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Abstract
A conversation is a sequence of utterances, where each utter-
ance plays a specific discourse role while expressing a partic-
ular emotion. This paper proposes a novel method to exploit
latent discourse role information of an utterance to determine
the emotion it conveys in a conversation. Specifically, we
use a variant of the Variational-Autoencoder (VAE) to model
the context-aware latent discourse roles of each utterance in
an unsupervised way. The latent discourse role representa-
tion further equips the utterance representation with a salient
clue for more accurate emotion recognition. Our experiments
show that our proposed method beats the best-reported per-
formances on three public Emotion Recognition in Conversa-
tion datasets. This proves that the discourse role information
of an utterance plays an important role in the emotion recog-
nition task, which no previous work has studied.

Introduction
With the growing usage of chatbots on e-commerce plat-
forms and increasing online messaging at work due to the
ongoing pandemic, a number of potential applications for
conversational artificial intelligence (AI) have arisen. One
key topic - emotion recognition in conversations (ERC) has
also started to gain attention from both the research (Haz-
arika et al. 2018a,b; Majumder et al. 2019; Zhong, Wang,
and Miao 2019; Ghosal et al. 2020; Li et al. 2020) and indus-
trial community. Besides being used to analyse the quality of
customer service conversations, automated chatbots use it to
detect the emotion of users during ongoing dialogue and en-
gage users with real-time emotion-aware responses.

Previous works on recognising the emotion of an utter-
ance in a conversation mainly consider two factors - (i) con-
text of the conversation (Poria et al. 2017), i.e. what was
said previously, and (ii) identity of the speaker (Ghosal et al.
2019; Li et al. 2020). Quite some efforts (Poria et al. 2017;
Ghosal et al. 2019; Ishiwatari et al. 2020) focus on how
to incorporate information about the conversation context
from the surrounding utterances to identify the emotion ex-
pressed by the query utterance. Hazarika et al. (2018a) and
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Figure 1: Utterances with their discourse roles and emotions.

Majumder et al. (2019) explicitly model the effect of the
speaker identity to incorporate the speaker’s emotional state.
While these factors have proven to be effective in identify-
ing the emotion expressed by an utterance, there are other
factors that also influence the emotion. A conversation is a
sequence of utterances, where each utterance plays a spe-
cific discourse role while expressing a particular emotion.
The discourse role played by each utterance, such as asking
a question, disagreeing to a previous prompt, and other di-
alogue acts (Zeng et al. 2019) captures the underlying user
intent and information flow of a conversation. Thus, earlier
works that ignore the discourse role suffer from the intent-
misleading problem, i.e., they cannot capture the utterance’s
intention correctly, especially when the intent is not explicit,
and the utterance has lexical ambiguity.

For example, in the conversation shown in Figure 1, by
recognising that the last utterance “We’ve got to say it to
him” plays a disagreement role in the dialogue flow, we can
readily infer that the utterance conveys an angry emotion.
On the other hand, if the utterance is intended to be sympa-
thy, then the speaker will be expressing a sad emotion. Con-
sequently, we observe that the discourse role could provide
a signal to identify the emotion expressed.
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In this paper, we aim to enhance utterance representa-
tions with their discourse role information to determine
the emotion being conveyed. Our work focuses only on
the textual information in a conversation to detect the
underlying emotion. However, it is noticeable that the
discourse role annotation based on the conversation text is
not available in most public ERC datasets. Only one ERC
dataset, DailyDialog (Li et al. 2017) has such annotations.
It is tedious and time-consuming to annotate discourse
role information for large-scale datasets. To overcome
this limitation, and more importantly to facilitate the
real-world application in different domains / datasets when
discourse roles are not available, we propose a variant of
the Variational-Autoencoder (VAE) (Kingma and Welling
2014) to obtain a latent variable for each utterance in an
unsupervised manner. Specifically, the VAE learns the
latent variable by reconstructing the utterance. The learned
latent variable is used to represent the latent discourse role.
Additionally, we observe the existence of i) dependency
between adjacent discourse roles and ii) dependency
between the conversation context and discourse role, e.g.
a question followed by an answer in Figure 1. Therefore,
we extend the VAE to capture these two dependencies. In
particular, we employ a recurrent neural network to model
the sequential nature of discourse roles and use a pair of
adjacent utterances to construct a context-aware input for
the VAE.

The contributions of our paper are three-fold:

• We are the first to study the importance of the discourse
role information of utterances in the emotion recognition
in conversation task.

• To this end, we introduce a variant of VAE to model the
context-aware latent discourse role with a latent variable
to overcome the lack of discourse role annotation in ERC
datasets.

• We validate the efficacy of our proposed model and
achieve state-of-art performance on three publicly avail-
able datasets of differing sizes - DailyDialog (Li et al.
2017), MELD (Poria et al. 2019) and IEMOCAP (Busso
et al. 2008).

Related Work
Emotion Recognition in Conversations
Earlier studies on detecting emotion of utterances in conver-
sations focus on tracking the speaker’s state using recurrent
neural networks (Hazarika et al. 2018a,b). Majumder et al.
(2019) added two recurrent neural networks to track the con-
versation’s global context and emotional state. In another
line of work, Ghosal et al. (2019), Zhang et al. (2019) and
Ishiwatari et al. (2020) used graph neural networks to model
the self and inter-speaker dependencies in a conversation.
The nodes in the graph represent the utterances and edges
represent the self and inter-speaker dependencies between
utterances. Meanwhile, Zhong, Wang, and Miao (2019), Li
et al. (2020) and Zhang et al. (2020) modelled the corre-
lation between intra and inter utterance using self-attention

and cross-attention in the transformer (Vaswani et al. 2017)
to generate context-aware utterance representations.

In a conversation, humans do not always explicitly ex-
press their emotions in the words they say and often rely
on common sense knowledge to understand one another.
Hence, Zhong, Wang, and Miao (2019), Ghosal et al. (2020)
and Zhang et al. (2020) incorporated common sense knowl-
edge to improve emotion detection. Notably, transfer learn-
ing has been widely adopted in NLP as it has shown signif-
icant improvements on multiple tasks. Jiao, Lyu, and King
(2020) explored pretraining an encoder on utterance com-
pletion task before fine-tuning on ERC datasets. Naturally,
we also observe that earlier emotions influence the emotion
in conversations. Lu et al. (2020) model the interaction be-
tween emotions with an iterative algorithm.

Latent Variables in Conversation
A number of previous works have employed latent variables
from deep generative models to model latent states in con-
versations. In particular, Zhao, Lee, and Eskenazi (2018),
Zeng et al. (2019), Shi, Zhao, and Yu (2019) and Bao et al.
(2020) applied Variational-Autoencoders (VAEs) (Kingma
and Welling 2014) to learn latent states in conversations.
Zhao, Lee, and Eskenazi (2018) and Bao et al. (2020) model
the latent states for response generation. Our work is directly
related to Zeng et al. (2019) that represents the latent dis-
course role of each utterance with a latent variable. We en-
hance the latent discourse role modelling with two context
dependencies which shows significant benefit in our ERC
experiment. Shi, Zhao, and Yu (2019) model the sequential
nature of latent states in a conversation. Our work is in line,
but we employ a recurrent neural network to connect all the
latent states in a recurrent manner instead of using a fully
connected layer between two latent states.

Methodology
In a conversation, the discourse role played by each ut-
terance provides a salient clue to identify the emotion ex-
pressed. To overcome the lack of discourse role annotation
in public ERC datasets, we propose to represent the dis-
course role with the latent variable from a VAE for each
utterance in an unsupervised manner.

The overall architecture of our model is shown in Figure
2. Our proposed model consists of two key components - a
hierarchical conversation encoder and a latent discourse role
encoder. The hierarchical conversation encoder generates an
utterance representation in a hierarchical manner, it first en-
codes each utterance independently, then incorporates the
conversation context with a recurrent neural network. The
latent discourse role encoder is a variant of VAE that gener-
ates the latent discourse role for each utterance.

Problem Definition
In each conversation, there is a sequence of K utterances
u1, u2, ..., uK . Each utterance uk consists of a sequence of
Nk tokens wk,1, wk,2, ..., wk,Nk

. The objective of ERC is
to predict the emotion label yk ∈ E of each utterance uk,
where E is the set of emotion labels.
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Figure 2: Illustration of our proposed model, which has two key components - a hierarchical conversation encoder and a latent
discourse role encoder.

Hierarchical Conversation Encoder
To model the relationship between utterances in a conversa-
tion, we use a hierarchical structure. We first encode each
utterance independently, then feed the sequence of encoded
utterances into a recurrent neural network to produce
context-aware utterance representations.

Utterance-level Encoding We employ a pre-trained lan-
guage model to encode each utterance independently, as
the encoded representation by pre-trained language mod-
els had been shown to enhance performance for multi-
ple NLP tasks. We leverage RoBERTa (Liu et al. 2019)
as our utterance encoder, which is based on the popular
BERT (Devlin et al. 2019) with an enhanced training regime.
RoBERTa has been shown to have better performance than
BERT. Each utterance is lowercased and tokenized by the
RoBERTa tokenizer, and at the start of the sequence of to-
kens, a special [CLS] token is inserted The tokenized se-
quence [[CLS], wk,1, wk,2, ..., wk,Nk

] is fed into a trans-
former encoder (Vaswani et al. 2017), which is initialized
with the RoBERTa pretrained weights. We then take the en-
coded [CLS] vector from the transformer encoder output as
the utterance representation, uk.

uk = Transformer([CLS], wk,1, wk,2, ..., wk,Nk
) (1)

As the latent discourse role can provide salient informa-
tion to determine the emotion conveyed by the utterance, we
concatenate the utterance representation uk with the latent
discourse role representation dk from the latent discourse
role encoder to form a discourse-aware utterance represen-
tation ûk.

ûk = uk ⊕ dk (2)

We describe how we generate the latent discourse role
representation dk in the next section.

Conversation-level Encoding Subsequently, we use the
sequence of discourse-role aware utterance representa-
tions û1, û2, ..., ûK in a conversation as the input of
the conversation-level bidirectional LSTM. Given the k-th
discourse-aware utterance representation ûk, we update hk
as follows:

hk = BiLSTM(ûk, hk−1) (3)

where hk ∈ RH is the hidden state of the LSTM for the
discourse-aware utterance representation ûk. The bidirec-
tional LSTM models the sequential nature of a conversation
so that each utterance is updated with the information from
their predecessors and successors. As such, the output
of the conversation level layer is a sequence of context-
aware discourse-role aware utterance representations,
h1, h2, ..., hK .

Emotion Classification Finally, to predict the emotion label
yk for each utterance, a linear layer is used.

yk = Wehk + be (4)

where We ∈ RE×H and be ∈ RE are trainable parameters,
and E is the number of emotion classes.

We compute the classification loss using cross-entropy
loss:

Lcls = − 1∑C
i=1Ki

C∑
i=1

Ki∑
j=1

logPi,j [yi,j ] (5)

whereC is the number of conversations,Ki is the number of
utterances in conversation i, Pi,j is the probability distribu-
tion of emotion labels for utterance j of conversation i and
yi,j is the true emotion label.
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Latent Discourse Role Encoder
In this section, we describe how our latent discourse role
encoder generates context-aware latent discourse roles for
each utterance in a conversation. We assume that there are
D latent discourse roles at the corpus level, and each latent
discourse role is captured by a multinomial word distribu-
tion over the vocabulary size V similar to (Zeng et al. 2019).
Our latent discourse role encoder employs a variant of VAE
(Kingma and Welling 2014), comprising two elements - an
encoder and a decoder. The VAE generates aD-dimensional
latent variable for each utterance that represents their latent
discourse role distribution. Specifically, the encoder first en-
codes the input with a non-linear function and parameterises
a prior distribution from which the latent variable ẑ is sam-
pled. Next, we generate the latent discourse role distribution
via a softmax construction conditioned on ẑ. The decoder
then learns to reconstruct the input from the latent discourse
role distribution and the multinomial word distribution.

Unlike the input for the hierarchical conversation en-
coder, we process each utterance as a bag-of-words vector,
ubowk ∈ RV , before feeding the vector into the latent
discourse role encoder.

Discourse-Context Dependency One key characteristic of
the discourse role is its dependency on the previous conver-
sation context. For example, an utterance can only play the
“answer” role if there is a “question” being asked earlier in
the conversation. In order to generate context-aware latent
discourse roles, we combine the preceding utterance with the
current utterance by summing the two bag-of-words vectors
to incorporate the conversational context.

ūbowk = ubowk−1 + ubowk (6)

While the combined pair of utterances is used as the input
to the encoder, we use the current utterance ubowk as the
reconstruction target so that the model will learn the latent
discourse role of the utterance uk.

Encoder The combined bag-of-words vector, ūbowk is fed
into two feed-forward encoders fµ and fσ

2

to generate
mean µk ∈ RD and variance σ2

k ∈ RD to parameterize
q(zk|ūbowk ) = N (µk, σ

2
k), where zk ∈ RD is a latent vari-

able.

µk = fµ(ūbowk ) (7)

σ2
k = fσ

2

(ūbowk ) (8)

Then, we sample ẑk from q(zk|ūbowk ) using a
reparametrization trick as described in (Kingma and
Welling 2014)

ẑk = µk + ε · σ2
k (9)

where ε is sampled from N (0, I2) and I is the identity
matrix.

Discourse Roles Dependency Notably, the latent variable
for each utterance is sampled independently. Unlike previ-
ous works that apply a feed-forward layer on the sampled

latent variable ẑk before decoding, we model the sequential
dependency between the sampled latent variables with a re-
current neural network. The recurrent neural network model
the sequential information flow across all latent variables.
Specifically, we feed the sequence of independently sampled
latent variables ẑ0, ẑ1, ..., ẑK into a unidirectional GRU.

zk = GRU(ẑk, zk−1) (10)

where zk ∈ RD is the hidden state of the GRU for the sam-
pled latent variable ẑk.

Finally, we obtain the context-aware discourse-aware la-
tent discourse roles distribution θk ∈ RD from the hidden
states of the GRU:

θk = softmax(zk) (11)

Decoder In the decoder, discourse role embeddings ED ∈
RD×M and word embeddings EW ∈ RV×M are randomly
initialized, where D is the number of latent discourse roles,
V is the vocabulary size and M is the embedding dimen-
sion. The two embeddings are used to construct the dis-
course role-words distribution β ∈ RD×V as follows:

β = softmax(
E>W · ED√

M
) (12)

The utterance ubowk is then reconstructed as ûbowk using
the context-aware latent discourse role distribution θk and
the discourse role-words distribution β as follows:

ûbowk = θkβ (13)

To enhance our utterance representation with the latent
discourse role information, we obtain the latent discourse
role representation dk ∈ RM from the context-aware la-
tent discourse roles distribution θk and discourse role em-
beddings ED as follows:

dk = θkED (14)

The latent discourse role representation, which can be
seen as the weighted discourse role representation, is then
concatenated with the independently encoded utterance rep-
resentation as shown in Equation 2.

The overall loss for the latent discourse role encoder is
defined as:

Ldis = KL[q(zk|ubowk ||p(zk)] (15)

− Eq(zk|ubow
k )[logp(u

bow
k |zk)]

where the first term (Kullback-Leibler divergence) en-
sures that the approximated posteriors are close to the true
prior distribution, and the second term ensures that the gen-
erated latent discourse roles can reconstruct the current ut-
terance.

We train both hierarchical conversation encoder and latent
discourse roles encoder together in an end-to-end manner
with the loss function as defined:

L = Lcls + λdisLdis (16)

where λdis is the weight of loss for the latent discourse role
encoder determined based on experiments.
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Dataset # dialogues / # utterances # labels Evaluation Metrictrain val test
DailyDialog 11,118 / 87,832 1,000 / 7,912 1,000 / 7863 7* Micro-F1
MELD 1,039 / 9,989 114 / 1,109 280 / 2,610 7 Weighted Avg. F1
IEMOCAP 108 / 5,236 12 / 574 31 / 1,623 6 Weighted Avg. F1

Table 1: Dataset description and Evaluation Metric. *Neutral labels are excluded when calculating the Micro F1 score for the
DailyDialog dataset.

Hyperparameters DailyDialog MELD IEMOCAP
C 150 300 200
D 19 7 19
M 50 50 50

λdiscourse 1e-3 1e-1 1e-5
learning rate 5e-4 2e-5 5e-3

Table 2: Hyperparameter settings. C is the hidden size of
the conversation-level bidirectional GRU, D is the number
of latent discourse roles, M is the discourse role and word
embedding dimension.

Experimental Settings

In this section, we present the experimental settings used
to validate the effectiveness of our proposed methods. The
experimental settings include the datasets, evaluation met-
rics and implementation details. We also briefly describe the
models that we compare against.

Datasets and Evaluation

We evaluate our model on three publicly available datasets,
differing in magnitudes of size. We present the summary of
statistics for the datasets used in our experiments in Table 1.

• DialyDialog (Li et al. 2017) is a dyadic text-based dialog
dataset based on daily written communications. Each ut-
terance in every dialogue is annotated as one of the seven
emotion classes: happiness, surprise, sadness, anger, dis-
gust, fear or no emotion.

• MELD (Poria et al. 2019) is a multiparty multi-modal
dialog dataset from the Friends TV series. We only used
the text features. Each utterance in every dialogue is an-
notated as one of the seven emotion classes: anger, dis-
gust, sadness, joy, surprise, fear or neutral.

• IEMOCAP (Busso et al. 2008) is dyadic multi-modal di-
alog dataset based on videos of two-way conversations.
Like MELD, we only used the text features. Each ut-
terance in every dialogue is annotated as one of the six
emotion classes: happy, sad, neutral, angry, excited, and
frustrated.

For evaluation, we follow the settings from (Ghosal et al.
2020). We use the Micro-F1 score excluding the neutral (no
emotion) label for DailyDialog. The neutral label accounts
for more than 80% of the labels. For MELD and IEMOCAP,
we use the weighted-average F1 score for all labels.

Implementation Details
We preprocess the utterances by lower-casing and tokeniz-
ing using RoBERTa and Spacy1 tokenizers for the input to
the hierarchical conversation encoder and latent discourse
role encoder, respectively. Utterances fed into the hierar-
chical conversation encoder are truncated at 128 tokens.
All deep learning models are implemented using PyTorch
(Paszke et al. 2019).

We use the publicly available RoBERTaBASE weights
to initialize the transformer for utterance-level encoding.
We optimize the model using the AdamW (Devlin et al.
2019) optimizer with a linear warm-up schedule for every
dataset. We employed two different learning rates - one for
the utterance-level transformer encoder and one for the rest
of the model.

Each model is fine-tuned on the validation dataset and
early stopped. We performed grid search for the follow-
ing hyperparameters: hidden size of the conversation level
BiGRU amongst {100, 200, 300}, number of latent dis-
course roles amongst {4− 20}, dimension for the discourse
role and word embedding amongst {50, 100, 150, 200},
weight of the latent discourse encoder loss amongst
{1e−1, 1e−2, 1e−3, 1e−4, 1e−5} and learning rate for rest of
the model amongst {2e−3, 5e−3, 2e−4, 5e−4, 2e−5, 5e−5}
for all datasets. We used the same learning rate 2e−5 for
the utterance-level transformer encoder. We evaluate the best
fine-tuned model on the test data. Table 2 contains the hy-
perparameters settings for each dataset which were selected
using the validation set.

Compared Methods
We compare our proposed model with the following base-
lines and state-of-the-art models.

• CNN+cLSTM (Poria et al. 2017) first encode utterance
using a CNN and then feed into a conversation-level
LSTM to model the sequential nature of a conversation.

• ICON (Hazarika et al. 2018a) employ one GRU for each
speaker to model speaker-specific utterance representa-
tion and another conversation-level GRU.

• DialogueRNN (Majumder et al. 2019) employ three sep-
arate GRU networks for speaker, context and emotion
states.

• DialogueGCN (Ghosal et al. 2019) model self-
dependency and inter-speaker dependency by using two-
layer graph neural networks.

1https://spacy.io/
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Model DailyDialog MELD IEMOCAP
CNN+cLSTM 50.24 56.87 54.95
ICON - - 58.54
DialogueRNN - 57.03 62.75
DialogueGCN - 58.10 64.18
KET 53.37 58.18 59.56
KAITML 54.71 58.97 61.43
IEIN - 60.72 64.37
RGAT 54.31 60.91 65.22
HiTrans - 61.94 64.50
DialogXL 54.93 62.41 65.94
COSMIC 58.48 65.21 65.28
Ours 60.95 65.34 68.23

Table 3: Experimental results on emotion recognition in con-
versation on DailyDialog, MELD and IEMOCAP datasets.
Evaluation measure is micro-average F1 for DailyDialog
and weighted-average F1 for MELD and IEMOCAP.

• KET (Zhong, Wang, and Miao 2019) uses hierarchi-
cal self-attention and cross-attention to capture intra-
utterance and inter-utterance correlations and a context-
aware graph attention mechanism.

• KAITML (Zhang et al. 2020) augments utterance rep-
resentation with commonsense knowledge, and apply
Incremental Transformer to capture intra-utterance and
inter-utterance correlations.

• IEIN (Lu et al. 2020) explicitly model the emotion inter-
action between utterances using an iterative improvement
algorithm.

• RGAT (Ishiwatari et al. 2020) introduce relation posi-
tional encoding to provided graph neural networks with
sequential information reflecting relation types.

• HiTrans (Li et al. 2020) uses two hierarchical transform-
ers and train on an auxiliary task to predict if a pair of
utterances belong to the same speaker.

• DialogXL (Shen et al. 2021) extends pretrained language
model XLNet (Yang et al. 2019) with a novel memory
component to store historical context and dialog-aware
self-attention .

• COSMIC (Ghosal et al. 2020) introduce commonsense
knowledge and uses five bidirectional GRUs to model 5
different states in a conversation. The five states are con-
text, internal, external, intent, and emotion.

Results and Analysis
Comparison with Baselines and State-of-the-Art
Methods
Table 3 reports a performance comparison of all published
models on the DailyDialog, MELD and IEMCOAP datasets.
While earlier models like DialogueRNN, DialogueGCN and
KET encode utterances with GloVe embeddings, we ob-
served that using pretrained language models to generate
utterance representations resulted in a significant improve-
ment in performance. This is evidenced by recent publica-
tions using RGAT, HiTrans, DialogXL and COSMIC which

use pretrained language models like BERT, RoBERTa and
XLNet. Following this trend, our proposed model encod-
ing utterances with a pre-trained RoBERTa model enhanced
with latent discourse role information achieves state-of-the-
art results across all three public ERC datasets.

On the DailyDialog dataset, our model achieves 60.95%
in micro F1, a 2.47% improvement compared against the
best-published model. Similarly, our model significantly
outperforms the state-of-the-art by 2.29% weighted F1 on
IEMOCAP. Finally, on MELD, our model improves on the
state-of-the-art and achieves very competitive performance.
The performance improvement gained on MELD is not as
significant as the other two datasets. We hypothesize that this
may be due to the difference in information flow in a multi-
party conversation dataset such as MELD versus dyadic dia-
logue in DailyDialog and IEMOCAP. In the future, we plan
to identify better way to model the structure of latent dis-
course roles in a multi-party conversation.

It is to be noted that the existing published models are
orthogonal to our work. These models focus on modelling
the conversation context, speaker identity and incorporat-
ing common-sense knowledge. However, none of them con-
siders the discourse role of each utterance. Our proposed
model is able to improve emotion recognition performance
by modelling only the sequential dependency between utter-
ances and latent discourse role information, without mod-
elling any of the features used by other models. Thus, it may
potentially reinforce the effectiveness of discourse role in-
formation for detecting emotions in conversation over exist-
ing models as well.

Importance of Discourse Roles Dependency

We study the importance of i) incorporating the dependency
between latent discourse role and conversation context and
ii) the transition dependency between adjacent latent dis-
course roles. The results of the ablation study are presented
in Table 4. To study the effect of conversation context on
the generated discourse roles, we use only the target utter-
ance as input to the latent discourse role encoder instead of
the combined pair of utterances. Removing the contextual
information in the latent discourse role results in a drop in
performance. For the discourse role transition dependency
ablation, we discard the GRU used to model the sequential
nature of the latent discourse roles. It is observed that in all
three datasets, the performance drop is higher than in the
discourse-context ablation.

The ablation study confirms that both the conversation
context and discourse role transitions are intrinsic to enhanc-
ing the utterance representation in our proposed model. The
appreciable performance improvement by incorporating the
dependency between latent discourse role and conversation
context suggests that the preceding utterance provides valu-
able information about the context and flow of the conversa-
tion. This was expected to be the case because a conversation
is interactive, and we react and reply to what was being said
earlier in a conversation.
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Method DailyDialog MELD IEMOCAP
Our Method 60.95 65.34 68.23
w/o Discourse-Context Dependency 59.89 63.57 65.96
w/o Discourse Role Dependency 59.69 63.20 65.08
w/o Both Dependencies 58.44 63.03 64.11

Table 4: Ablation results w.r.t the latent discourse role dependencies on DailyDialog, MELD and IEMOCAP datasets.

Figure 3: Performance on DailyDialog and IEMOCAP with
different number of latent discourse roles.

Hierarchical Latent
F1Conversation Discourse Role

Encoder Encoder
3 3 68.23
3 7 66.06
7 3 44.87

Table 5: Ablation study on IEMOCAP. 7 means the corre-
sponding encoder is removed from the model.

Number of Latent Discourse Roles

To study the effect of varying the number of latent discourse
roles on model performance, we report model performance
on DailyDialog and IEMOCAP over a range of number of
latent discourse roles, shown in Fig 3. The number of latent
discourse roles determines how the intent and information
flow that each utterance entails are differentiated.

From the visualization, it is clear that the model perfor-
mance does not increase monotonically with the number of
latent discourse roles. The observation aligns with our ex-
pectations because it is challenging to explicitly define the
underlying discourse roles in a conversation for any corpus.
With a smaller set of discourse roles, the utterances are less
differentiated, leading to the signals provided by the dis-
course roles to be weaker. While on the opposite side of the
spectrum, having too many discourse roles would result in
a noisier signal, making it more difficult to determine the
emotion conveyed by the utterance.

Utterances Gold Pred
Speaker 1: No, it doesn’t pay
the bills, but it would pay
something. And it would help
you get somewhere else

Neutral Neutral

Speaker 2: I still can’t live
on in six seven and five. It’s
not possible in Los Angeles.
Housing is too expensive

Anger Frustrated

Table 6: An example of misclassification between similar
emotion labels ”Anger” and ”Frustrated” in IEMOCAP.

Ablation Study
We perform an ablation study on the two encoders of our
proposed model, namely Hierarchical Conversation Encoder
and Latent Discourse Role Encoder, on the IEMOCAP
dataset in Table 5. We feed the latent discourse role rep-
resentation to the classification layer when we remove the
Hierarchical Conversation Encoder.

The Hierarchical Conversation Encoder, which encodes
utterance with a pretrained language model independently
and performs contextual modelling over the conversation,
produces rich representations for emotion recognition in
conversations. The Latent Discourse Role Encoder repre-
sents each utterance within a fixed set of latent discourse
roles, which limits its expressivity for emotion recognition.
However, enhancing the representations from the Hierarchi-
cal Conversation Encoder with the latent discourse role rep-
resentations improves the model performance, validating the
importance of latent discourse role in emotion recognition.

Error Analysis
Our model performs exceptionally in all three public ERC
datasets, showing a significant performance improvement
in two datasets and achieving state-of-the-art performance
on the third one. Upon analyzing the misclassifications be-
tween emotion labels, we observe that errors were most
common between emotion pairs that are closely related. In
certain cases, it is observed that the model has a tendency
to misclassify ‘happiness’ - ‘excited’, ‘anger’ - ‘frustrated’
in IEMOCAP and ‘happiness’ - ‘surprise’ in DailyDialog.
Table 6 present a case of misclassification between ‘anger’
and ‘frustrated’ in IEMOCAP dataset. It is difficult to ascer-
tain whether Speaker 2 is angry or frustrated when she/he
is complaining about expensive housing. This phenomenon
of misclassification between similar emotions has been ob-
served in previous studies (Zhong, Wang, and Miao 2019;
Ghosal et al. 2019). Meanwhile, we also observe that the
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model performance decreases when the conversation length
increases. Longer conversations might involve a change in
topic and not all utterances and their discourse roles are rel-
evant. Future investigations can look into segmentation of
long conversation into a coherent topic and reduce noise
from unrelated utterances.

Conclusion
In this paper, we study the importance of discourse role in
the emotion recognition in conversation task. We propose a
variant of VAE to model the context-aware latent discourse
role with latent variables in an unsupervised manner without
discourse role annotations. Our VAE models the relation-
ship between conversation context and discourse role and
the sequential nature of discourse roles. We demonstrated
the empirical effectiveness of our method on datasets of dif-
ferent magnitudes in size. The results show that enhancing
utterance representation with discourse role beats the best-
reported performances on three public datasets on ERC.
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Fox, E. B.; and Garnett, R., eds., Advances in Neural Infor-

mation Processing Systems 32: Annual Conference on Neu-
ral Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, 5754–5764.
Zeng, J.; Li, J.; He, Y.; Gao, C.; Lyu, M. R.; and King, I.
2019. What You Say and How You Say it: Joint Modeling
of Topics and Discourse in Microblog Conversations. Trans-
actions of the Association for Computational Linguistics, 7:
267–281.
Zhang, D.; Chen, X.; Xu, S.; and Xu, B. 2020. Knowledge
Aware Emotion Recognition in Textual Conversations via
Multi-Task Incremental Transformer. In Proceedings of the
28th International Conference on Computational Linguis-
tics, 4429–4440. Barcelona, Spain (Online): International
Committee on Computational Linguistics.
Zhang, D.; Wu, L.; Sun, C.; Li, S.; Zhu, Q.; and Zhou, G.
2019. Modeling both Context- and Speaker-Sensitive De-
pendence for Emotion Detection in Multi-speaker Conver-
sations. In Kraus, S., ed., Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJ-
CAI 2019, Macao, China, August 10-16, 2019, 5415–5421.
ijcai.org.
Zhao, T.; Lee, K.; and Eskenazi, M. 2018. Unsupervised
Discrete Sentence Representation Learning for Interpretable
Neural Dialog Generation. In Proceedings of the 56th An-
nual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), 1098–1107. Melbourne, Aus-
tralia: Association for Computational Linguistics.
Zhong, P.; Wang, D.; and Miao, C. 2019. Knowledge-
Enriched Transformer for Emotion Detection in Textual
Conversations. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), 165–176. Hong
Kong, China: Association for Computational Linguistics.

11129


