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Abstract

We introduce a new task of entailment relation aware para-
phrase generation which aims at generating a paraphrase con-
forming to a given entailment relation (e.g., equivalent, for-
ward entailing, or reverse entailing) with respect to a given
input. We propose a reinforcement learning-based weakly-
supervised paraphrasing system, ERAP, that can be trained
using existing paraphrase and natural language inference
(NLI) corpora without an explicit task-specific corpus. A
combination of automated and human evaluations show that
ERAP generates paraphrases conforming to the specified en-
tailment relation and are of good quality as compared to
the baselines and uncontrolled paraphrasing systems. Using
ERAP for augmenting training data for downstream textual
entailment task improves performance over an uncontrolled
paraphrasing system, and introduces fewer training artifacts,
indicating the benefit of explicit control during paraphrasing.

1 Introduction
Paraphrase is “an alternative surface form in the same lan-
guage expressing the same semantic content as the orig-
inal form” (Madnani and Dorr 2010). Although the logi-
cal definition of paraphrase requires strict semantic equiv-
alence (or bi-directional entailment (Androutsopoulos and
Malakasiotis 2010)) between a sequence and its paraphrase,
data-driven paraphrasing accepts a broader definition of ap-
proximate semantic equivalence (Bhagat and Hovy 2013).
Moreover, existing automatically curated paraphrase re-
sources do not align with this logical definition. For instance,
pivot-based paraphrasing rules extracted by Ganitkevitch,
Van Durme, and Callison-Burch (2013) contain hypernym
or hyponym pairs, e.g., due to variation in the discourse
structure of translations, and unrelated pairs, e.g., due to mis-
alignments or polysemy in the foreign language.

While this flexibility of approximate semantic equiva-
lence allows for greater diversity in expressing a sequence,
it comes at the cost of the ability to precisely control the se-
mantic entailment relationship (henceforth “entailment rela-
tion”) between a sequence and its paraphrase. This trade-off
severely limits the applicability of paraphrasing systems or
resources to a variety of downstream natural language un-
derstanding (NLU) tasks (e.g., machine translation, question
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Figure 1: Entailment-unaware system might output approx-
imately equivalent paraphrases. Label preserving augmenta-
tions generated using such system for textual entailment task
can result in incorrect labels (red). Explicit entailment rela-
tion control in entailment-aware system helps in reducing
such incorrectly labeled augmentations (green).

answering, information retrieval, and natural language infer-
encing (Pavlick et al. 2015)) (Figure 1). For instance, se-
mantic divergences in machine translation have been shown
to degrade the translation performance (Carpuat, Vyas, and
Niu 2017; Pham et al. 2018).

Existing works identify directionality (forward, reverse,
bi-directional, or no implication) of paraphrase and infer-
ence rules (Bhagat, Pantel, and Hovy 2007), and add seman-
tics (natural logic entailment relationships such as equiv-
alence, forward or reverse entailment, etc.) to data-driven
paraphrasing resources (Pavlick et al. 2015) leading to im-
provements in lexical expansion and proof-based RTE sys-
tems, respectively. However, entailment relation control in
paraphrase generation is, to our knowledge, a relatively
unexplored topic, despite its potential benefit to down-
stream applications (Madnani and Dorr 2010) such as Multi-
Document Summarization (MDS) (or Information Retrieval
(IR)) wherein having such a control could allow the MDS
(or IR) system to choose either the more specific (reverse
entailing) or general (forward entailing) sentence (or query)
depending on the purpose of the summary (or user needs).

To address the lack of entailment relation control in para-
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phrasing systems, we introduce a new task of entailment
relation aware paraphrase generation: given a sequence
and an entailment relation, generate a paraphrase which con-
forms to the given entailment relation. We consider three en-
tailment relations (controls) in the spirit of monotonicity cal-
culus (Valencia 1991): (1) Equivalence (≡) refers to seman-
tically equivalent paraphrases (e.g., synonyms) where input
sequence entails its paraphrase and vice-versa; (2) Forward
Entailment (⊏) refers to paraphrases that loose information
from the input or generalizes it (e.g., hypernyms) i.e. input
sequence entails its paraphrase; (3) Reverse Entailment (⊐)
refers to paraphrases that add information to the input or
makes it specific (e.g., hyponyms) i.e. input sequence is en-
tailed by its paraphrase.

The unavailability of paraphrase pairs annotated with
such a relation makes it infeasible to directly train a
sequence-to-sequence model for this task. Collecting such
annotations for existing large paraphrase corpora such as
ParaBank (Hu et al. 2019b) or ParaNMT (Wieting and Gim-
pel 2018) is expensive due to scale. We address this chal-
lenge in 3 ways: (1) by building a novel entailment relation
oracle based on natural language inference task (NLI) (Bow-
man et al. 2015a; Williams, Nangia, and Bowman 2018) to
obtain weak-supervision for entailment relation for existing
paraphrase corpora; (2) by recasting an existing NLI dataset,
SICK (Marelli et al. 2014), into a small supervised dataset
for this task, and (3) by proposing Entailment Relation
Aware Paraphraser (ERAP) which is a reinforcement learn-
ing based (RL-based) weakly-supervised system that can be
trained only using existing paraphrase and NLI corpora, with
or without weak-supervision for entailment relation.

Intrinsic and extrinsic evaluations show advantage of
entailment relation aware (henceforth “entailment-aware”)
paraphrasing systems over entailment-unaware (standard
uncontrolled paraphrase generation) counterparts. Intrinsic
evaluation of ERAP (via a combination of automatic and
human measures) on recasted SICK (§3) dataset shows
that generated paraphrases conform to the given entail-
ment relation with high accuracy while maintaining good
or improved paraphrase quality when compared against
entailment-unaware baselines. Extrinsic data-augmentation
experiments (§5) on textual entailment task show that aug-
menting training sets using entailment-aware paraphrasing
system leads to improved performance over entailment-
unaware paraphrasing system, and makes it less susceptible
to making incorrect predictions on adversarial examples.

2 Entailment Relation Aware Paraphraser
Task Definition. Given a sequence of tokens X =

[x1, . . . , xn], and an entailment relation R ∈{Equivalence
(≡), Forward Entailment (⊏), Reverse Entailment (⊐)}, we
generate a paraphrase Y = [y1, . . . , ym] such that the entail-
ment relationship betweenX and Y is R. Ŷ is the generated
paraphrase and Y is the reference paraphrase.

Neural paraphrasing systems (Prakash et al. 2016; Li et al.
2018) employ a supervised sequence-to-sequence model to
generate paraphrases. However, building a supervised model
for this task requires paraphrase pairs with entailment rela-

Figure 2: ERAP: Generator takes in a sequence X , an en-
tailment relation R, and outputs a paraphrase Ŷ . Ŷ is
scored by various scorers in the evaluator and a combined
score (known as reward) is sent back to train the generator.
Hypothesis-only adversary is adversarially trained on Ŷ and
predictions from the entailment relation consistency scorer.

tion annotations. To address this, we propose an RL-based
paraphrasing system ERAP which can be trained with ex-
isting paraphrase and NLI corpora without any additional
annotations. ERAP (Figure 2) consists of a paraphrase gen-
erator (§2.1) and an evaluator (§2.2) comprising of various
scorers to assess the quality of generated paraphrases for
different aspects. Scores from the evaluator are combined
(§2.3) to provide feedback to the generator in the form of
rewards. Employing RL allows us to explicitly optimize the
generator over measures accounting for the quality of gen-
erated paraphrases, including the non-differentiable ones.

2.1 Paraphrase Generator
The generator is a transformer-based (Vaswani et al. 2017)
sequence-to-sequence model which takes (X,R) and gener-
ates Ŷ . We denote the generator as G(Ŷ ∣X ,R; θg), where
θg refers to parameters of the generator. We incorporate the
entailment relation as a special token prepended to the in-
put sequence. This way, entailment relation receives special
treatment (Kobus, Crego, and Senellart 2017) and the gener-
ator learns to generate paraphrases for a given X , and R.

2.2 Paraphrase Evaluator
The evaluator comprises of several scorers to asses the qual-
ity of the generated paraphrase for three aspects: semantic
similarity with the input, expression diversity from the in-
put, and entailment relation consistency. It provides rewards
to the paraphrases generated by the generator as feedback
which is used to update the parameters of the generator. We
describe the various scorers below.

Semantic Similarity Scorer provides reward which en-
courages the generated paraphrase Ŷ to have similar mean-
ing as the input sequence X . We use MoverScore (Zhao
et al. 2019) to measure the semantic similarity between the
generated paraphrase and the input, denoted as rs(X, Ŷ ).
MoverScore combines contextualized representations with
word mover’s distance (Kusner et al. 2015) and has shown
high correlation with human judgment of text quality.

11259



Expression Diversity Scorer rewards the generated para-
phrase to ensure that it uses different tokens or surface form
to express the input. We measure this aspect by computing
n-grams dissimilarity (inverse BLUE (Papineni et al. 2002)),

rd(X, Ŷ ) = 1 − BLEU(Ŷ ,X) (1)

Following Hu et al. (2019b), we use modified BLEU without
length penalty to avoid generating short paraphrases which
can result in high inverse BLEU scores.

Entailment Relation Consistency Scorer is a novel
scorer designed to reward the generated paraphrase in such a
way that encourages it to adhere to the given entailment rela-
tion R. To compute the reward, we build an oracleO(X,Y )
(details in §3) based on natural language inferencing (NLI)
and use likelihood of the given entailment relation from the
Oracle as the score. rl(X, Ŷ ,R) = O(l = R∣X, Ŷ ). As
will be discussed further in §4.3, we found that entailment
relation consistency scorer can result in generator learn-
ing simple heuristics (e.g., adding same adjective such as
‘desert’, or trailing tokens like ‘and says’ or ‘with mexico’
for ⊐ or short outputs for ⊏) leading to degenerate para-
phrases having high consistency score.

Inspired by the idea of hypothesis-only baselines (Poliak
et al. 2018) for NLI task, we build a novel RoBERTa-based
Hypothesis-only Adversary, A(l∣Ŷ ), to penalize the gen-
erated paraphrases resorting to such heuristics. The adver-
sary is a 3-class classifier trained on the paraphrases gener-
ated during the training phase with the oracle prediction for
(X ,Ŷ ) pair as the ground-truth. The Adversary loss L(A) is

L(A) = −
∣C∣
∑
c=1

O(X, Ŷ ) log(A(l = c∣Ŷ )), (2)

where ∣C∣ = 3 is the number of entailment relations. Train-
ing the adversary in this way helps in adapting to the heuris-
tics taken by the generator during the course of training. The
generator and the adversary are trained alternatively, simi-
lar to a GAN (Goodfellow et al. 2014) setup. The penalty is
computed as the likelihood of entailment relation being R
using the adversary, pl(Ŷ ,R) = A(l = R∣Ŷ ). We only pe-
nalize those generated paraphrases for which predicted rela-
tion is same as the input relation because incorrect prediction
denotes no heuristic is taken by the generator.

2.3 Reinforcement Learning Setup
The output paraphrases from the generator are sent to the
scorers for evaluation. The various scores from the scorers
are combined to give feedback (in the form of reward) to
the generator to update its parameters and to improve the
quality of the generated paraphrases conforming to the given
relation. We emphasize that although the scores from our
scorers are not differentiable with respect to θg , we can still
use them by employing RL (the REINFORCE algorithm) to
update the parameters of the generator (Williams 1992).

In RL paradigm, state at time t is defined as st =

(X,R, Ŷ1∶t−1) where Ŷ1∶t−1 refers to the first t − 1 tokens
that are already generated in the paraphrase. The action at
time t is the tth token to be generated. Let V be the vo-
cabulary, and T be the maximum output length. The total

expected reward of the current generator is then given by
J(G) = ∑T

t=1 EŶ1∶t−1∼G
[∑yt∈V

P(yt∣st)Q(st, yt)], where
P(yt∣st) is the likelihood of token yt given the current state
st, and Q(yt, st) is the cumulative discounted reward for a
paraphrase extended from Ŷ1∶t−1. The total reward, Q, is de-
fined as the sum of the token level rewards.

Q(st, yt) =
T

∑
τ=t

γ
τ−t

r(sτ , yτ ), (3)

where r(sτ , yτ) is the reward of token yτ at state sτ , and γ ∈
(0, 1) is a discounting factor so that the future rewards have
decreasing weights, since their estimates are less accurate. If
we consider that Ŷ1∶t−1 has been given then for every yt, the
total expected reward becomes

J(G) =
T

∑
t=1

∑
yt∈V

P(yt∣st)Q(st, yt). (4)

Sequence Sampling. To obtain r(st, yt) at each time step
t, we need scores for each token. However, by design these
scorers only evaluate complete sequences instead of single
token or partial sequences. We therefore use the technique of
rolling out (Yu et al. 2017), where the generator “rolls out”
a given sub-sequence Ŷ1∶t to generate complete sequence by
sampling the remaining part of the sequence Ŷt+1∶T . Fol-
lowing Gong et al. (2019), we use a combination of beam
search and multinomial sampling to balance reward estima-
tion accuracy at each time step and diversity of the generated
sequence. We first generate a reference paraphrase Ŷ ref1∶T us-
ing beam search and draw n samples of complete sequences
Ŷ1∶T by rolling out the sub-sequence Ŷ ref1∶t using multino-
mial sampling to estimate reward at each time step t.

Reward Estimation. We send n samples of complete se-
quences drawn from the sub-sequence Ŷ ref1∶t to the scorers.
The combined score f(st, yt) for an action yt at state st is
computed by averaging the score of the complete sequences
rolled out from Ŷ

ref
1∶t defined as

f(st, yt) =
1
n

n

∑
i=1

α ⋅ (rl(X, Ŷ i,R) − pl(Ŷ i,R))+

β ⋅ rs(X, Ŷ i) + δ ⋅ rd(X, Ŷ i),
(5)

where α, β, δ, and n are hyperparameters empirically set
to 0.4, 0.4, 0.2, and 2, respectively. These parameters con-
trol the trade-off between different aspects for this multi-
objective task. Following Siddique, Oymak, and Hristidis
(2020), we threshold1 the scorers’ scores so that the final
reward maintains a good balance across various scores. For
example, generating diverse tokens at the expense of losing
too much on the semantic similarity is not desirable. Simi-
larly, copying the input sequence as-is to the generation is
clearly not a paraphrase (i.e., rs(X, Ŷ ) = 1). We define re-
ward r(st, yt) for action yt at state st as:

r(st, yt) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f(st, yt) − f(st−1, yt−1), t > 1,

f(s1, y1), t = 1
(6)

1If 0.3 ≤ rs(X, Ŷ ) ≤ 0.98 then the score is used as is other-
wise, 0. Similarly, if rs(X, Ŷ ) > 0 after thresholding then rd, rl,
and pl are computed as defined, otherwise 0.
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The discounted cumulative reward Q(st, yt) is then com-
puted from the rewards r(sτ , yτ) at each time step using
Eq. 3 and the total expected reward is derived using Eq. 4.
The generator loss L(G) is defined as −J(G).

2.4 Training Details
Pre-training has been shown to be critical for RL to work
in unsupervised settings (Siddique, Oymak, and Hristidis
2020; Gong et al. 2019) therefore, we pre-train the gener-
ator on existing large paraphrase corpora e.g., ParaBank (Hu
et al. 2019b) or ParaNMT (Wieting and Gimpel 2018) in two
ways: (1) Entailment-aware uses Oracle (§3) to obtain en-
tailment relation for paraphrase pairs in the train set of para-
phrase corpora, filter the semantically-divergent (§3) pairs,
upsample or downsample to have balanced data across rela-
tions, and train the generator with weak-supervision for en-
tailment relation and gold-paraphrases, and (2) Entailment-
unaware trains the generator on paraphrase pairs as-is with-
out any entailment relation. Pre-training is done in a super-
vised manner with the cross-entropy loss and offers immedi-
ate benefits for generator to learn paraphrasing transforma-
tions and have warm-start leading to faster model training.

RL-based Fine-tuning. We fine-tune the generator us-
ing feedback from the evaluator on recasted SICK dataset
(details in §3). For any practical purposes, our RL-fine-
tuning approach only requires input sequences without any
annotations for entailment relation or ground-truth para-
phrases. However, for a fair comparison against supervised
or weakly-supervised baselines (§4.1), we use the gold-
entailment relation for recasted SICK during RL fine-tuning.

3 Collecting Labeled Paraphrase Data
Entailment-aware paraphrasing requires paraphrase pairs
annotated with entailment relation. However, collecting such
annotations for large paraphrase corpora such as Para-
Bank2 (Hu et al. 2019b) is too costly. To obtain entailment
relations automatically, we train a NLI classifier and use it
to derive the entailment relations as described below.

Entailment Relation Oracle. NLI is a standard natural
language understanding task of determining whether a hy-
pothesis h is true (entailment3 E), false (contradiction C),
or undetermined (neutral N) given a premise p (MacCartney
2009). To build an entailment relation oracle, O(X,Y ), we
first train a RoBERTa-based (Liu et al. 2019) 3-class classi-
fier, o(l∣⟨p, h⟩), to predict the uni-directional (E, N, C) la-
bels given a ⟨p, h⟩ pair. This classifier is then run forwards
(⟨X,Y ⟩) and backwards (⟨Y,X⟩) on the paraphrase pairs
to get the uni-directional predictions which are further used
to derive the entailment relations as in Eq. 7. The Oracle is
used to generate weak-supervision for entailment relations
for existing paraphrase corpora, and assess the generated

2It consists of 50 million high quality English paraphrases ob-
tained training a Czech-English neural machine translation (NMT)
system and adding lexical-constraints to NMT decoding procedure.

3Entailment in NLI is a uni-directional relation while Equiva-
lence is a bi-directional entailment relation.

Recasted SICK SICK NLI
Split ≡ ⊏ ⊐ Others E N C
Train 1344 684 684 420 1274 2524 641
Dev 196 63 63 43 143 281 71
Test 1386 814 814 494 1404 2790 712

Table 1: E, N, C denote entailment, neutral, and contradic-
tion, respectively. Others refers to neutral or invalid relation.

paraphrases for relation consistency. We only focus on ≡,
⊏, and ⊐ relations as contradictory, neutral or invalid pairs
are considered as semantically-divergent sentence pairs.

O(X,Y ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

≡ if o(l∣⟨X,Y ⟩) = E & o(l∣⟨Y,X⟩) = E
⊏ if o(l∣⟨X,Y ⟩) = E & o(l∣⟨Y,X⟩) = N
⊐ if o(l∣⟨X,Y ⟩) = N & o(l∣⟨Y,X⟩) = E
C if o(l∣⟨X,Y ⟩) = C & o(l∣⟨Y,X⟩) = C
N if o(l∣⟨X,Y ⟩) = N & o(l∣⟨Y,X⟩) = N
Invalid ,otherwise

(7)

Recasting SICK Dataset. SICK (Marelli et al. 2014) is a
NLI dataset created from sentences describing the same pic-
ture or video which are near paraphrases. It consists of sen-
tence pairs (p, h) with human-annotated NLI labels for both
directions ⟨p, h⟩ and ⟨h, p⟩. We recast this dataset to obtain
paraphrase pairs with entailment relation annotations de-
rived using the gold bi-directional labels in the same way as
O. We only consider the sentence pairs which were created
by combining meaning-preserving transformations (details
in appendix). We augment this data by adding valid samples
obtained by reversing sentence pairs (∀ p ⊏ h, we add h ⊐ p
and ∀ p ≡ h, we add h ≡ p). Data statistics in Table 1.

Oracle Evaluation. We train the NLI classifier o on
existing NLI datasets namely, MNLI (Williams, Nan-
gia, and Bowman 2018), SNLI (Bowman et al. 2015a),
SICK (Marelli et al. 2014) as well as diagnostic datasets
such as, HANS (McCoy, Pavlick, and Linzen 2019), others
introduced in Glockner, Shwartz, and Goldberg (2018); Min
et al. (2020), using cross-entropy loss. Combining diagnos-
tic datasets during training has shown to improve robustness
of NLI systems which can resort to simple lexical or syntac-
tic heuristics (Glockner, Shwartz, and Goldberg 2018; Po-
liak et al. 2018) to perform well on the task. The accuracy of
o(l∣⟨p, h⟩) on the combined test sets of the datasets used for
training is 92.32% and the accuracy of Entailment Relation
Oracle O(X,Y ) on the test set of recasted SICK dataset is
81.55%. Before using the Oracle to obtain weak-supervision
for entailment relation for training purposes, we validate it
by manually annotating 50 random samples from ParaBank.
78% of the annotated relations were same as the Oracle pre-
dictions when C, N, and Invalid labels were combined.

4 Intrinsic Evaluation
Here we provide details on the entailment-aware and un-
aware comparison models, and the evaluation measures.

4.1 Comparison Models
To contextualize ERAP’s performance, we train several re-
lated models including supervised and weakly-supervised,
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Aware BLEU↑ Div↑ iBLEU↑ R-Con↑
7 32.54 46.57 17.78 −
3 33.08 58.24 19.06 72.34

Table 2: Evaluation of the generator pre-trained on ParaBank
using entailment-aware (3) and unaware (7) settings.

entailment-aware and unaware models to obtain lower
and upper bound performance on recasted SICK as fol-
lows: (1) the generator is trained on recasted SICK in
an entailment-aware (S2S-A) and unaware (S2S-U) su-
pervised setting; (2) the generator is pre-trained on Para-
Bank dataset in entailment-aware (Pre-train-A) and un-
aware (Pre-train-U) setting to directly test on the test set
of recasted SICK; (3) the pre-trained generators are fine-
tuned on recasted SICK in entailment-aware (Fine-tune-A)
and unaware (Fine-tune-U) supervised setting; (4) multiple
outputs (k∈{1, 5, 10, 20}) are sampled using nucleus sam-
pling (Holtzman et al. 2019) from S2S-U (RR-S2S-U) or
Fine-tune-U (RR-FT-U) and re-ranked based on the com-
bined score f(st, yt). The highest scoring output is consid-
ered as the final output for RR-S2S-U and RR-FT-U.

4.2 Evaluation Measures
Automatic evaluation to evaluate the quality of paraphrases
is primarily done using iBLEU (Sun and Zhou 2012) which
penalizes for copying from the input. Following Liu et al.
(2020), we also report BLEU (Papineni et al. 2002) (up to 4
n-grams) and Diversity (Div, measured identical to Eq. 1)
scores to understand the trade-off between these measures.
We also compute, R-Con, defined as the percentage of test
examples for which the entailment relation predicted using
oracle is same as the given entailment relation.

Human evaluation is conducted on 4 aspects: (1) seman-
tic similarity which measures the closeness in meaning be-
tween paraphrase and input on a scale of 5 (Li et al. 2018);
(2) diversity in expression which measures if different to-
kens or surface-forms are used in the paraphrase with re-
spect to the input on a scale of 5 (Siddique, Oymak, and
Hristidis 2020); (3) grammaticality which measures if para-
phrase is well-formed and comprehensible on a scale of 5 (Li
et al. 2018); (4) relation consistency which measures the %
of examples for which the annotated entailment relation is
same as the input relation. Three annotations per sample are
collected for similarity, diversity, and grammaticality using
Amazon Mechanical Turk (AMT), and the authors (blinded
to the identity of the model and following proper guidelines)
manually annotate for relation consistency as it is more tech-
nical and AMT annotators were unable to get the qualifica-
tion questions correct. More details in Appendix.

4.3 Results and Analysis
To use paraphrasing models for downstream tasks, we need
to ensure that the generated paraphrases conform to the spec-
ified entailment relation and are of good quality.

Automatic evaluation. We first evaluate the pre-trained
generators on a held-out set from ParaBank containing

Model R-T BLEU↑ Div↑ iBLEU↑ R- Con↑
Pre-train-U 7 14.92 76.73 7.53 −
Pre-train-A 3 17.20 74.25 8.75 65.53
S2S-U 7 30.93 59.88 17.62 −
S2S-A 3 31.44 63.90 18.77 38.42
RR-S2S-U

3
30.06 64.51 17.26 51.86

RR-FT-U 41.44 53.67 23.96 66.85
ERAP-U⋆

3
19.37 69.70 9.43 66.89

ERAP-A 28.20 59.35 14.43 68.61
Fine-tune-U 7 41.62 51.42 23.79 −
Fine-tune-A 3 45.21 51.60 26.73

∗
70.24

∗

Copy-input − 51.42 0.00 21.14 45.98

Table 3: Automatic evaluation of ERAP against comparison
models described in §4.1. R-Con is measured only for mod-
els conditioned (R-T) on R at test time. Fine-tune models
are upper- and Pre-train are lower-bound. ⋆ denotes only
pre-training is done in entailment-unaware setting. Bold-
face denotes best in each block and ∗ denotes best overall.

500 examples for each relation. Table 2 shows that the
entailment-aware generator outperforms its unaware coun-
terpart across all the measures. This boost is observed with
weak-supervision for entailment relation demonstrating the
good quality of weak-supervision.

Next, We evaluate ERAP variants against the comparison
models (§4.1) on the recasted SICK test samples belong-
ing to ≡,⊏,⊐ relation and report the results in Table 34.
Entailment-aware (-A) variants outperform corresponding
unaware (-U) variants on iBLEU score, while outperform-
ing the majority-class (i.e., ≡) copy-input baseline (except
for S2S-A). Weakly-supervised pre-training helps in boost-
ing the performance in terms of iBLEU and R-Con score as
evident from higher scores for Fine-tune-A(U) model over
S2S-A(U). Poor performance of S2S variants is because
of the small dataset size and much harder multi-objective
task. Re-ranking outputs from Fine-tune-U achieve higher
iBLEU and consistency score than Pre-train-A which is ex-
plicitly trained with weak-supervision for relation. However,
this comes at the computational cost of sampling multiple5

(k=20) outputs. Improved performance of Fine-tuned mod-
els over S2S indicates the importance of pre-training. Both
the ERAP variants achieve higher iBLEU and consistency
than its lower-bounding (Pre-trained) models but the out-
puts show less diversity in expression and make conserva-
tive lexical or syntactic changes. These results look encour-
aging until we notice Copy-input (last row) which achieves
high BLEU and iBLEU, indicating that these metrics fail
to punish against copying through the input (an observation
consistent with Niu et al. (2020)).

Ablation analysis of each scorer. We demonstrate the ef-
fectiveness of each scorer in ERAP via an ablation study in
Table 4. Using only consistency scorer for rewarding the
generated paraphrases, a significant improvement in con-

4We report analogous results for ParaNMT in the Appendix
available at https://arxiv.org/pdf/2203.10483.pdf.

5We report results for k ∈ {1, 5, 10} in the Appendix.
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Model BLEU↑ Div↑ iBLEU↑ R-Con↑
Gold-reference − 48.58 − 81.55
Pre-train-A 17.20 74.25 8.75 65.53
+Con 24.82 58.55 12.29 96.75
+Con+Sim 39.78 42.05 20.24 94.72
+Con+Sim+Div 21.68 68.41 11.29 93.60
ERAP-A 28.20 40.65 14.43 68.61

Table 4: Ablation of scorers in ERAP. Con, Sim, Div refers
to relation consistency, semantic similarity, and expression
diversity scorers. Underline denote more copying of input
for Diversity (Div) score and presence of heuristics in out-
puts for R-Con score as compared to gold-references.

Figure 3: Qualitative outputs: 1 showing the effectiveness of
various scorers, 2 showing heuristic learned in the absence
of hypothesis-only adversary, and 3 from various models.

sistency score is observed as compared to Pre-train-A and
Gold-references. However, this high score may occur at the
cost of semantic similarity (e.g., 1 in Figure 3) wherein out-
put conforms to ⊏ relation at the cost of losing much of the
content. Adding similarity scorer, helps in retaining some
of the content (higher BLEU and iBLEU) but results in
copying (low diversity) from the input. Addition of diversity
scorer helps in introducing diversity in expression. However,
model is still prone to heuristics (e.g., losing most of the
content from input (1 in Figure 3), or adding irrelevant to-

Model R-T Sim↑ Div↑ Gram↑ R-Con↑
Pre-train-U 7 4.60 2.62 4.73 −
Pre-train-A 3 4.67 2.60 4.67 48.00
RR-S2S-U

3
2.72 3.15 3.46 24.00

RR-FT-U 3.05 2.89 4.27 28.00
ERAP-U

3
3.98 2.85 4.10 40.00

ERAP-A 3.95 2.68 4.42 64.00
Fine-tune-U 7 3.87 3.10 4.83 −
Fine-tune-A 3 3.80 3.04 4.68 48.00

Table 5: Average scores across 3 annotators are reported
for Similarity (Sim, α=0.65), Diversity (Div, α=0.55), and
Grammaticality (Gram, α=0.72) and % of correct specified
relation for R-Con (α=0.70). Moderate to strong inter-rater
reliability is observed with Krippendorff’s α.

kens ‘with mexico’ or ‘desert’ (2 in Figure 3)) for ensuring
high consistency score. Introducing Adversary reduces the
heuristics learned by the generator. Together all the scorers
help maintain a good balance for this multi-objective task.

Human evaluation. We report the human evaluation for
25 test outputs each from 8 models for 4 measures in Table 5.
ERAP-A achieves the highest consistency while maintaining
a good balance between similarity, diversity and grammati-
cality. RR-S2S-U has the highest diversity which comes at
the cost of semantic similarity and grammaticality (e.g., 3 in
Figure 3). A strikingly different observation is high similar-
ity and low diversity of Pre-trained variants, reinforcing the
issues with existing automatic measures.

5 Extrinsic Evaluation
The intrinsic evaluations show that ERAP produces quality
paraphrases while adhering to the specified entailment rela-
tion. Next, we examine the utility of entailment-aware para-
phrasing models over unaware models for a downstream ap-
plication, namely paraphrastic data augmentation for textual
entailment task. Given two sentences, a premise p and a hy-
pothesis h, the task of textual entailment is to determine if a
human would infer h is true from p. Prior work has shown
that paraphrastic augmentation of textual entailment datasets
improve performance (Hu et al. 2019a); however, these ap-
proaches make the simplifying assumption that entailment
relations are preserved under paraphrase, which is not al-
ways the case (see Figure 1 and 30% of ParaBank pairs
were found to be semantically-divergent using Oracle). We
use SICK NLI dataset for this task because we have a para-
phrasing system trained on similar data distribution6.

We hypothesize that entailment-aware augmentations will
result in fewer label violations, and thus overall improved
performance on the textual entailment task. Moreover, ex-
plicit control over the entailment relation allows for greater
variety of augmentations that can be generated (an exhaus-
tive list of label preserving augmentations based on entail-

6Note that we retained the train, test, development sets of SICK
NLI dataset in the recasted SICK dataset and therefore the para-
phrasing models have only seen train set.
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Type (Label) Augmentation Pairs
≡ (E/NE) ⟨p′, h⟩ ⟨p, h′⟩ ⟨p′, h′⟩
⊐ (E/NE) ⟨pr, h⟩ ⟨pr, h′⟩
⊏ (E/U) ⟨p, hf⟩ ⟨p′, hf⟩ ⟨pr, hf⟩

Unknown (U/U) ⟨pf, h′⟩ ⟨pf, hf⟩ ⟨p, hr⟩ ⟨p′, hr⟩
⟨pr, hr⟩ ⟨pf, r⟩ ⟨pf, h⟩

Table 6: Various augmentations for ⟨p, h⟩ with label as
E/NE (entails/does not entail) grouped as per the type
(and corresponding projected labels) according to the en-
tailment composition rules defined in MacCartney (2009).
p
′(h′), pr(hr), pf(hf) denote ≡, ⊐, and ⊏ paraphrase, resp.

ment relation between a p (or h) and its paraphrase is pre-
sented in Table 6) with entailment-aware models.

Paraphrastic Data Augmentation We generate para-
phrases for all premises p ∈ P and hypotheses h ∈ H
present in the train set of SICK NLI using entailment-
aware and unaware models. We obtain augmentation data by
combining all the paraphrases (generated using entailment-
aware models) with original data and label them as
per Table 6. Augmentation paraphrases generated from
entailment-unaware models are (naı̈vely) assumed to hold
the ≡ relation. RoBERTa-based binary classifiers are trained
on original dataset along with the paraphrastic augmenta-
tions to predict whether p entails h.

Susceptibility to Augmentation Artifacts. If paraphras-
tic augmentations introduce noisy training examples with
incorrectly projected labels, this could lead to, what we call
augmentation artifacts in downstream models. We posit that
paraphrastically augmented textual entailment (henceforth,
PATE) models trained on entailment-aware augmentations
will be less susceptible to such artifacts than the models
trained with entailment-unaware augmentations. To test this,
we generate augmentations for the test set of SICK NLI and
manually annotate 1253 augmented samples to obtain 218
incorrectly labeled examples. We evaluate PATE models on
these examples (referred to as adversarial test examples).

Extrinsic Results. We report accuracy of PATE models on
original SICK development and test sets as well as on adver-
sarial test examples in Table 7. As per our hypothesis, mod-
els trained with augmentations generated using entailment-
aware models result in improved accuracy on both origi-
nal as well as adversarial test samples over those trained
with entailment-unaware augmentations. Textual entailment
model trained only on SICK NLI data performs the best on
adversarial test set as expected and proves that although
augmentation helps in boosting the performance of a model,
it introduces augmentation artifacts during training.

6 Related Work
Paraphrase generation is a common NLP task with
widespread applications. Earlier approaches are rule-
based (Barzilay, McKeown, and Elhadad 1999; Ellsworth
and Janin 2007) or data-driven (Madnani and Dorr
2010). Recent, supervised deep learning approaches use

Data R-T O-Dev↑ O-Test↑ A-Test↑
SICK NLI - 95.56 93.78 83.02
+FT-U(≡) 7 95.15 93.68 69.72
+FT-A(≡)

3

95.35 94.62 77.98
+FT-A(≡,⊐) 95.76 93.95 75.69
+ERAP-A(≡) 95.15 94.58 78.44
+ERAP-A(≡,⊐) 95.15 93.86 69.72

Table 7: Accuracy results of PATE models for Original (O-)
and Adversarial (A-) datasets. FT/ERAP refers to the Fine-
tuned/proposed model used for generating augmentations.
Type of augmentation used as per Table 6 in parenthesis.
U/A denote entailment-unaware (aware) variant.

LSTMs (Prakash et al. 2016), VAEs (Gupta et al. 2018),
pointer-generator networks (See, Liu, and Manning 2017),
and transformer-based (Li et al. 2019) sequence-to-sequence
models. Li et al. (2018) use RL for supervised paraphrasing.
Unsupervised paraphrasing is a challenging and emerg-
ing NLP task with limited efforts. Bowman et al. (2015b)
train VAE to sample less controllable paraphrases. Others
use metropolis-hastings (Miao et al. 2019), simulated an-
nealing (Liu et al. 2020) or dynamic-blocking (Niu et al.
2020) to add constraints to the decoder at test time. Siddique,
Oymak, and Hristidis (2020) use RL to maximize expected
reward based on adequacy, fluency and diversity. Our RL-
based approach draws inspiration from this work by intro-
ducing oracle and hypothesis-only adversary.
Controllable text generation is a closely related field with
efforts been made to add lexical (Hu et al. 2019a; Garg et al.
2021) or syntactic control (Iyyer et al. 2018; Chen et al.
2019; Goyal and Durrett 2020) to improve diversity of para-
phrases. However, ours is the first work which introduces a
semantic control for paraphrase generation.
Style transfer is a related field that aims at transforming an
input to adhere to a specified target attribute (e.g., sentiment,
formality). RL has been used to explicitly reward the output
to adhere to a target attribute (Gong et al. 2019; Sancheti
et al. 2020; Luo et al. 2019; Liu, Neubig, and Wieting 2020;
Goyal et al. 2021). The target attributes are only a function
of the output and defined at a lexical level. However, we
consider a relation control which is a function of both the
input and the output, and is defined at a semantic level.

7 Conclusion
We introduce a new task of entailment-relation-aware
paraphrase generation and propose a RL-based weakly-
supervised model (ERAP) that can be trained without a task-
specific corpus. Additionally, an existing NLI corpora is re-
casted to curate a small annotated dataset for this task, and
provide performance bounds for it. A novel Oracle is pro-
posed to obtain weak-supervision for relation control for ex-
isting paraphrase corpora. ERAP is shown to generate para-
phrases conforming to the specified relation while maintain-
ing quality of the paraphrase. Intrinsic and Extrinsic experi-
ments demonstrate the utility of entailment-relation control,
indicating a fruitful direction for future research.
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