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Abstract

The quadratic memory complexity of transformers prevents
long document summarization in low computational resource
scenarios. State-of-the-art models need to apply input trunca-
tion, thus discarding and ignoring potential summary-relevant
contents, leading to a performance drop. Furthermore, this
loss is generally destructive for semantic text analytics in
high-impact domains such as the legal one. In this paper,
we propose a novel semantic self-segmentation (Se3) ap-
proach for long document summarization to address the crit-
ical problems of low-resource regimes, namely to process in-
puts longer than the GPU memory capacity and produce ac-
curate summaries despite the availability of only a few dozens
of training instances. Se3 segments a long input into seman-
tically coherent chunks, allowing transformers to summarize
very long documents without truncation by summarizing each
chunk and concatenating the results. Experimental outcomes
show the approach significantly improves the performance
of abstractive summarization transformers, even with just a
dozen of labeled data, achieving new state-of-the-art results
on two legal datasets of different domains and contents. Fi-
nally, we report ablation studies to evaluate each contribution
of the components of our method to the performance gain.

Introduction
State-of-the-art solutions on abstractive summarization are
built upon the transformer model (Vaswani et al. 2017) with
quadratic time and memory complexities in the input size
(Lewis et al. 2020; Zhang et al. 2020a; Raffel et al. 2020;
Qi et al. 2020). Such models have been trained with short
inputs, so they struggle to model long sequences accurately
in downstream tasks. Thus, efficient transformers with lin-
ear complexity have been proposed to process longer se-
quences by reducing the attention mechanism calculation
(Kitaev, Kaiser, and Levskaya 2020; Beltagy, Peters, and
Cohan 2020; Zaheer et al. 2020; Huang et al. 2021; Choro-
manski et al. 2021; Xiong et al. 2021; Guo et al. 2021). How-
ever, training large transformers requires high-resource set-
tings (Sharir, Peleg, and Shoham 2020; Ahmed and Wahed
2020), leaving long document summarization an open re-
search problem in low-resource regimes with limited GPU
memories and only dozens of labeled training instances.
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One of the domains most affected by long documents and
low-resource settings of labeled data is the legal one, where
reading and evaluating legal cases are labor-intensive and
time-consuming tasks for legal experts (Kornilova and Ei-
delman 2019). Legal texts are generally long with a com-
plex and articulated structure, characterized by longer sen-
tences than other domains that make up long reasonings,
understandable only after reading the entire textual details
(Kanapala, Pal, and Pamula 2019).

Input truncation, unavoidable for long sequences with a
low-memory GPU, ignores valuable information, destroying
the summary semantic, which is a critical problem also in
multi-document summarization (Moro et al. 2022). To ad-
dress this problem, particularly relevant in the legal domain,
we propose a new approach for long document summariza-
tion: Semantic Self-Segmentation (Se3).1 Se3 creates high-
correlated source-target pairs by segmenting long texts into
semantically coherent chunks with lengths modulated to fit
into the GPU memory, and pairing them with the most sim-
ilar summary part, enabling transformers to process docu-
ments without truncation. This approach works as a data
augmentation strategy to cope with the lack of labeled in-
stances, usually addressed with transfer learning methods
(Domeniconi et al. 2014b,c, 2015a). As far as we know, this
is the first study on text summarization with limited GPU
memories and labeled data scarcity.

Given the complexity of summarizing long legal docu-
ments, we experiment on two legal datasets of different do-
main and content sizes, using Se3 combined with BART
(Lewis et al. 2020) and LED (Beltagy, Peters, and Cohan
2020) on a single Titan Xp GPU of 12GB memory. Results
show that Se3 significantly improves the performance of ab-
stractive summarization transformers, even with just a few
dozens of labeled training data. Moreover, to analyze where
the performance gain comes from, we perform ablation stud-
ies and prove the importance of each module of Se3. Finally,
we analyze the accuracy of the predicted summaries.

Our contributions are: i) the Se3 method to address long
document summarization in low-resource regimes; ii) the re-
search advancement on abstractive summarization in legal
domains, whose documents are more challenging to analyze,
achieving new state-of-the-art results on two datasets.

1Solution website: https://disi-unibo-nlp.github.io/projects/se3
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Related Work
Long document summarization. Although most solu-
tions focus on short inputs because of the quadratic com-
plexity of transformers, several works presented new ap-
proaches to summarize long texts. Çelikyilmaz et al. (2018)
introduced a hierarchical model that handles the encoding
phase through collaborating agents responsible for process-
ing each text subsection. Liu and Chen (2019) and Xu et al.
(2020) proposed to exploit the discourse segmentation to ex-
tract the salient content for extractive summarization. Gidi-
otis and Tsoumakas (2020) introduced a divide-and-conquer
approach that relies on structured documents to summa-
rize each section independently. Bajaj et al. (2021) com-
pressed long texts by extracting the sentences that best cor-
relate with the summary, adopting an extract-then-abstract
paradigm. Rohde, Wu, and Liu (2021) and Grail, Perez,
and Gaussier (2021) modified the standard transformer by
adding hierarchical attention layers. Manakul and Gales
(2021) showed that applying local self-attention and an ex-
plicit content selection improves the performance of large
pre-trained quadratic transformers. Cui and Hu (2021) pro-
posed an extractive model that can summarize inputs of ar-
bitrary size without truncation by using a memory network.

Legal document summarization. Most of the summa-
rization solutions in the legal domain are extractive (Gal-
gani, Compton, and Hoffmann 2015; Tran, Nguyen, and
Satoh 2018; Anand and Wagh 2019; Jain, Borah, and Biswas
2021a,b), whereas few studies are abstractive. A first com-
parative analysis that shows the better performance of ab-
stractive approaches than extractive ones has been proposed
by de Vargas Feijó and Moreira (2019), summarizing Brazil-
ian legal rulings. Afterward, Zhang et al. (2020a) achieved
new state-of-the-art results on the legal dataset BillSum (Ko-
rnilova and Eidelman 2019) with PEGASUS, a transformer-
based model with a self-supervised pre-training objective
tailored for the abstractive summarization task. In contrast,
Huang et al. (2020) extended a pointer-generator network
with legal domain-specific knowledge to generate abstrac-
tive summaries in the legal public opinion domain.

Low-resource summarization. About low-resource stud-
ies, prior works have only focused on data scarcity. Parida
and Motlı́cek (2019) and Magooda and Litman (2020)
proved that augmenting training instances with synthetic
data improves the summarization accuracy in low-resource
conditions. Bajaj et al. (2021) applied long document sum-
marization with few labeled data, proposing a new method to
extract salient sentences from the source. Yu, Liu, and Fung
(2021) introduced a new low-resource setting dataset to in-
vestigate several adaptive pre-training strategies to cope with
the absence of data. Chen and Shuai (2021) proposed meta-
transfer learning combined with multiple corpora to improve
the accuracy after training models with few labeled data.

Our work. Unlike previous works, we propose a new ap-
proach for abstractive long document summarization to ad-
dress both issues of low-resource regimes, i.e., limited GPU
memories and labeled data scarcity, by semantically seg-
menting long inputs into GPU memory-adaptable chunks.

Figure 1: The overview of Se3 for the abstractive summa-
rization of a long input. First, a document composed of many
sentences, i.e., blue rectangles, is segmented into content-
wise chunks (green phase). Afterward, each summary sen-
tence, i.e., orange rectangles, is assigned to the most similar
chunk, creating new high-correlated source-target pairs (red
phase) used to train summarization models (yellow phase).
At inference time, the final summary is obtained from con-
catenating the chunk summaries (gray phase).

Preliminary
We provide a better definition of low-resource regimes.

Hardware memory scarcity: small and medium-sized
organizations can generally afford low-budget GPUs (e.g.,
12GB of memory). These memories limit the training of
medium neural models, mostly with long documents, caus-
ing “out of memory” exceptions.

Data scarcity: in real scenarios, datasets might consist of
only a few dozens of labeled instances. This data shortage
limits the learning chances and produces underfit models.

Method
Our semantic self-segmentation (Se3) approach for abstrac-
tive long document summarization allows fine-tuning trans-
formers on entire long inputs without truncation with lim-
ited GPUs (Fig. 1). Concretely, Se3 segments a long docu-
ment D into N small chunks, resolving the hardware mem-
ory scarcity issue since we avoid processing a long text in
a single input. Afterward, each sentence of the summary of
D is assigned to the most similar input chunk, resolving the
data scarcity issue since we obtain N chunk-target pairs that
augment the training instances.

Two observations motivate this solution: i) truncating in-
put to a fixed length may discard valuable information; ii) in
a low-resource scenario, there may also be a lack of labeled
data to fine-tune effectively pre-trained models.
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Figure 2: The metric learning of LEGAL-BERT with the
triplet loss. The aim is to create meaningful sentence em-
beddings by projecting topic-related sentences closer in the
vector space and the different ones farther.

Semantic Self-Segmentation
We need three elements to train transformers to summarize
long inputs without truncation with a limited GPU memory.

The chunk size is needed to standardize the chunk con-
tent within a range since pre-trained transformers have been
trained on fixed sizes, so they struggle to process chunks of
very different sizes. Moreover, this range lets users change
input size to adapt chunks to the GPU memory available and
best leverage the capability of transformers.

A pre-trained language model (PLM) is needed to repre-
sent the sentences semantically. Thus, as we test Se3 on legal
documents, we use LEGAL-BERT (Chalkidis et al. 2020), a
BERT model pre-trained on legal corpora.2 Further, we fine-
tune LEGAL-BERT with metric learning to learn whether
two sentences belong to the same section. This learning
trains the model to enrich the sentence representation with
the thematic meaning, essential for our text segmentation to
split sentences. For metric learning, we use a public dataset
created in a self-supervised manner (Ein-Dor et al. 2018), as
done with paper citations in Moro and Valgimigli (2021), to
train models to project sentences of the same section closer
in the vector space and the different ones farther (Fig. 2).
We consider two ranking losses in our experiments, i.e., the
triplet and the contrastive loss. The triplet loss takes as input
a triplet composed of a sentence from a section (anchor, x),
a sentence from the same section (positive, x+), and a sen-
tence from a different section (negative, x−). The function
minimizes the distance between x and x+ and maximizes
the distance between x and x−, considering a margin m:

Ltriplet = max(||x− x+|| − ||x− x−||+m, 0) (1)
The contrastive loss takes as input a triplet composed of a
sentence from a section x, a second sentence y, and a label
l, meaning whether the two sentences belong to the same
section (1 if true, 0 otherwise). The loss is as follows:
Lcontrastive = l · ||x−y||+(1− l) ·max(m−||x−y||, 0) (2)

2We could use domain-specific PLMs for other domains, e.g.,
SciBERT (Beltagy, Lo, and Cohan 2019) for scientific texts.

Algorithm 1: Semantic Self-Segmentation
Input: model; doc sentences; summary sentences
Parameters: Ls ← lower size; Us ← upper size
Output: The chunk-target pairs

1: Let chunks = []
2: Let current chunk = []
3: for sd in doc sentences do
4: if len(current chunk) + len(sd) < Ls then
5: current chunk.append(sd)
6: else if len(current chunk) + len(sd) > Us then
7: chunks.append(current chunk)
8: current chunk ← []
9: else

10: Perform the Semantic Similarity (Alg. 2)
11: end if
12: end for
13: targets← Perform the Target Assignment (Alg. 3)
14: return (chunks, targets)

Therefore, our text segmentation algorithm uses the trained
language model to produce semantically meaningful sen-
tence embeddings to create the chunks.

A chunk target is needed to train abstractive summariza-
tion models since we are in a supervised machine learning
scenario. For this reason, we assign the most similar part of
the summary to the chunks, creating high-correlated source-
target pairs. In detail, we apply a syntactic assignment where
we pair each sentence of the target summary to the chunk
that maximizes the ROUGE-1 precision (Lin 2004). Unlike
recall, f-measure, or ROUGE-L, we choose such a metric
to guarantee a more proper matching for abstractive sum-
maries. The motivations are the following: i) ROUGE-1
checks for uni-gram matching between the summary sen-
tences and the source document, searching the chunk where
a summary sentence can be better summarized; ii) the preci-
sion metric scores how much content of a summary sentence
is within a chunk, searching for the best content coverage.

Algorithm
Let sd1, sd2, ..., sdn be the sentences of a document D ob-
tained using the state-of-the-art tokenizer PySBD (Sadvilkar
and Neumann 2020). Let ss1, ss2, ..., ssm be the sentences
of the actual summary of D. Let Ls, Us be the chunk’s lower
and upper size, respectively. To create the chunk ci, along
with its target ti, Se3 performs the following steps (Alg. 1):

1. Given sdj , if the size of ci is less than Ls, then add
sdj to ci. This first step does not consider the semantic
representation of sentences. However, it is necessary to
standardize each chunk to a minimum size to best lever-
age the capability of transformers since they have been
trained on fixed size sequences.

2. Given sdj , if the size of ci is greater than Ls, and the ad-
dition of sdj to ci does not exceed Us, we compute the se-
mantic similarity between sentences (Alg. 2). Otherwise,
we create a new chunk ci+1 and add sdj to it.

3. To compute the similarity, Se3 first creates the sentence
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Algorithm 2: Semantic Similarity
Input: model; sdj ← current sentence; ci ← current chunk
Output: Put sdj in the best chunk

1: Let ci ← [sdj−x, ..., sdj−1]
2: Let ci+1 ← [sdj+1, ..., sdj+y]
3: enc ci ← model.encode(ci)
4: enc ci+1 ← model.encode(c i+ 1)
5: score ci ← mean(cosine sim(enc ci, sdj))
6: score ci+1 ← mean(cosine sim(enc ci+1, sdj))
7: if score ci > score ci+1 then
8: Put sj into ci
9: else

10: Put sj into ci+1

11: end if

embeddings using the fine-tuned LEGAL-BERT. After-
ward, the semantic similarity is calculated between sdj
and each sentence within ci and ci+1. Finally, the simi-
larities are averaged per chunk and compared. In detail,
ci+1 is created through a look-ahead. More precisely, we
perform step 1 until the size of ci+1 is at least Ls. Thanks
to such a look-ahead, the algorithm does not rely on any
hyperparameter similarity threshold. For example, a sen-
tence could be put into the chunk ci if its semantic simi-
larity with respect to ci is greater than a fixed value. In-
stead, we compare the similarity score of the previous
chunk with respect to the next one, obtaining an algo-
rithm free from further hyperparameters.

4. Once the chunks have been created, we perform the target
assignment (Alg. 3). Concretely, given ssk, we compare
it with each chunk and assign it to the chunk that max-
imizes the ROUGE-1 precision metric. We then discard
chunks without targets at training time.

Abstractive Summarization
For experimental purposes, we use both a state-of-the-art
quadratic and linear transformer. Their comparison is help-
ful to analyze how much an efficient transformer can be de-
cisive to improve the summarization accuracy with a lim-
ited GPU memory. About the linear transformer, we choose

Algorithm 3: Target Assignment
Input: summary sentences; chunks
Output: The targets of the chunks

1: Let targets = [t1 = [], ..., tw = []].
2: for ss in summary sentences do
3: Let scores = [].
4: for c in chunks do
5: chunk score← rouge precision(c, ss)
6: scores.append(chunk score)
7: end for
8: idx← argmax(scores)
9: targets[idx].append(ss)

10: end for
11: return targets

AustLII BillSum
Statistic Document Summary Document Summary

# sentences 222 14 65 6
# words 7362 667 1592 197
# tokens 7983 722 1673 214

# docs 1754 22218

Table 1: The dataset statistics. All values are mean over the
dataset except for the “# docs” row. We used the LED tok-
enizer for tokens count and NLTK for words and sentences.

Longformer-Encoder-Decoder (Beltagy, Peters, and Cohan
2020), namely LED, because it is the only efficient trans-
former with a base version public checkpoint. LED replaces
the quadratic encoder self-attention using local window at-
tention and global attention. Each token attends to itself and
its neighbors in local attention, whereas the first token is
connected to everything else in global attention, like in the
full attention. About the quadratic transformer, we choose
BART (Lewis et al. 2020) for the following reasons: i) there
is a public checkpoint of the base version; ii) it is used as
a checkpoint to initialize LED parameters because the latter
follows the exact architecture of BART in terms of the num-
ber of layers and hidden sizes. The difference is that LED
can read more tokens thanks to the linear attention mecha-
nism, making it suitable for processing long documents. We
choose the base versions for both models because the large
ones do not fit into our GPU memory. For this reason, we
make comparisons only with base models.

Experiments
Datasets
We used a dataset comprised of sentence triplets from
Wikipedia articles (Ein-Dor et al. 2018) for metric learning.
The 1.78M triplets are composed of a sentence pivot, one
from the same section, and one from a different section.

We used two legal datasets of different countries (i.e.,
Australia and the United States) for abstractive summariza-
tion. Australian Legal Case Reports, referenced as AustLII
and publicly downloadable from the UCI archive,3 is a cor-
pus of around 4000 legal cases from the Federal Court of
Australia. We created a target for each document by us-
ing the catchphrases provided (i.e., the crucial statements
of documents). In detail, we extracted every sentence con-
taining the catchphrase, and we concatenated them to cre-
ate the actual summary. Since not all documents have catch-
phrases, we collected 1754 documents, split into 1578 (90%)
for training and 176 (10%) for testing. BillSum (Kornilova
and Eidelman 2019), downloadable from the Hugging Face
library and already split into 18,949 (≈85%) documents for
training and 3,269 (≈15%) for testing,4 consists of 22218
US Congressional Bills with human-written references.

The statistics of the datasets show that the AustLII docu-
ments are much longer than the BillSum ones (Table 1).

3https://archive.ics.uci.edu/ml/datasets/Legal+Case+Reports
4https://huggingface.co/datasets/billsum
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AustLII BillSum
System (MaxLen) R1 / R2 / RL R1 / R2 / RL

Baselines
PEGASUSBASE - 51.42/29.68/37.78
BARTBASE (1024) 33.51/23.92/27.88 54.42/35.81/41.98
BARTBASE (512) 26.61/17.67/21.79 49.84/30.67/37.73
BARTBASE (256) 23.87/13.98/18.80 45.99/26.36/34.12
BARTBASE (128) 22.11/12.36/17.19 42.32/22.78/31.48

Baselines w/ Se3 - triplet
BARTBASE (1024) 59.04/52.46/53.67 57.31/37.85/43.78
BARTBASE (512) 53.14/46.44/47.38 55.65/35.73/40.99
BARTBASE (256) 44.55/36.50/37.05 51.99/32.63/37.11
BARTBASE (128) 37.28/31.42/31.83 44.06/28.69/32.00

Baselines w/ Se3 - contrastive
BARTBASE (1024) 57.96/50.92/52.49 57.66/38.20/44.11
BARTBASE (512) 52.66/45.71/46.66 55.96/35.82/41.27
BARTBASE (256) 45.18/36.82/37.52 52.54/33.00/37.61
BARTBASE (128) 37.54/31.89/32.27 44.29/28.90/32.27

Table 2: The results of BART with different chunk sizes.
Best ROUGE scores are underlined for each max size, i.e.,
1024, 512, 256, 128. The highest are bolded.

Experimental Settings
In order to thoroughly evaluate the performance of Se3 in
low-resource regimes, the experiments were twofold.

Limited GPU memory issue. We experimented with six
chunk size ranges, expressed in the number of tokens, by
segmenting input documents based on the following sizes:
64-128, 128-256, 256-512, 512-1024, 1024-2048, and 2048-
4096. About BART, we could not experiment with 1024-
2048 and 2048-4096 since it was trained on short documents
because of the quadratic memory complexity, so it truncates
inputs longer than 1024 tokens. Further, to experiment with
two versions of our method, we fine-tuned LEGAL-BERT
with both losses, i.e., the triplet and the contrastive loss. To
assess whether Se3 allows existing models to achieve a per-
formance gain in low-resource regimes, we used BART and
LED as baselines as they were designed, i.e., truncating the
input according to each chunk max size without text seg-
mentation. Thus, input sizes and memory requirements are
the same, but the solutions with Se3 read the complete doc-
ument details without truncation.

Labeled data scarcity issue. We fine-tuned both mod-
els combined with Se3 with 10 and 100 labeled training in-
stances. We experimented only on the BillSum dataset to
compare our results with recent works on the same low-
resource summarization task.

Training Details
We trained LEGAL-BERT for 1 epoch for metric learning
using a batch size of 8 and a learning rate set to 2 × 10−5.
About abstractive summarization, we trained BART and
LED for all experiments using the Hugging Face library. All
models are fine-tuned for 5 epochs using a batch size of 1
and a learning rate with a linear schedule set to 5×10−5. At
inference time, we used 2 as beam size and length penalty.

AustLII BillSum
System (MaxLen) R1 / R2 / RL R1 / R2 / RL

Baselines
PEGASUSBASE - 51.42/29.68/37.78
LEDBASE (4096) 50.27/39.85/42.04 58.83/39.83/45.71
LEDBASE (2048) 42.76/32.20/35.71 58.38/39.37/45.09
LEDBASE (1024) 35.20/24.62/28.38 55.32/36.48/42.67
LEDBASE (512) 30.47/18.90/23.56 49.96/30.76/37.68
LEDBASE (256) 26.77/15.37/20.39 46.76/26.54/34.44
LEDBASE (128) 23.78/12.58/18.12 42.75/22.97/31.70

Baselines w/ Se3 - triplet
LEDBASE (4096) 57.89/48.96/50.28 58.51/39.71/45.66
LEDBASE (2048) 60.03/53.03/54.57 58.38/39.53/45.48
LEDBASE (1024) 58.48/52.17/53.48 57.88/38.38/44.15
LEDBASE (512) 54.25/47.33/48.32 55.61/35.87/41.04
LEDBASE (256) 45.27/36.88/37.68 51.79/32.74/37.09
LEDBASE (128) 37.36/31.60/32.09 43.72/28.72/31.88

Baselines w/ Se3 - contrastive
LEDBASE (4096) 57.82/49.06/50.50 59.18/40.18/46.04
LEDBASE (2048) 60.20/52.40/53.79 58.63/39.77/45.60
LEDBASE (1024) 58.75/52.28/53.71 58.11/38.61/44.52
LEDBASE (512) 52.37/45.63/46.54 55.99/36.09/41.40
LEDBASE (256) 45.35/36.80/37.51 52.28/33.00/37.44
LEDBASE (128) 38.07/32.20/32.67 43.74/28.78/31.95

Table 3: The results of LED with several chunk sizes. Best
ROUGE scores are underlined for each size, i.e., 4096, 2048,
1024, 512, 256, 128. The highest are bolded.

Results with Input Longer Than the GPU Memory

Table 2 and Table 3 summarize BART and LED evaluation
results with different chunk sizes on both datasets.

Model performance comparisons. Solutions with Se3
significantly perform the best. In particular, our solution is
more effective for the AustLII documents because they are
very long, leading to a consistent boost in performance. In-
deed, the baselines truncate the input, discarding valuable
information in the final summary. Comparison of models
shows no performance differences for short inputs. Instead,
LED can process longer sequences thanks to the linear com-
plexity of its encoder self-attention, obtaining better results
than BART, which can read inputs up to 1024 tokens in size.

Ranking loss comparisons. The contrastive loss is bet-
ter than the triplet loss when used for the BillSum dataset,
differently from the AustLII documents. These results prove
that performance mainly depends on the legal content.

Chunk memory requirement comparisons. The bigger
the chunks, the higher the scores. This result is motivated
by the better capability of transformers to process longer se-
quences. Further, to visualize the scalability of Se3, Fig. 3
shows the trade-off between the GPU memory used and the
model accuracy. The results point out that the best trade-
off for both models is 1024 as the max chunk size. LED is
trained with a local attention window of 1024 tokens, so it
pads inputs if shorter. Therefore, the memory requirements
no longer decrease proportionally below this threshold.
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(a) AustLII Se3-BART (b) AustLII Se3-LED (c) BillSum Se3-BART (d) BillSum Se3-LED

Figure 3: The trade-off between performance and memory requirements of Se3 for each max chunk size on both datasets.

BillSum (10) BillSum (100)
System (MaxLen) R1 / R2 / RL R1 / R2 / RL

Baselines
MTL-ABS 41.22/18.61/26.33 45.29/22.74/29.56
PEGASUSLARGE 40.48/18.49/27.27 44.78/26.40/34.40
BARTBASE 39.58/18.94/26.63 44.66/24.87/31.09
LEDBASE 41.10/21.15/27.93 47.68/26.98/32.43

Solutions w/ Se3
BARTBASE (1024) 44.37/21.17/27.57 47.85/26.67/33.36
BARTBASE (512) 46.58/22.03/28.23 49.88/26.84/33.33
BARTBASE (256) 46.50/23.24/28.54 48.17/26.55/31.51
BARTBASE (128) 41.48/22.73/26.37 42.42/25.42/28.98
LEDBASE (4096) 38.48/19.26/26.36 48.11/26.44/31.91
LEDBASE (2048) 42.35/20.70/27.12 47.71/26.33/32.12
LEDBASE (1024) 45.32/22.67/29.12 48.28/26.97/33.46
LEDBASE (512) 46.94/23.04/29.29 50.45/27.73/33.74
LEDBASE (256) 46.22/24.32/29.16 48.13/27.16/31.89
LEDBASE (128) 40.14/22.76/26.05 40.93/25.29/28.55

Table 4: Labeled data scarcity summarization on BillSum
with 10 and 100 training instances. Best values are bolded.

Results on Labeled Data Scarcity
Table 4 shows the performance of labeled data scarcity sum-
marization. We used the first 10 and 100 labeled instances of
BillSum as done by Zhang et al. (2020a) and Chen and Shuai
(2021) with PEGASUS and MTL-ABS, respectively. Our
method significantly improves the performance, proving the
importance of creating high-correlated source-target pairs
in low-resource settings. In detail, the smaller the chunks,
the greater the labeled data, allowing transformers to train
on more instances. Indeed, we achieved baseline-like results
even with models trained on chunk sizes of 64-128 tokens.

Ablation Studies
We conducted additional experiments with LED on chunks
of 512-1024 tokens, reporting the performance of Se3 after
removing 1) metric learning, 2) legal language modeling,
and 3) sentence semantic representation (Table 5). We no-
tice that excluding either thematic metric learning, legal lan-
guage modeling, or sentence semantic representation leads

to a performance drop. Training the model without consid-
ering the semantic meaning of the sentences in the text seg-
mentation (i.e., ignoring Alg. 2) leads to the most signif-
icant decrease in performance, showing the importance of
our semantic self-segmentation algorithm. Indeed, using the
sentence representation from BERT improves the accuracy
because, without Se3, sentences semantically closer could
be split into different chunks, worsening the final summa-
rization. Removing the legal language modeling and the the-
matic metric learning also decreases the model performance,
proving that a domain-specific language model trained on
thematic similarity helps create better aligned chunk-target
pairs, improving the summarization. In particular, we report
the content coverage between chunk-target pairs at training
and test time, computed with the average ROUGE-1 pre-
cision (R1-P). Results show better alignments using Se3,
confirming our method contribution for creating new small
high-correlated instances essential for training abstractive
summarization transformers in low-resource regimes.

Summaries Accuracy
To evaluate the accuracy of the predicted summaries to not
rely only on ROUGE, we first used BERTScore (Zhang et al.
2020b) for semantic assessment. Second, we investigated
the redundancy due to the independent chunk processing
and the final concatenation. To this end, we used the same
approaches in Xiao and Carenini (2020). We first used a
Unique n-gram ratio to measure n-grams uniqueness. The
lower the score, the more redundant the document.

Uniq ngram ratio =
count(uniq n gram)

count(n gram)
(3)

Second, we used the Normalized Inverse of Diversity (NID)
to capture redundancy by normalizing the unigrams entropy
in the document with the maximum possible entropy. The
higher the score, the more redundant the document.

NID = 1− entropy(D)

log(|D|)
(4)

Table 6 shows the results using LED. BERTScore reports
higher results of Se3 on AustLII and similar scores on Bill-
Sum. Differently, we notice a decrease of n-gram uniqueness
with our solution, which is a symbol of more redundancy.
Instead, NID scores do not capture such differences.
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AustLII BillSum
Approach R1 / R2 / RL R1-P (Train/Test) R1 / R2 / RL R1-P (Train/Test)

Se3 (Full) 58.75/52.28/53.71 98.39/98.12 58.11/38.61/44.52 88.61/88.88
w/o metric learning 57.11/50.18/51.26 92.87/92.45 57.94/38.44/44.36 88.27/88.44
w/o legal language modeling 56.66/48.95/50.20 98.39/97.97 57.85/38.32/44.03 88.47/88.68
w/o sentence semantics 55.38/47.66/49.05 93.15/93.02 56.65/37.27/43.16 85.62/85.96

Table 5: The ablations to study how each module of our method contributes to the performance gain. We gradually removed
each component of our solution to show the performance drop. Best values are bolded.

AustLII BillSum
System (MaxLen) BERTScore Uni% Bi% Tri% NID BERTScore Uni% Bi% Tri% NID

Reference
Source - 22.50 62.21 82.90 28.09 - 25.83 57.82 73.98 30.04
Target - 51.20 82.37 91.53 23.78 - 57.37 88.33 94.97 21.20

Baselines
LEDBASE (4096) 88.59 58.58 91.21 99.68 21.54 90.26 58.76 92.84 99.88 20.77
LEDBASE (2048) 87.53 60.96 92.23 99.77 21.71 90.20 59.21 92.94 99.87 20.76
LEDBASE (1024) 86.29 60.92 91.75 99.69 22.49 89.82 61.01 93.46 99.88 20.92
LEDBASE (512) 84.92 59.88 90.41 99.72 23.47 88.93 62.34 93.70 99.90 21.38
LEDBASE (256) 84.26 63.14 92.28 99.79 22.96 88.21 62.36 93.39 99.89 22.08
LEDBASE (128) 83.46 67.29 94.18 99.81 22.43 87.49 64.42 94.27 99.88 22.15

Baselines w/ Se3
LEDBASE (4096) 89.45 51.59 88.26 97.86 21.54 90.30 59.00 92.89 99.86 20.77
LEDBASE (2048) 89.75 48.68 86.33 96.78 21.74 90.16 58.87 92.09 98.94 20.84
LEDBASE (1024) 89.42 44.68 84.00 95.58 21.94 89.79 55.49 89.10 96.35 21.51
LEDBASE (512) 88.04 41.47 81.20 93.90 22.61 89.04 50.86 85.03 93.47 22.49
LEDBASE (256) 86.10 39.39 79.62 92.87 23.63 88.11 45.77 80.64 90.54 23.62
LEDBASE (128) 85.00 33.19 74.16 89.99 24.25 87.12 38.44 74.29 86.86 25.11

Table 6: The evaluation of the predicted summaries with BERTScore, uni-gram, bi-gram, and trigram uniqueness, and NID. We
also provide the values of the reference documents. Best scores are bolded.

Conclusion
In this work, we introduced Se35 to address the abstractive
long document summarization under low-resource regimes,
namely with low-memory GPUs and labeled data scarcity,
where the accuracy of existing approaches drops. Thanks
to Se3, summarization transformers can process all docu-
ment details without truncation, achieving also new state-
of-the-art results in low-resource scenarios with base mod-
els. Moreover, we proved that the method generates seman-
tically accurate summaries in legal datasets, hence it can be
successfully applied to other less complex domains.

We envisage further directions to deal with inputs longer
than the GPU memory allows: i) training models to self-
annotate cross-chunk salient information through memory-
based neural layers (Moro et al. 2018; Cui and Hu 2021);
ii) extracting relevant texts with term weighting techniques
(Domeniconi et al. 2015b) and inter-chunk semantic rela-
tions with unsupervised methods (Domeniconi et al. 2014a,
2016b,c) to model interpretable representations with knowl-
edge graph (Frisoni and Moro 2021; Frisoni, Moro, and Car-

5https://www.unibo.it/sitoweb/gianluca.moro/en

bonaro 2020) or relation and event extraction (Domeniconi
et al. 2016a; Frisoni, Moro, and Carbonaro 2021).

Broader Impact and Ethical Statement
Summarizing long documents can benefit from our solution,
even in small organizations with minimal resources. How-
ever, because of the high societal impact of legislation and
biases in PLMs (Dey et al. 2020; Liang et al. 2021), domain
experts should guide the usage of our method to validate
the quality of the inferred summaries. Finally, if the method
will be applied to sensitive data, users should also deal with
privacy-preserving policies (da Silva et al. 2006).
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