
Eye of the Beholder: Improved Relation Generalization
for Text-Based Reinforcement Learning Agents

Keerthiram Murugesan, Subhajit Chaudhury, Kartik Talamadupula
IBM Research

Abstract

Text-based games (TBGs) have become a popular proving
ground for the demonstration of learning-based agents that
make decisions in quasi real-world settings. The crux of the
problem for a reinforcement learning agent in such TBGs is
identifying the objects in the world, and those objects’ re-
lations with that world. While the recent use of text-based
resources for increasing an agent’s knowledge and improving
its generalization have shown promise, we posit in this paper
that there is much yet to be learned from visual representa-
tions of these same worlds. Specifically, we propose to retrieve
images that represent specific instances of text observations
from the world and train our agents on such images. This im-
proves the agent’s overall understanding of the game scene
and objects’ relationships to the world around them, and the
variety of visual representations on offer allow the agent to
generate a better generalization of a relationship. We show
that incorporating such images improves the performance of
agents in various TBG settings.

Introduction
Reinforcement Learning (RL) has seen a resurgence in recent
years thanks to advances in representation, inference, and
learning techniques – led by a massive scale-up and invest-
ment in deep neural network-based methods. Successful ap-
plications of RL have included domains such as Chess (Silver
et al. 2018), Go (Silver et al. 2017), and Atari games (Mnih
et al. 2016). However, with the emergence of natural language
processing (NLP) as a key AI application area, research atten-
tion has turned towards text-based applications and domains.
These domains offer their complexity challenges for RL al-
gorithms, including large and intractable action spaces – the
space of all possible words and combinations; partial ob-
servability of the world state; and under-specified goals and
rewards.

Text-based games (TBGs) have emerged as prime exem-
plars of the above challenges. Inspired by games such as
Dungeons & Dragons and Zork, researchers have worked
on putting together challenging environments that offer the
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complexities of real-world interactions but in sandbox set-
tings suitable for the training of RL agents. The foremost
such example is TextWorld (Côté et al. 2018), an open-source
text-based game engine that allows for the generation of
text-based game instances and the evaluation of agents on
those games. Much of the recent work on text-based RL (Am-
manabrolu and Riedl 2019; Dambekodi et al. 2020; Muruge-
san et al. 2021) has focused on the TextWorld environment,
and on imbuing agents with additional information to make
them learn, scale, and act more efficiently.

However, much of the information that has been used in the
prior art to improve the performance of AI agents in TBGs
is still restricted to the medium of text. In contrast, when
humans encounter games such as Zork and TextWorld, they
do not restrict themselves to only textual information. Indeed,
they are able to generalize to environments and the actions
within them by considering not just the form of information
provided by the environment; but also by imagining or visu-
alizing various forms of that information. This imagination is
key to generalizing beyond merely the information present in
the instance currently under consideration. In this work, we
posit that using images – either retrieved or imagined (gen-
erated) – that represent information from the game instance
can help improve the performance of RL agents in TBGs.

Specifically, we consider RL agents in the TextWorld and
Jericho TBG environments; and additional information that
can be provided to such agents to improve their performance.
Past work has focused on trying to use external knowledge to
either limit (Chaudhury et al. 2020) or enhance (Murugesan
et al. 2021) the space of actions: however, this has also been
restricted to the text modality. At their crux, these efforts
are all trying fundamentally to solve the problem of rela-
tionships within the environment – how are different things
in the world related to each other? And how can the agent
manipulate these relations to convert the initial state of the
world – via a sequence of observations – into the desired goal
state (or to maximize reward)? Purely text-based information
is extremely sparse and is unable to sufficiently abstract the
notion of relationships.

Consider for example the relationship at - a patio
chair is at the backyard. What does this relation mean
- what is the at-ness? Text cannot convey this information
effectively on its own: as the size of the underlying vocabu-
lary increases, the natural language space gets sparser and it
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becomes harder to extract signals to understand relationships
between objects (in this case, ‘patio chair’ and ‘backyard’).
Images, on the other hand, go a bit further in conveying the
meanings of relationships as understood by humans (Chen
and Lawrence Zitnick 2015). Images also help generalize
better: in text, a patio chair is always represented as patio
chair; yet in a visual medium, there can exist different
kinds of patio chairs, with different properties such as shape,
size, color, texture, surroundings, etc.

In this paper, we introduce the Scene Images for
Text-based Games (SceneIT) model (pronounced
“seen-it”) that integrates an external repository of images
as additional knowledge for an RL agent in text-based game
environments; and measure the performance of this model
against the state-of-the-art text-only method. Our images
come from two sources: pre-retrieved from prior existing im-
ages; and generated anew based on textual descriptions. We
show that an agent with access to this additional visual infor-
mation does significantly better, and examine some specific
instances that show the reason for this improved performance.

Methodology
Text-based reinforcement learning agents for TBGs inter-
act with the environment only using the modality of text
(Narasimhan, Kulkarni, and Barzilay 2015; He et al. 2016).
TBGs convey the state of the game at every step as observa-
tions in natural language text, and the text-based RL agent
learns to map the current state to one of the admissible ac-
tions (also in the text modality) available to it. Most current
text-based RL agents (e.g. (Murugesan et al. 2021)) focus on
integrating additional textual knowledge to learn and act in a
complex environment. Such agents thus lack the ability for
human-like imagination involved in solving TBGs efficiently.

In this section, we outline the methodology that we use to
integrate the visual (image) representation of a game scene
using our SceneIT approach for TBGs. In order to obtain
the visual representation of the scene that the agent is cur-
rently situated in, as the first step, we extract noun phrases
that represent objects and relational phrases between the ob-
jects in the scene from the text observation – for example,
kitchen of the white house, bottle on the
table, desk chair at bedroom, etc. These phrases
portray the scene in terms of which object is located at what
location, which we intend to use to create a “visual mind-
map” of the scene for the agent. Since the key component and
novelty of our system is the usage of images for the TBGs
under consideration, we first outline the collection process
for such images. Our technique relies on two main sources of
images: retrieval from the internet, and generation from pre-
existing models for imagining and generating visual scenes.
We describe each of these methods in detail below.

Collecting Images
Retrieving Images from the Internet: In order to obtain
images from the internet, we design an image retriever that
obtains the best matching image from the list of query strings
(noun phrases) that are used to represent the scene. This
process also ties into one of the central motivations of our

Figure 1: Examples of images obtained from (a) the web-
based image retriever, and (b) imagination via AttnGAN (Xu
et al. 2018a). The phrase used to retrieve or generate the
picture is indicated above the respective picture.

work, which is that images offer more signals to agents as they
try to abstract, represent, and use the relationships between
different objects in a scene.

To provide good generalization behavior, we design an
image retriever that automatically searches the internet for a
given query string without any human supervision 1. In addi-
tion, we use image caching to improve the speed of retrieval
such that the images corresponding to encountered queries
are saved to disk and need not be downloaded from the web
while training the agent. It is to be noted that the caching
process is completely generic and does not involve saving
specific situation-relevant images. Figure 1(a) provides some
examples of images that are retrieved from the internet for
specific phrases.

Imagining Images from Generative Models: The pre-
vious method of “visual mind-map” extraction uses pre-
existing images from the internet for scene representation.
Such a scene representation is useful for a human to visually
parse the scene. However, we also explore the potential for
representing visual scenes using images that are imagined by
generative models. Our hypothesis is that such images can
also provide useful visual features to improve generalization
in tasks from TextWorld (and other text-based games).

We use the Attentional Generative Adversarial Network
(AttnGAN) (Xu et al. 2018a) for attention-driven text-to-
image generation. This generative model uses a multi-stage
refinement for fine-grained generation of images from a given
text snippet. AttnGAN gives attention to the relevant tokens
in the natural language query in order to generate details at
different sub-regions of the image. For our approach, we pre-
train the AttnGAN model on the MS-COCO dataset (Lin et al.
2014). The queries used for image generation are the same as
the ones used for the previous internet retrieval-based scene
representation. We hypothesize that although such images
may not always be interpretable by humans – see Figure 1(b)
for a few examples – such images can provide some latent
image features for neural models that might contribute to
better generalization in TextWorld games.

1Based on Google Image Retriever: https://github.com/
Joeclinton1/google-images-download
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You are in the kitchen of the white house. A table seems to
have been used recently for the preparation of food. A
passage leads to the west and a dark staircase can be seen
leading upward. A dark chimney leads down and to the east
is a small window which is open. On the table is an elongated 
brown sack, smelling of hot peppers. A bottle is sitting on the 
table. The glass bottle contains a quantity of water.
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Figure 2: Overview of our methodology of scene representa-
tion for a sample text observation taken from Zork1 using
text-to-image generative model. Highlighted text snippets
show some of the phrases used by the agent to generate rele-
vant images for scene representation.

Model Description
We now detail the models that we used to use and encode the
images retrieved or generated in the previous step. Figure 2
shows the architecture overview of our proposed approach
for scene representation using the AttnGAN (Xu et al. 2018a)
based text-to-image generation. In order to capture the textual
features from the text observation from the game, we use
Stacked GRU as our text encoder: this keeps tracks of the
state of the game across time steps. Once we have the images
retrieved/generated from the text snippets, we extract the
image features using image encoders which are combined
with the features from textual inputs to obtain the action
scores.

Specifically, we use Resnet-50 for encoding the retrieved
images and for the images generated from the pre-trained
AttnGAN. The text and image encoding features are then
concatenated and passed to the action selector (as shown in
Figure 2), which maps the encoding features to action scores
using a multi-layer perceptron (MLP) to select the next action.
Based on the reward from the game environment, we update
text and image encoders and the action selector. Since the
reward from the game can guide the text-to-image generator
(AttnGAN) to generate meaningful images for the current
context of the game, we finetune the pre-trained AttnGAN
along with the encoders and the action selector to yield the
best results. In this case, we use the inbuilt CNN-based image
encoder (Inception v3 (Szegedy et al. 2016)) to map the
generated images to the image features. We call this model
SceneIT and use it by default for all our experiments in
this paper.

Experimental Results
In this section, we present experimental results that demon-
strate the advantage of our proposed Scene Images for
Text-based Games approach – which makes use of im-
ages in addition to text – over existing state-of-the-art tech-
niques that are text-only. We conduct our performance evalu-
ation on three datasets: TextWorld Commonsense (TWC) 2,

2https://github.com/IBM/commonsense-rl

the First TextWorld Problems (FTWP) 3 and Jericho4. The
TWC and FTWP datasets build on the Microsoft TextWorld
Environment (Côté et al. 2018), and offer complementary
tests: while TWC tasks require the retrieval and use of com-
monsense knowledge for more efficient solution, the FTWP
problems test the agent’s exploration capabilities. Jericho is
a suite of 33 interactive fiction games that measures human
performance on text-based games by offering stories from
different domains – in our case, it helps evaluate the breadth
and coverage of the image generation.

Distribution: In these datasets, a set of text-adventure
games are provided for training reinforcement learning (RL)
agents. In addition to these training games, the datasets con-
tain two test sets of games: 1) Test games (IN) that are gener-
ated from the same distribution as the training games – these
games contain similar sets of entities and relations as the
train games; and 2) Test games (OUT), which contain games
generated from a set of entities that have no overlap with the
training games. This is a way of testing whether the RL agent
can generalize its behavior to new and unseen games by lever-
aging the state observation from the TextWorld environment –
and additionally in our case, the visual relationships between
entities.

Agents: We compare three RL agents in our experiments:
1) Random, where the actions are selected randomly at each
step; 2) Text-Only, where the actions are selected solely based
on the textual observation available at the current step. We
use three baseline text-only methods - DRRN (He et al. 2016),
Template DQN (Hausknecht et al. 2019) and KG-A2C (Am-
manabrolu and Hausknecht 2020); and 3) Our method –
SceneIT – explained in the previous section, where the
RL agent is allowed to imagine visual scenes and images
using Attention GAN (Xu et al. 2018b), a Text-to-Image
generator based on Generative Adversarial Networks (GAN)
(Goodfellow et al. 2014).

Metrics: In our experiments, we measure the performance
of various agents using two metrics: (1) Average Normalized
Score – calculated as the total score achieved by an agent
normalized by the maximum possible score for the game);
and (2) Average Steps Taken – calculated as the total number
of steps taken by the agent to complete the goals. A higher
score is better, while a lower number of steps taken is better.

Quantitative Results
We first present the results of a quantitative evaluation of
our proposed technique. In order to provide a well-rounded
evaluation, we consider different text-based games: the TWC
and FTWP problems, both based on the TextWorld (Côté
et al. 2018) domain; and the Jericho (Hausknecht et al. 2019)
domain, based on interactive fiction (IF) games. Detailed
experimental setting are provided in the supplementary mate-
rial.

Experiments on TextWorld Commonsense The first do-
main that we conduct our evaluation on is the TextWorld
Commonsense (Murugesan et al. 2021) domain. This domain

3https://competitions.codalab.org/competitions/21557
4https://github.com/microsoft/jericho
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Figure 3: Training performance (showing mean and standard deviation averaged over 5 runs) for the three difficulty levels: Easy
(left), Medium (middle), Hard (right). Higher normalized score is better, while lower number of steps is better. Our Method
refers to our SceneIT technique.

Norm. Score
(Num. Steps)

Test Games (IN) Test Games (OUT)

Model
Level Easy Medium Hard Easy Medium Hard

Random 0.52 (38.52) 0.49 (49.66) 0.49 (46.21) 0.51 (38.92) 0.54 (48.94) 0.31 (48.95)
Text 0.82 (22.73) 0.74 (46.36) 0.62 (39.54) 0.75 (30.18) 0.69 (46.29) 0.41 (46.90)
SceneIT 0.96 (13.38) 0.70 (46.15) 0.77 (34.65) 0.88 (19.58) 0.78 (38.18) 0.59 (44.08)

Table 1: Test performance (averaged over 5 runs) on the normalized score (higher is better) and number of steps (lower is better)
metrics for the three difficulty levels.

is an extension of the TextWorld domain that adds scenarios
where commonsense knowledge is required in order to arrive
at efficient solutions.

Difficulty Levels: The TWC domain comes with difficulty
levels for the problem instances associated with it, defined in
terms of how hard it is for an agent (human or AI) to solve
that specific instance. The difficulty of a level is set as a com-
bination of the number of goals to be achieved, the number
of actions (steps) required to achieve them, and the number
of objects and rooms in the instance (which may be related
to goal achievement, or may simply be distractors). In our
evaluation for this work, we consider three distinct difficulty
settings. In increasing order of hardness, these are: easy,
medium, and hard. We follow Murugesan et al. (Muruge-
san et al. 2021) – who introduce the TWC domain, and are
the current state-of-the-art on this domain – in choosing these
difficulty levels.

Training Performance: Figure 3 shows the training per-
formance of three different agents/models on the TWC prob-
lems for the three difficulty levels discussed above. For each
level, the performance is reported via the normalized score

(higher is better) as well as the average number of steps (lower
is better). It is clear that SceneIT – with access to both the
textual representation of the observations from the game, as
well as the image/visual representation – does much better in
all three settings. Furthermore, beyond the 60 episode mark,
there is a clear divergence of our technique from the random
and text-only baselines.

Test Performance: Table 1 shows the test results for 3
models - one random baseline, one text-only baseline, and
SceneIT – which combines the text features with image
features from the finetuned AttnGAN. We split our reporting
across two conditions: Test games (IN) reports on test games
that come from the same distribution as the training games;
while Test games (OUT) reports on test games from outside
the distribution of training games. It is clear that for both
conditions, SceneIT is the state-of-the-art in 11 out of 12
instances – handily beating the existing text-only state-of-the-
art (Text). In the one case where it is not the best (medium
for in distribution), it is very close to the performance of
the best performing model. This shows the added advantage
of using visual features in addition to textual features when
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Human Baselines Ours
Game Max Walkthrough-100 TDQN DRRN KG-A2C SceneIT

detective 360 350 169 197.8 207.9 317.7
enchanter 400 125 8.6 20 12.1 21.6
inhumane 90 70 0.7 0 3 15.83
karn 170 40 0.7 2.1 0 0.0
snacktime 50 50 9.7 0 0 20
spellbrkr 600 160 18.7 37.8 21.3 40
zork1 350 102 9.9 32.6 34 43.58
zork3 7 3 0 0.5 0.1 2.67

Table 2: Raw scores on a subset of Jericho games (selected randomly based on the difficulty level) achieved by the agents
(proposed and baseline) averaged over 10 runs.
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Figure 4: Results showing an improvement across both normalized score (higher is better) and number of steps (lower is better)
by using images on the TWC dataset with different difficulty levels.

solving TWC games, thus validating the central hypothesis
of our work.

Experiments on First TextWorld Problems In this section,
we present the results of running the various agents/models
on the First TextWorld Problems (FTWP) dataset. Figures
5 (left and middle) show the results across the in and out
distributions, as introduced previously. Since the cooking
task in FTWP focuses more on exploration rather than the
meaningful relationship between the objects (as in TWC ) to
improve the performance, we can see that SceneIT shows
results that are comparable to and even worse than the text-
only model: this shows that merely adding images to a game
does not always necessarily improve the metrics.

Experiments on Jericho Next, we consider Jeri-
cho (Hausknecht et al. 2019), a benchmark dataset in TBGs
that consists of 33 popular interactive fiction (IF) games
developed for humans a decade ago. We select a subset of
games from different difficulty levels for our experiments.
From Table 2, we can see that SceneIT outperforms the
other state-of-the-art text-only baselines (Template DQN
(Hausknecht et al. 2019), DRRN (Narasimhan, Kulkarni, and
Barzilay 2015; He et al. 2016), and KG-A2C (Ammanabrolu
and Hausknecht 2019)) by a significant margin. Our
approach is currently able to achieve the best score (averaged
over 10 runs) on 7/8 games from across the difficulty levels.

Images: Retrieval vs. Generation After establishing that
the addition of the visual features from images that repre-

sent the scene described by the textual observations from the
game does indeed help the performance of agents, we now
explore further into the comparison between these different
agents. Specifically, we compare the three models described
in Section : SceneIT with retrieved images from the inter-
net, SceneIT with generated/imagined images from the pre-
trained AttnGAN, and SceneIT with finetuned AttnGAN.
This comparison is presented as a bar chart in Figure 4. As in
the previous experiments, we plot the three difficulty levels
across two conditions: in and out of distribution. We use
a lighter shade of the corresponding color for the former,
and a darker shade for the latter. It is clear that SceneIT –
which combines text features with features from AttnGAN –
outperforms the other two image baselines across different
difficulty levels and conditions.

Finetuning image encoder It is worth noting that from the
results in Figure 4, we see that the performance of SceneIT
retrieved and imagined are not significantly better than the
text-only agent. We strongly believe that one of the reasons
lies in ImageNet pretrained Resnet-50 for image encoding.
For these models, we didn’t finetune the Resnet-50 model for
image encoding as we did in the SceneIT with ModelGAN.
Our assumption was using the Imagenet pre-trained Resnet-
50, we will have a general image representation for common
objects used in the games. To do so, the Imagenet classes
should be diverse enough to cover all the objects seen in the
TWC games.

To evaluate this, we performed a simple analysis on how
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Figure 5: Test-set performance on FTWP Cooking Task (averaged over 5 runs) on the normalized score (left: - higher is better)
and the number of steps (middle: lower is better) metrics. Figure (right) showing the normalized score of large language models
compared to our proposed SceneIT model for TWC hard test level games.

well these classes represent or overlap with the objects that ap-
peared in the game. We computed the average of the (GloVe
embedding-based) similarity between objects in the games
and the best matching class from the Imagenet’s 1000 class
labels. For TWC hard games, we obtained a similarity of
0.75, 0.73, and 0.76 for train, test (IN), and test (OUT) splits.
Similarly, when comparing overlap between the objects seen
in the TWC games and the entities in the caption text used in
MS-COCO to train the AttnGAN, we get 0.93, 0.94, and 0.98
for train, test (IN) and test (OUT) splits in TWC hard games.
We see that the SceneIt with finetuned AttnGAN has more
advantage here. Based on this analysis, one simple solution
to improve the performance of the SceneIT retrieved and
imagined models is to finetune the Resnet-50 just like we
finetuned the AttnGAN for SceneIT ModelGAN.

To verify this, we experiment with finetuning the Resnet-
50 image encoder. As a result, for the internet-based re-
triever model, we found that the model with finetuned
Resnet-50 gives metrics of 0.66/40.43 compared to the non-
finetuned metrics of 0.61/41.38 for within distribution of hard
test games. For out-of-distribution games, the model with
finetuned Resnet-50 gives metrics of 0.45/46.88 compared
to the non-finetuned metrics of 0.36/48.13. Our proposed
SceneIT with finetuned AttnGAN still outperforms these
reported results above.

Qualitative Results
In addition to the quantitative results described previously, we
also present some qualitative examples of what the SceneIT
agent focuses on as it uses images (retrieved or imagined)
in order to solve specific problem instances. To illustrate
this effectively, we use the notion of attention activation
maps (Zhou et al. 2016; Selvaraju et al. 2017; Lu et al. 2012;
Gupta, Dileep, and Thenkanidiyoor 2021), which can be used
to demonstrate parts of an image that an agent/technique is
attending to. We split our analysis into the two main ways
in which we currently produce images for use by SceneIT:
retrieval, and imagination (see Section ).

Figure 6 shows examples of this for the imagined images.
We present both the imagined images as well as the activation
maps overlaid over those respective images for a given set
of text phrases from the game observation. For example, the
agent can focus on the right part of the image that is imagined
for the phrase wet brown dress on patio chair;
and can then choose the action examine patio chair.

The other examples also illustrate a similar pattern.

Ablation Studies
We perform various ablation studies to better analyze the
inner-workings of our proposed model as described below.

Performance with random images First, we fed ran-
domly selected images to the image encoder to demon-
strate whether the retrieved images were useful in gener-
alizing objects’ relationships to the world. In the Internet
retriever-based model in Figure 4, we replaced the images
retrieved for the extracted text phrases with random im-
ages. For TWC (Hard level) games, these are the results
for the randomly retrieved images during training and test
time. Test games (In: within the distribution) decreased to
0.57/42.6 (norm score/avg. steps), compared to the reported
0.61/41.38 for the proposed model. Test games (Out: out of
distribution) got 0.25/49.51, compared to the reported result
of 0.36/48.13. Since the SceneIT model imagines a text
using AttnGAN, we replaced the extracted text phrases with
random text phrases. For TWC (Hard level) games, we have:
Test games within the distribution got 0.73/36.48 compared
to the reported 0.77/34.65. Test games out of distribution got
0.45/46.83 compared to the reported result of 0.59/44.08.

For Jericho games, these are the results with random im-
ages: Detective got 246.68 (22.4% decrease from the reported
raw score of 317.7), Enchanter got 20 (7.4% decrease from
21.6) and Zork1 got 38.3 (12.1% decrease from 43.58). There-
fore, we have shown that the performance of the SceneIT
agents with random images drops compared to the reported
results in the paper, demonstrating that the image gives valu-
able knowledge to the agents.

Ablation with a large number of parameters Now we
show that our proposed method improves relational general-
ization using generated images and not due to an increase in
the number of model parameters. To show this, we replaced
the text encoders (Stacked GRU) used in the text-only agents
with large-scale language models such as BERT (Devlin et al.
2018) and ALBERT (Lan et al. 2019) for a fair comparison
of text-only agents with the SceneIT model. We show the
normalized score for various models in Figure 5 (right). The
number of parameters for text-only Agent (Stacked GRU)
is 0.20M, ALBERT based text agent is 11M, BERT based
text agent is 109M and SceneIT is 10M. We observe that
even adding additional parameters to the text-only agents (via
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Figure 6: Activation maps showing the region of interest when producing the action command in each case, using the imagination
based model for TWC. We include both the generated images and its attention plot for clarity. Images have a size of 500 × 500.

ALBERT or BERT for text encoders) and finetuning them
doesn’t improve the performance significantly compared to
the proposed SceneIT model with images; this shows that the
images are helpful over and above the textual observation.
We have given additional results in the appendix.

Related Work
The field of text-based and interactive games has seen a
lot of recent interest and work, thanks in large part to the
creation and availability of pioneering environments such as
TextWorld (Côté et al. 2018) and the Jericho (Hausknecht et al.
2019) collection. Based on these domains, several interesting
approaches have been proposed that seek to improve the
efficiency of agents in these environments (Ammanabrolu
and Riedl 2019; Dambekodi et al. 2020; Chaudhury et al.
2020; Murugesan et al. 2021). We mention and discuss this
prior work in context in the earlier parts of this paper.

Separate from this progress on TBGs, there has also been
work on Inductive Logic Programming (ILP) methods – these
methods have shown good relation generalization in sym-
bolic domains using differentiable model learning on sym-
bolic inputs (Evans and Grefenstette 2018; Richardson and
Domingos 2006), even in noisy settings. Neural Logic Ma-
chines (Dong et al. 2019) have shown good generalization
to out-of-sample games using dedicated MLP units for first-
order rule learning by interacting with the environment. The
work on Logical Neural Networks (Riegel et al. 2020) is a

recent addition to the family of ILP methods that can learn
differentiable logical connectives using constrained optimiza-
tion over the differentiable neural network framework. Con-
currently, there has been work in the (symbolic) automated
planning community that has looked at learning and infer-
ring the relations (predicates) that make up an underlying
domain – like the eight-tile puzzle – by using variational
auto-encoders (Asai 2019; Asai and Fukunaga 2018; Asai
and Muise 2020; Asai and Tang 2020).

Conclusion
In this paper, we introduced Scene Images for
Text-based Games (SceneIT), a model for RL agents
executing in text-based games. SceneIT uses the text from
observations provided by the game to either retrieve or gen-
erate images that correspond to the scene represented by the
text; and then combines the features from the images along
with features from the text in order to select the next best
action for the RL agent. We show via an extensive experi-
mental evaluation that SceneIT shows better performance –
in terms of the normalized reward score achieved by agents,
as well as the number of steps to complete a task – than exist-
ing state-of-the-art models that rely only on the observation
text. We also presented qualitative results that showed that
an agent guided by SceneIT focuses its attention on those
parts of an image that we may expect a human to attend to as
well.
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