hypothesis and partial explanation ht us-
ing the dense (Sentence-BERT) and sparse (BM25) encoders
separately. Subsequently, we adopt the vectors representing
ht to compute the relevance score r(·) of the sentences in
the facts bank (Equation 4). In parallel, the sparse repre-
sentation (BM25) of the hypothesis h is adopted to retrieve
the explanations for the top K similar hypotheses in the ex-
planation corpus and compute the explanatory power pw(·)
of each fact (Equation 5). Finally, relevance and explana-
tory power are combined to compute the explanatory scores
es(·) (Equation 3) and select the top candidate fact ft from
the facts bank to expand the explanation at time-step t. Af-
ter tmax steps, we rank the remaining facts considering the
explanation constructed a time-step tmax.
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Model Approach Description MAP

Dense Models (Cross-encoders)

Cartuyvels, Spinks, and Moens (2020) Autoregressive BERT 57.07
Das et al. (2019) BERT path-ranking + single fact ensemble 56.25
Das et al. (2019) BERT single fact 55.74
Das et al. (2019) BERT path-ranking 53.13
Chia, Witteveen, and Andrews (2019) BERT re-ranking with gold IR scores 49.45
Banerjee (2019) BERT iterative re-ranking 41.30

Sparse Models

Valentino, Thayaparan, and Freitas (2021) Unification-based Reconstruction 50.83
Chia, Witteveen, and Andrews (2019) Iterative BM25 45.76
BM25 (Robertson, Zaragoza et al. 2009) BM25 Relevance Score 43.01
TF-IDF TF-IDF Relevance Score 39.42

Hybrid Models (Bi-encoders)

SCAR Scalable Autoregressive Inference 56.22

Table 1: Results on the test-set and comparison with previous approaches. SCAR significantly outperforms all the sparse models
and obtains comparable results with state-of-the-art cross-encoders.

Empirical Evaluation

We perform an extensive evaluation on the WorldTree cor-
pus adopting the dataset released for the shared task on
multi-hop explanation regeneration1 (Jansen and Ustalov
2019), where a diverse set of sparse and dense models have
been evaluated. WorldTree is a subset of the ARC corpus
(Clark et al. 2018) that consists of multiple-choice science
questions annotated with natural language explanations sup-
porting the correct answers. The explanations in WorldTree
contain an average of six facts and as many as 16, requir-
ing challenging multi-hop inference to be regenerated. The
WorldTree corpus provides a held-out test-set consisting of
1,240 science questions with masked explanations where
we run the main experiment and comparison with pub-
lished approaches. To run our experiments, we first trans-
form each question and correct answer pair into a hypothe-
sis following the methodology described in (Demszky, Guu,
and Liang 2018). We adopt explanations and hypotheses in
the training-set (≈ 1, 000) for training the dense encoder and
computing the explanatory power for unseen hypotheses at
inference time. We adopt bert-base-uncased (Devlin
et al. 2019) as a dense encoder to perform a fair compari-
son with existing cross-encoders employing the same model.
The best results on explanation regeneration are obtained
when running SCAR for 4 inference steps (additional details
in Ablation Studies). In line with the shared task, the perfor-
mance of the system is evaluated through the Mean Aver-
age Precision (MAP) of the produced ranking of facts with
respect to the gold explanations in WorldTree. Implementa-
tion and pre-trained models adopted for the experiments are
available online2.

1https://github.com/umanlp/tg2019task
2https://github.com/ai-systems/hybrid autoregressive

inference

Explanation Regeneration
Table 1 reports the results achieved by our best model on
the explanation regeneration task together with a compari-
son with previously published approaches. Specifically, we
compare our hybrid framework based on bi-encoders with
a variety of sparse and dense retrieval models. Overall, we
found that SCAR significantly outperforms all the consid-
ered sparse models (+5.39 MAP compared to Valentino,
Thayaparan, and Freitas (2021)), obtaining, at the same
time, comparable results with the state-of-the-art cross-
encoder (-0.85 MAP compared to Cartuyvels, Spinks, and
Moens (2020)). The following paragraphs provide a detailed
comparison with previous work.

Dense Models. As illustrated in Table 1, all the considered
dense models employ BERT (Devlin et al. 2019) as a cross-
encoder architecture. The state-of-the-art model proposed
by Cartuyvels, Spinks, and Moens (2020) adopts an autore-
gressive formulation similar to SCAR. However, the use
of cross-encoders makes the model computationally expen-
sive and intrinsically not scalable. Due to the complexity of
cross-encoders, in fact, the model can only be applied for re-
ranking a small set of candidate facts at each iteration, which
are retrieved using a pre-filtering step based on TF-IDF. In
contrast, we found that the use of a hybrid model allows
achieving comparable performance without cross-attention
and pre-filtering step (-0.85 MAP), making SCAR approx-
imately 50 times faster (Table 2). The second-best dense
approach employs an ensemble of two BERT models (Das
et al. 2019). A first BERT model is trained to predict the rel-
evance of each fact individually given a certain hypothesis.
A second BERT model is adopted to re-rank a set of two-
hops inference chains constructed via TF-IDF. The use of
two BERT models in parallel, however, makes the approach
computationally exhaustive. We observe that SCAR can
achieve similar performance with the use of a single BERT
bi-encoder, outperforming each individual sub-component
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Model MAP ↑ Time (s/q) ↓

Autoregressive BERT 57.07 9.6
BERT single fact 55.74 18.4
BERT path-ranking 53.13 31.8

SCAR 56.22 (98.5%) 0.19 (×50.5)

Table 2: Detailed comparison with BERT cross-encoders on
the test-set in terms of Mean Average Precision (MAP) and
inference time (seconds per question).

in the ensemble with a drastic improvement in efficiency
(SCAR is 96.8 times and 167.4 times faster respectively, see
Table 2). The remaining dense models (Chia, Witteveen, and
Andrews 2019; Banerjee 2019) adopt BERT-based cross-
encoders to re-rank the list of candidate facts retrieved using
sparse Information Retrieval (IR) techniques. As illustrated
in Table 1, SCAR outperforms these approaches by a large
margin (+6.77 and +14.92 MAP).

Sparse Models. We compare SCAR with sparse models
presented on the explanation regeneration task. We observe
that SCAR significantly outperforms the Unification-based
Reconstruction model proposed by Valentino, Thayaparan,
and Freitas (2021) (+5.39 MAP), which employs a model
of explanatory power in combination with BM25, but with-
out dense representation and autoregressive inference. These
results confirm the contribution of the hybrid model to-
gether with the importance of modelling explanation regen-
eration in a iterative fashion. In addition, we compare SCAR
with the model proposed by Chia, Witteveen, and Andrews
(2019) which adopts BM25 vectors to retrieve facts itera-
tively. We found that SCAR can dramatically improve the
performance of this model by 10.46 MAP points. Finally,
we measure the performance of standalone sparse baselines
for a sanity check, showing that SCAR can significantly out-
perform BM25 and TFIDF (+13.21 and +16.8 MAP respec-
tively), while preserving a similar scalability (Fig. 3).

Inference Time
We performed additional experiments to evaluate the effi-
ciency of SCAR and contrast it with state-of-the-art cross-
encoders. To this end, we run SCAR on 1 16GB Nvidia
Tesla P100 GPU and compare the inference time with that
of dense models executed on the same infrastructure (Car-
tuyvels, Spinks, and Moens 2020). Table 2 reports MAP and
execution time in terms of seconds per question. As evident
from the table, we found that SCAR is 50.5 times faster than
the state-of-the-art cross-encoder (Cartuyvels, Spinks, and
Moens 2020), while achieving 98.5% of its performance.
Moreover, when compared to the individual BERT models
proposed by Das et al. (2019), SCAR is able to achieve bet-
ter MAP score (+0.48 and +3.09), increasing even more the
gap in terms of inference time (96.8 and 167.4 times faster).

Ablation Studies
In order to understand how the different components of
SCAR complement each other, we carried out distinct ab-

Model tmax MAP Time (s/q)

Bi-encoder 1 41.98 0.04
2 42.17 0.08
3 39.97 0.12
4 38.34 0.16
5 37.24 0.19
6 36.64 0.24

BM25 1 45.99 0.02
2 47.77 0.04
3 48.35 0.05
4 48.06 0.07
5 47.97 0.09
6 47.66 0.11

Bi-encoder + BM25 1 51.53 0.05
2 54.52 0.08
3 55.65 0.14
4 56.07 0.18
5 56.24 0.22
6 55.87 0.27

SCAR 1 57.10 0.06
2 59.20 0.10
3 59.73 0.15
4 60.28 0.19
5 59.79 0.24
6 59.36 0.29

Table 3: Ablation study on the dev-set, where tmax repre-
sents the maximum number of iterations adopted to regener-
ate the explanations, and (s/q) is the inference time.

lation studies. The studies are performed on the dev-set
since the explanations on the test-set are masked. Table 3
presents the results on explanation regeneration for different
ablations of SCAR adopting an increasing number of itera-
tions tmax for the inference. The results show how the per-
formance improves as we combine sparse and dense mod-
els, with a decisive contribution coming from each indi-
vidual sub-component. Specifically, considering the best re-
sults obtained in each case, we observe that SCAR achieves
an improvement of 18.11 MAP over the dense component
(Bi-encoder) and 11.93 MAP when compared to the sparse
model (BM25). Moreover, the ablation demonstrates the
fundamental role of the explanatory power model in achiev-
ing the final performance, which leads to an improvement
of 4.04 MAP over the Bi-encoder + BM25 model (Equation
3). Overall, we notice that performing inference iteratively
is beneficial to the performance across the different com-
ponents. We observe that the improvement is more promi-
nent when comparing tmax = 1 (only using the hypothesis)
with tmax = 2 (using hypothesis and first fact), highlight-
ing the central significance of the first retrieved fact to sup-
port the complete regeneration process. Except for the Bi-
encoder, the experiments demonstrate a slight improvement
when adding more iterations to the process, obtaining the
best results for SCAR using a total of 4 inference steps. We
notice that the best performing component in terms of infer-
ence time is BM25. The integration with the dense model,
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(a) (b)

Figure 2: (a) Impact of increasing the number of similar hypotheses K to estimate the explanatory power (Equation 5). (b)
Performance considering hypotheses with gold explanations including an increasing number of facts.

in fact, slightly increases the inference time, yet leading to
a decisive improvement in terms of MAP score. Even with
the overhead caused by the Bi-encoder, however, SCAR can
still perform inference in less than half a second per ques-
tion, a feature that demonstrates the scalability of the ap-
proach with respect to the number of iterations. Finally, we
evaluate the impact of the explanatory power model by con-
sidering a larger set of training hypotheses for its implemen-
tation (Figure 2a). To this end, we compare the performance
across different configurations with increasing values of K
in Equation 5. The results demonstrate the positive impact of
the explanatory power model on the inference, with a rapid
increase of MAP peaking at K = 80. After reaching this
value, we observe that considering additional hypotheses in
the corpus has little impact on the model’s performance.

Semantic Drift
Recent work have shown that the regeneration of scientific
explanations is particularly challenging for multi-hop infer-
ence models as it can lead to a phenomenon known as se-
mantic drift – i.e., the composition of spurious inference
chains caused by the tendency of drifting away from the
original context in the hypothesis (Khashabi et al. 2019;
Xie et al. 2020; Jansen and Ustalov 2019; Thayaparan,
Valentino, and Freitas 2020). In general, the larger the size of
the explanation, the higher the probability of semantic drift.
Therefore, it is particularly important to evaluate and com-
pare the robustness of multi-hop inference models on hy-
potheses requiring long explanations. To this end, we present
a study of semantic drift, comparing the performance of dif-
ferent ablations of SCAR on hypotheses with a varying num-
ber of facts in the gold explanations. The results of the study
are reported in Figure 2b. Overall, we observe a degradation
in performance for all the considered models that becomes
more prominent as the explanations increase in size. Such
a degradation is likely due to semantic drift. However, the
results suggest that SCAR exhibits more stable performance
on long explanations (≥ 6 facts) when compared to its in-
dividual sub-components. In particular, the plotted results in

Figure 2b clearly show that, while all the models start with
comparable MAP scores on explanations containing a sin-
gle fact, the gap in performance gradually increases with
the size of the explanations, with SCAR obtaining an im-
provement of 13.46 MAP over BM25 + Bi-encoder on ex-
planations containing more than 10 facts. These results con-
firm the hypotheses that implicit and explicit patterns pos-
sess complementary features for explanation regeneration
and that the proposed hybridisation has a decisive impact
on improving multi-hop inference for scientific hypotheses
in the most challenging setting.

Multi-Hop Question Answering

Since the construction of spurious inference chains can
lead to wrong answer prediction, semantic drift often influ-
ences the downstream capabilities of answering the ques-
tion. Therefore, we additionally evaluate the performance
of SCAR on the multiple-choice question answering task
(WorldTree dev-set), employing the model as an explain-
able solver without additional training. Specifically, given a
multiple-choice science question, we employ SCAR to con-
struct an explanation for each candidate answer, and derive
the relative candidate answer score by summing up the ex-
planatory score of each fact in the explanation (Equation
3). Subsequently, we consider the answer with the highest-
scoring explanation as the correct one. Table 4 shows the
results achieved adopting different iterations t for the infer-
ence. Similarly to the results on explanation regeneration,
this experiment confirms the interplay between dense and
sparse models in improving the performance and robustness
on downstream question answering. Specifically, we observe
that, while the performance of different ablations decreases
rapidly with an increasing number of inference steps, the
performance of SCAR are more stable, reaching a peak at
t = 3. This confirms the robustness of SCAR in multi-hop
inference together with its resilience to semantic drift.
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Model t = 1 t = 2 t = 3 t = 4

Random 25.00 25.00 25.00 25.00

BM25 48.23 39.82 35.84 33.18
Bi-encoder 54.42 52.21 50.88 50.00
Bi-encoder + BM25 59.29 52.21 47.79 44.69

SCAR 60.62 60.62 61.06 57.96

Table 4: Accuracy in question answering using the models
as explainable inference solvers without additional training.

Figure 3: Scalability of SCAR to corpora containing a mil-
lion facts compared to that of standalone BM25.

Scalability
Finally, we measure the scalability of SCAR on facts banks
containing milions of sentences. To perform this analysis,
we gradually expand the set of facts in the WorldTree corpus
by randomly extracting sentences from GenericsKB3 (Bhak-
thavatsalam, Anastasiades, and Clark 2020), a curated facts
bank of commonsense and scientific knowledge. To evalu-
ate scalability, we compare the inference time of SCAR with
that of standalone BM25, which is widely adopted for Infor-
mation Retrieval at scale (Robertson, Zaragoza et al. 2009).
The results of this experiment, reported in Figure 3, demon-
strate that SCAR scales similarly to BM25. Even consider-
ing the overhead caused by the Bi-encoder model, in fact,
SCAR is still able to perform inference in less than 1 second
per question on corpora containing 1 million facts, demon-
strating its suitability for real-world scenarios requiring in-
ference on large knowledge sources.

Related Work
Multi-hop inference is the task of combining multiple pieces
of evidence to solve a particular reasoning problem. This
task is often used to evaluate explainable inference since the
constructed chains of reasoning can be interpreted as an ex-
planation for the final predictions (Wiegreffe and Marasović
2021; Thayaparan, Valentino, and Freitas 2020). Given the
importance of multi-hop reasoning for explainability, there
is a recent focus on resources providing annotated expla-

3https://allenai.org/data/genericskb

nations to support the inference (Xie et al. 2020; Jhamtani
and Clark 2020; Khot et al. 2020; Ferreira and Freitas 2020;
Khashabi et al. 2018; Yang et al. 2018; Mihaylov et al. 2018;
Jansen et al. 2018; Welbl, Stenetorp, and Riedel 2018). In
particular, explanation regeneration on science questions is
designed to evaluate the construction of long explanatory
chains, in a setting where the structure of the inference can-
not be derived from a direct decomposition of the questions
(Xie et al. 2020; Jansen and Ustalov 2019; Jansen et al.
2018). To deal with the difficulty of the task, state-of-the-
art models leverage the attention mechanism in Transform-
ers (Vaswani et al. 2017), learning to compose relevant ex-
planatory chains via sequence classification models (Car-
tuyvels, Spinks, and Moens 2020; Das et al. 2019; Chia,
Witteveen, and Andrews 2019; Banerjee 2019). The autore-
gressive formulation proposed in this paper is similar to the
one introduced by Cartuyvels, Spinks, and Moens (2020),
which, however, perform iterative inference though a cross-
encoder architecture based on BERT (Devlin et al. 2019).
Differently from this work, we present a hybrid architecture
based on bi-encoders (Reimers and Gurevych 2019) with the
aim of optimising both accuracy and inference time in ex-
planation regeneration. Our model of explanatory power is
based on the work done by Valentino, Thayaparan, and Fre-
itas (2021), which shows how to leverage explicit patterns in
corpora of scientific explanations for multi-hop inference. In
this paper, we build upon this line of research by demonstrat-
ing that models based on explicit patterns can be combined
with neural architectures to achieve nearly state-of-the-art
performance while preserving scalability. Our framework is
related to recent work on dense retrieval for knowledge-
intensive NLP tasks, which focuses on the design of scalable
architectures with Maximum Inner Product Search (MIPS)
based on Transformers (Xiong et al. 2021; Zhao et al. 2021;
Lin et al. 2021; Karpukhin et al. 2020; Lewis et al. 2020;
Dhingra et al. 2019). Our multi-hop dense encoder is simi-
lar to Lin et al. (2021) and Xiong et al. (2021) which adopt
bi-encoders for multi-step retrieval on open-ended common-
sense reasoning and open-domain question answering. How-
ever, to the best of our knowledge, we are the first to inte-
grate dense bi-encoders in a hybrid architecture for complex
explainable inference in the scientific domain.

Conclusion
This work presented SCAR, a hybrid autoregressive ar-
chitecture for scalable explanation regeneration. An ex-
tensive evaluation demonstrated that SCAR achieves per-
formance comparable with that of state-of-the-art cross-
encoders while being ≈ 50 times faster and intrinsically
scalable, and confirmed the impact of the hybridisation on
semantic drift and question answering. This work demon-
strated the effectiveness of hybrid architectures for explain-
able inference at scale, opening the way for future research
at the intersection of latent and explicit models. As a future
work, we plan to investigate the integration of relevance and
explanatory power in an end-to-end differentiable architec-
ture, and explore the applicability of the hybrid framework
on additional natural language and scientific reasoning tasks,
with a focus on real-world scientific inference problems.
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