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Abstract

In dialogue systems, utterances with similar semantics may
have distinctive emotions under different contexts. Therefore,
modeling long-range contextual emotional relationships with
speaker dependency plays a crucial part in dialogue emotion
recognition. Meanwhile, distinguishing the different emotion
categories is non-trivial since they usually have semantically
similar sentiments. To this end, we adopt supervised con-
trastive learning to make different emotions mutually exclu-
sive to identify similar emotions better. Meanwhile, we utilize
an auxiliary response generation task to enhance the model’s
ability of handling context information, thereby forcing the
model to recognize emotions with similar semantics in di-
verse contexts. To achieve these objectives, we use the pre-
trained encoder-decoder model BART as our backbone model
since it is very suitable for both understanding and generation
tasks. The experiments on four datasets demonstrate that our
proposed model obtains significantly more favorable results
than the state-of-the-art model in dialogue emotion recogni-
tion. The ablation study further demonstrates the effective-
ness of supervised contrastive loss and generative loss.

Introduction
With the development and popularization of personal intel-
ligent terminal technology and social networks, the impor-
tance of constructing a dialogue system that can comprehend
user emotions and intentions and conduct effective dialogue
interactions has increased significantly. A critical module in
the dialogue system is the natural language understanding
module that analyzes user behaviors like intents or emotions.
Analyzing user sentiments with contextual relationships is
an advanced step for simple sentiment classification tasks
and is more suitable for usage scenarios in the real world
with more research value. The task of emotion recognition
in conversation (ERC) is to assign emotion labels to all the
utterances in a historical dialogue with a contextual relation-
ship. At the same time, each historical dialogue contains in-
teractions between multiple different speakers, as illustrated
in Figure 1.

There are three challenges for ERC. (1) The first chal-
lenge is that the emotion of each utterance may be affected
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[Jade]: Oh, Bob, he was nothing compared to you. I had 
to bite my lip to keep from screaming your name.

[Chandler]: Well, that makes me feel so good.

[Jade]: It was just so awkward and bumpy

[Ross]: Bumpy?

[Chandler]: Well, maybe he had some kind of, uh, new, 
cool style, that you‘re not familiar with.

[Jade]: Well, there really wasn’t much time to get used to 
it, you know what I mean?

Figure 1: The conversation flow chart in multi-person dia-
logue emotion recognition. The solid line indicates that the
previous utterance directly influences the current speaker’s
emotion. The dashed line signifies that the same speaker is
influenced by other utterances and expresses different emo-
tions.

by contextual information. For example, specific emotions
will depend on certain utterances of the context. Meanwhile,
utterances with the same expression may have completely
different emotions in various contexts. Therefore, effectively
modeling the context dependency and the speaker depen-
dency is the main factor distinguishing this task from tradi-
tional sentiment classification. (2) The second challenge is
that each speaker’s emotion is influenced by the utterance of
other speakers in the conversation, so there may exist a sud-
den change in a speaker’s emotion. (3) The third challenge
lies in semantically similar but different categories of emo-
tions, such as “frustrated” to “sad”, “happy” to “excited”,
etc. It is difficult to distinguish these semantically similar
sentiment categories.

Recent related work addressed contextual dependencies
and speaker relations using various graph networks (Shen
et al. 2021b; Ghosal et al. 2019; Ishiwatari et al. 2020; Sheng
et al. 2020). However, as the number of layers deepens, the
phenomenon of over-smoothing (Chen et al. 2020a) starts to
appear, resulting in the representation of similar sentiments
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tending to be indistinguishable.
This work deals with the above challenges by better mod-

eling the context and speaker information and auxiliary gen-
eration task.

Firstly, we introduce a dialogue-level Transformer
(Vaswani et al. 2017) layer to model the long-range context
dependencies between utterances. A pre-trained language
model captures the representation of each utterance. Com-
pared to previous approaches that only adopt pre-trained
models as a feature extractor (Liu et al. 2019) and employ
the extracted features as the node representation of down-
stream graph networks, a pure Transformer structure makes
fewer prior structural assumptions (Lin et al. 2021).

Secondly, we adopt supervised contrastive learning (SCL)
(Khosla et al. 2020) to alleviate the difficulty in categoriz-
ing similar emotions, which makes samples with same senti-
ments cohesive and different sentiments mutually exclusive
under the fully utilization of label information. Compared
with the cross-entropy loss for noisy labels, the supervised
contrastive loss can increase the stability of training and im-
prove the generalization of the model (Gunel et al. 2021).
Unlike the regular SCL, we copy the hidden state of all sam-
ples in a batch and detach off its gradient as its multiview
representation. The reason is that the categories in existing
ERC datasets are highly unbalanced, and some categories
may exist in a batch with only one sample. If only the origi-
nal SCL is used, it will lead to incorrect loss calculation.

Thirdly, we introduce an auxiliary response generation
task to enhance the ability of capturing the context infor-
mation for ERC. The prediction of the following utterance
makes the model fully consider contextual dependencies,
thus forcing the model to consider the information in the
context and rely on the current utterance itself when rec-
ognizing the sentiment in the conversation. Moreover, by
splicing the speaker directly before utterance as a hint for
speaker information, the dependency between speakers and
utterances is modeled adequately without additional param-
eters.

Finally, we utilize BART (Lewis et al. 2020), a pre-trained
Transformer with an encoder-decoder structure, as our back-
bone model and enhance it by contrastive and generative
loss. Our proposed COnstrastive-and-Generation-enhanced
BART (CoG-BART) obtains state-of-the-art results on four
ERC datasets compared to the baseline models. Addition-
ally, ablation experiments and case studies prove the effec-
tiveness of the contrastive and generative losses in the ERC
task1.

To summarize, our main contributions can be concluded
as follows:

• To the best of our knowledge, we utilize supervised con-
trastive learning for the first time in ERC and signifi-
cantly improve the model’s ability to distinguish different
sentiments.

• By incorporating response generation as an auxiliary
task, the performance of ERC is improved when certain
contextual information is involved.

1https://github.com/whatissimondoing/CoG-BART.

• Our model is easy-to-implemented since it does not de-
pend on external resources, like graph-based methods.

Related Work
This section will introduce related works in ERC. Due
to context-dependency and speaker dependency properties,
it is natural for researchers to employ graph neural net-
works. Therefore, many works have constructed various
task-specific graph structures. Meanwhile, with the excel-
lent performance of the pre-trained model in diverse down-
stream tasks, an increasing number of works adopt the pre-
trained model as the feature extractor for the input of the
downstream model or directly fine-tune it with downstream
datasets. Therefore, this section divides the related work
into two categories: graph-based models and pre-train-based
models.

Dialog Emotion Recognition
Graph-based model Considering the unidirectionality of
information interaction, DAG (Shen et al. 2021b) utilizes di-
rected acyclic graphs to model the information interaction
between utterance and speaker. DialogGCN (Ghosal et al.
2019) adopts the basic graph neural network to model the
relationship between contexts. SumAggGIN (Sheng et al.
2020) adds an aggregation module based on DialogGCN
to additionally consider phrase-level information other than
utterance-level. By simulating the process of human reason-
ing, DialogCRN (Hu, Wei, and Huai 2021) proposes to ap-
ply several reasoning modules to extract and integrate clues
of emotional reasoning. To make the model better under-
stand the additional general information involved in the di-
alogue process, KET (Zhong, Wang, and Miao 2019) com-
bines external knowledge with a hierarchical Transformer.
By appending sequence information into the graph network,
RGAT (Ishiwatari et al. 2020) uses relational position en-
coding to combine position information into the graph net-
work structure to consider the dependency between speak-
ers. TODKAT (Zhu et al. 2021) integrates topic detection
into the pre-training model and fuses commonsense knowl-
edge into Transformer (Vaswani et al. 2017).

Pre-train-based model Suppose each utterance is re-
garded as an independent sentence, regardless of its context-
dependence and speaker information. In that case, the prob-
lem can be transformed into a simple sentence classifica-
tion so that pre-trained models (Qiu et al. 2020) such as
BERT (Devlin et al. 2019), BART (Lewis et al. 2020), and
RoBERTa (Liu et al. 2019) can be used directly for fine-
tuning. HiTrans (Li et al. 2020) adopts BERT to extract ut-
terance features, followed by transformer structure for mod-
eling context. Considering speaker dependence, the auxil-
iary task of judging whether two utterances are the same
speaker is used to model the speaker information. COS-
MIC (Ghosal et al. 2020) exploits RoBERTa as the fea-
ture extractor of each utterance and model the dependency
of the context with RNN. In addition, the common knowl-
edge transformer COMET (Bosselut et al. 2019) is incor-
porated to introduce world knowledge. Based on XLNet,
DialogXL (Shen et al. 2021a) changes the segment-level
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Figure 2: The overall framework of CoG-BART. The utterance is fed into BART for N utterances in a batch to get its hidden
state. The representation of the utterance obtained after max-pooling the hidden state of each utterance is fed to the upper-level
dialogue-level Transformer for modeling context dependencies. The obtained context-dependent utterance representations are
utilized to compute the cross-entropy loss and supervised contrastive loss. In addition, the two adjacent utterance pairs are used
for the auxiliary response generation.

structure to utterance-level and uses memory to record the
historical context. Meanwhile, by adopting different mask
mechanisms on different attention heads, each attention head
pays attention to different aspects of dialogue information.
Ide and Kawahara (2021) trained BART with both genera-
tion and classification in a multi-task format, though their
method focused on response generation, treating emotion
recognition as an auxiliary task. However, we focus on ERC
and apply supervised contrastive loss as an additional opti-
mization goal.

Contrastive Learning
Unsupervised contrastive learning In the field of com-
puter vision, SimCLR (Chen et al. 2020b) takes pictures
obtained from the same image through randomly differ-
ent data augmentation methods as positive samples and
other pictures as negative samples, thereby optimizing con-
trastive loss. The naive sentence representation obtained
by BERT has poor performance in semantic text similarity
tasks. Therefore, ConSERT (Yan et al. 2021) introduces self-
supervised contrast loss in the fine-tuning stage of BERT.
MBERT (Kim, Yoo, and Lee 2021) does not use data aug-
mentation to construct positive samples but uses BERT with
frozen parameters and fine-tunable parameters as a special
siamese model to construct positive samples.

Supervised contrastive learning To make full use of la-
bel information, Khosla et al. (2020) extends it to supervised
contrastive learning based on self-supervised training so that
samples belonging to the same label are gathered in the em-
bedding space while pushing samples of different categories
away. Given that cross-entropy loss may cause model train-

ing instability and converge to a local optimum, SCL (Gunel
et al. 2021) introduces supervised contrastive loss in the fine-
tuning stage, which greatly improves the model’s perfor-
mance in few-shot learning scenarios. SimCSE (Gao, Yao,
and Chen 2021) uses entailment pair in the annotated NLI
dataset as the positive sample and the contradict pair as the
negative sample in supervised contrastive learning.

Methodology
Problem Definition
In dialogue emotion recognition, the data is composed of
multiple conversations {c1, c2, · · · , cN}, with each conver-
sation composed of several utterances ci = [u1, u2, · · · , um]
and emotion labels Yci = {y1, y2, · · · , ym} ∈ S,
where S indicates the categories of emotions. For an
utterance, it is comprised of several tokens ut =
[wt,1, wt,2, · · · , wt,n]. Every utterance in a conversation ci is
uttered by one speaker which can be represented as p(ci) =
[p(u1), · · · , p(ui), · · · , p(um)] and p(ui) ∈ P , where P in-
dicates the categories or names of the speakers. Accordingly,
the whole problem can be expressed as getting the emotional
label of each utterance based on the context and speaker in-
formation in a piece of conversation: Yci = f(ci, p(ci)).

Supervised Contrastive Learning for ERC
Utterance Encoding To model the dependencies between
speaker and utterance, for a certain utterance ut in a conver-
sation, we splice the speaker’s name or category before the
utterance. After tokenizing the utterance prepended with the
speaker information, we get:

ũt =
[
〈s〉, wt,1, · · · , wt,i, · · · , wt,|nt|, 〈/s〉

]
, (1)
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where 〈s〉 and 〈/s〉 are treated as special tokens to indicate
the beginning and end of an utterance. Then the token se-
quence after tokenization is fed to the shared embedding
layer of BART to acquire the hidden state of each token in
utterance before sending it to the encoder and decoder of
BART. After sending Ht to BART, the representation of the
current utterance Ĥt is acquired:

Ht = EmbeddingLayer(ũt), (2)

Ĥt = BART-Model(Ht), (3)

where Ht, Ĥt ∈ Rs×d, and s, d indicates the length of the
sequence and hidden dimension respectively.

Dialogue Modeling The representation Ĥt obtained by
the BART-Model is max-pooled to obtain the aggregated
representation of the utterances as follows:

ȟt = max-pooling(Ĥt). (4)

To model the historical context information of the di-
alogue, we exploit a dialogue-level Transformer (Vaswani
et al. 2017) layer as the context encoder. The multi-head at-
tention mechanism can capture the interaction between dif-
ferent dialogues in multiple rounds of dialogue and aggre-
gate different features to obtain the final implicit represen-
tation, thereby fully modeling the complex dependence be-
tween different utterances and context relations. For all ut-
terances in a context, the multi-head attention score of the
hidden state between two different utterances in a conversa-
tion ȟj , ȟk can be calculated by the following formulas:

Atten(Q,K, V ) = softmax(
QKT

√
dk

)V, (5)

headi = Atten(ȟjW
Q
i , ȟkW

K
i , ȟkW

V
i ), (6)

MultiHead(Q,K, V ) = [head1; · · · ;headn]WO, (7)

where WQ
i ∈ Rd×dq , WK

i ∈ Rd×dk , WV
i ∈ Rd×dv and

WO ∈ Rd×d are parameters that can be optimized, dq , dk
and dv are dimensions of query, key and value vectors, n
indicates the number of heads.

Therefore, the utterance representation that models the
context-dependence can be obtained through the above-
mentioned dialogue-level Transformer:

Hwin = [ȟt, ȟt+1, · · · , ȟt+bs−1], (8)
Hd-win = Dialogue-Transformer(Hwin), (9)

where Hwin ∈ Rbs×d indicates utterances in a conversation
within the window size bs and Hd-win ∈ Rbs×d denotes the
utterances after context modeling.

Supervised Contrastive Learning Supervised con-
trastive learning assumes that some crucial aspects get
attention and allows few-shot learning to be more stable
when fine-tuned on pre-trained models (Gunel et al. 2021).
The typical contrastive learning uses only one pair of
positive examples, while all other samples are treated as
negative examples. Supervised contrastive learning treats

all examples with the same label in the batch as positive
examples by making full use of label information.

For ERC, the number of samples in each category in some
datasets (Li et al. 2017) is highly unbalanced, while the su-
pervised contrastive learning will mask itself when calcu-
lating the loss. If only one sample exists for a category in
the batch, it cannot be directly applied to calculate the loss.
Therefore, a copy of the hidden state of the utteranceHd-win

is made to obtainHd-win, and its gradient is detached. Hence
the parameter optimization is maintained stable.

For a batch with N training samples, each sample is oper-
ated by the above mechanism to obtain multiview 2N sam-
ples, then the supervised contrastive loss of all samples in a
batch can be expressed by the following equation:

X = [Hd-win, Hd-win], (10)

LSCL =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

SIM(p, i), (11)

SIM(p, i) = log
exp((Xi ·Xp)/τ)∑

a∈A(i) exp(Xi ·Xa/τ)
, (12)

where X ∈ R2N×d, i ∈ I = {1, 2, · · · , 2N} indicate the
index of the samples in a multiview batch, τ ∈ R+ de-
notes the temperature coefficient used to control the dis-
tance between instances, P (i) = Ij=i − {i} represents
samples with the same category as i while excluding itself,
A(i) = I − {i,N + i} indicates samples in the multiview
batch except itself.

Auxiliary Response Generation
To facilitate the model to consider richer contextual infor-
mation when determining utterance sentiment, the model is
required to generate its following utterance ut+1 given the
current utterance ut. The output hidden state of each token
in ut+1 is generated by the BART decoder sequentially.

H́t = BART-Encoder(Ht), (13)

h̀dj = BART-Decoder(H́t; h̀
d
<j), (14)

ut+1,j = Softmax(h̀dj ), (15)

LGen = −
N∑
i=1

log p(ut+1|ut,θ), (16)

where θ is the parameters of BART need to be optimized.

Model Training
The loss of model training consists of three parts: the hidden
stateHd-win obtained after context modeling passes through
a multilayer perceptron to obtain logits for calculating cross-
entropy loss. The other part is the supervised contrastive loss
and the loss of response generation. The loss is a weighted
sum of the three components, and the sum of their weights
equals one. The overall framework of CoG-BART is illus-
trated in Figure 2.
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Dataset DD MELD ENLP IEMOCAP

#Dial Train 11118 1038 713 120
Dev 1000 114 99 120
Test 1000 280 85 31

#Utter Train 87170 9989 9934 5810
Dev 8069 1109 1344 5810
Test 7740 2610 1328 1623

#CLS 7 7 7 6

Table 1: Statistics of four benchmark datasets.

Pi = Softmax(WsHd-win,i + bs), (17)
ŷi = argmax(Pi), (18)

LCE = − 1

N

N∑
i=1

C∑
c=1

yi,c · log ŷi,c, (19)

L = (1− α− β)LCE + αLSCL + βLGen, (20)

where yi,c represents the label of a certain utterance, ŷi,c in-
dicates the probability distribution of category c output by
the dense layer, α denotes the weight for supervised con-
trastive loss and β is the weight for loss of response genera-
tion.

Experimental Settings
This section will elaborate on the datasets, baseline models,
experimental conditions, and parameter settings adopt in the
experiment.

Experimental Setup
The code framework and initial weight of BART come from
Huggingface’s Transformers (Wolf et al. 2020). The opti-
mizer applied for model training is AdamW with a linear-
scheduled warm-up strategy. The parameters adjusted in this
experiment include batch size, learning rate, warm-up ratio,
α, and β. We conducted a hyperparameter search for model
training through the reserved validation set. The results on
the test set come from the best checkpoint in the validation
set, and we average the scores from five different random
seeds. All experiments are performed on GeForce RTX 3090
GPU.

Datasets
This section will introduce four benchmark datasets: MELD
(Poria et al. 2019), EmoryNLP (Zahiri and Choi 2018), Dai-
lyDialog (Li et al. 2017), and IEMOCAP (Busso et al. 2008)
for comparison with the baseline models.

MELD This dataset comes from the dialogue content of
the characters in the American drama Friends. MELD orig-
inally contained multi-modal data, but we used only the text
data for the experiments.

EmoryNLP (ENLP) This dataset also comes from
Friends, and the difference from MELD is the annotation
of utterance’s emotional label category. The emotional tags

contained in this dataset are: joyful, neutral, powerful, mad,
sad, scared, and peaceful.

DailyDialog (DD) Manually compiled data sets about
daily communication. The annotation method used in this
data set is Ekman’s emotion type (Ekman 1993), which in-
cludes six basic emotion tags, including happiness, surprise,
anger, disgust, fear, and sadness.

IEMOCAP Like MELD, it is a multi-modal dataset. The
content is derived from the lines in the scripts of the two
actors, and the emotional tags included are excited, neutral,
frustrated, sad, happy, and angry.

The detailed statistics of the four datasets are shown in
Table 1, where “#Dial” indicates the number of dialogue in
train/dev/test, “#Utter” represents the number of all utter-
ances in dialogue, and “#CLS” denotes the number of cate-
gories of each dataset.

Metrics
For MELD, EmoryNLP and IEMOCAP, we adopt weighted
average F1 as the evaluation metrics. In that “neutral” occu-
pies the majority in DailyDialog, micro-F1 is employed as
the evaluation metric for this data set, and we ignore the la-
bel “neutral” when calculating the results as in the previous
works (Zhu et al. 2021; Shen et al. 2021b).

Results and Analysis
Main Results
Table 2 and 3 record the results of comparing CoG-BART
with the baseline models on four datasets.

Among the pre-train-based models and their variants, the
selected baseline models are BERT (Devlin et al. 2019),
RoBERTa (Liu et al. 2019), HiTrans (Li et al. 2020), Di-
alogXL (Shen et al. 2021a) and XLNet (Yang et al. 2019). In
MELD (Poria et al. 2019), CoG-BART has an approximate
absolute 1.24% improvement over the previous state-of-the-
art BART-large (Lewis et al. 2020).

For graph-based models, KET (Zhong, Wang, and Miao
2019), RGAT (Ishiwatari et al. 2020), DialogGCN (Ghosal
et al. 2019), DialogCRN (Hu, Wei, and Huai 2021), COS-
MIC (Ghosal et al. 2020), and DAG-ERC (Shen et al. 2021b)
are listed.

Compared to the graph-based model, CoG-BART im-
proves 0.53 points over COSMIC (Ghosal et al. 2020). It is
worth noting that RoBERTa-large is used as the feature ex-
tractor in COSMIC, while CoG-BART only adopts BART-
large as the backbone structure to obtain competitive results,
indicating that adequate knowledge transfer of pre-trained
models which effectively model the dependencies between
contexts can also yield promising results in MELD.

We can observe from the results in EmoryNLP (Zahiri and
Choi 2018) that the graph-based model using the pre-trained
model as the feature extractor works better overall than the
model applying only the pre-trained model as the backbone
network. Meanwhile, CoG-BART still achieves results with
significant improvement. Also, the graph-based model can
obtain higher F1 overall on IEMOCAP (Busso et al. 2008)
compared to the pre-trained based models. The reason is that
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Dataset MELD EmoryNLP IEMOCAP DailyDialog

Model Weighted Micro-F1 Weighted Micro-F1 Weighted Micro-F1 Weighted Micro
-Avg-F1 -Avg-F1 -Avg-F1 -F1-neural -F1-neutral

BERT 62.28 63.49 34.87 41.11 60.98 - 53.41 54.85
RoBERTa 62.51 63.75 35.90 40.81 63.38 - 52.84 54.33
HiTrans 61.94 - 36.75 - 64.50 - - -
DialogXL 62.41 - 34.73 - 65.94 - - 54.93
XLNet 61.65 - 34.13 - 61.33 - - 53.62
BART-large 63.57 64.41 35.98 38.93 56.14 56.67 54.83 55.34

CoG-BART 64.81 (±0.19) 65.95 (±0.44) 39.04 (±0.10) 42.58 (±0.94) 66.18 (±0.45) 66.71 (±0.49) 56.09 (±0.01) 56.29 (±0.17)

Table 2: The overall results of CoG-BART with pre-train-based baseline models on four datasets.

Dataset MELD EmoryNLP IEMOCAP DailyDialog

Model Weighted Weighted Weighted Micro
-Avg-F1 -Avg-F1 -Avg-F1 -F1-neutral

KET 58.18 34.39 59.56 53.37
RGAT 60.91 34.42 65.22 54.31
RGAT+RoBERTa 62.80 37.89 66.36 59.02
DialogGCN 58.10 - 64.18 -
DialogCRN 58.39 - 66.20 -
COSMIC 64.28 37.10 63.05 56.16
DAG-ERC 63.65 39.02 68.03 59.33
CoG-BART 64.81 (±0.19) 39.04 (±0.10) 66.18 (±0.45) 56.29 (±0.17)

Table 3: Comparison with graph-based models.

neural
surprise
fear
sadness

joy
disgust
anger

Figure 3: The t-SNE visualization results of the model out-
put when α is 0 and 0.8, respectively.

the number of utterances contained in one context of IEMO-
CAP is much larger than the other three datasets, so pre-
trained models are usually incapable of handling excessively
long contexts. However, graph network models can better
model context dependencies. In comparison, CoG-BART
also achieves results similar to those of graph-based mod-
els, demonstrating the capability of CoG-BART to model
the context-dependence.

The micro-F1 values of CoG-BART in DailyDialog are
lower compared to the results of some graph neural network
models. Still, it can achieve similar results to some pre-train-
based models such as BERT (Devlin et al. 2019), RoBERTa
(Liu et al. 2019) and DialogXL (Shen et al. 2021a). There-
fore, the graph-based model may have the advantage over
pre-train-based models by more adequately modeling con-
text dependencies on this dataset.

Metric Weighted Average F1

Datasets α=0.2 α=0.4 α=0.6 α=0.8 β=0.1 β=0.2

MELD 64.57 63.99 64.42 61.84 64.83 63.70
IEMOCAP 64.38 66.18 65.12 63.38 66.18 63.54
EmoryNLP 39.04 36.68 36.90 35.24 37.45 37.57

Table 4: The F1 scores for different values of α and β

The Potency of Supervised Contrastive Learning
Qualitative Analysis of SCL To conduct a qualitative
analysis of supervised contrastive learning, we utilize t-
SNE (Hinton and Roweis 2002) to visualize the distribution
of high-dimensional hidden states obtained by the model
trained with supervised contrastive loss. By controlling dif-
ferent sizes of α, the ratio of supervised contrastive loss is
controlled to 0% and 80%, respectively, to obtain the hidden
state output by the model under different levels of supervised
contrastive learning.

As illustrated in Figure 3, when the supervised contrastive
loss is not exploited, that is, when the cross-entropy loss
function is completely adopted, the overlap rate of samples
between different labels is particularly high, especially for
some samples with similar emotions, which increase the dif-
ficulty of learning the decision boundaries. As the propor-
tion of supervised contrastive loss increases, it can be dis-
tinctly observed that the degree of coupling between differ-
ent classes is gradually enlarged, and the same classes begin
to cohesive. It is worth mentioning that although the distance
within the class has been reduced, the uniformity (Wang and
Isola 2020) between samples has been well maintained, in-
dicating that the information has been well preserved and no
representation collapse has occurred.

Quantitative Analysis of SCL The effects of different
proportions of supervised contrastive learning on CoG-
BART are illustrated in Table 4, where the weighted average
F1 of CoG-BART with different proportions of SCL loss is
recorded. Different α have a large impact on the outcomes,
e.g., there exists a 2.8 points difference in F1 values between
α equals 0.4 and 0.8 for IEMOCAP, reflecting the signifi-
cant positive effect of supervised contrastive learning for this
dataset. Meanwhile, different datasets have different values
of α in obtaining the relatively best gain effect. For instance,

11007



Utterance for Prediction Generated Response Predict w/o
RG

Predict with
RG

Golden
label

Joey : Thursday's clearly not 
good for ya, pick a day!

Sarah : So that's two boxes of the 
Holiday Macaroons. On behalf of the 
Brown Birds of America, I salute you.

anger joy joy

Joey: Man, that was great! 
Huh? Can you believe how 

long we threw that ball around?

Rachel : Yeah, it is amazing it lasted 
that long. surprise joy joy

Figure 4: Case studies show that response generation enables the model to correctly predict the emotion based on context.

Dataset MELD IEMOCAP

Methods Weight-Avg-F1

CoG-BART 64.81 66.18
-Gen 64.26 (↓0.55) 64.74 (↓1.44)
-SCL loss 64.28 (↓0.53) 64.23 (↓1.95)
-Speaker 64.14 (↓0.67) 55.41 (↓10.77)
-Gen, SCL loss 63.57 (↓1.24) 62.90 (↓3.28)
-SCL loss, Speaker 63.72 (↓1.09) 54.83 (↓11.35)
-Gen, Speaker 64.02 (↓0.79) 54.95 (↓11.23)
-Dialog-Trans 64.40 (↓0.41) 64.19 (↓1.99)

Table 5: Ablation study to evaluate the impact of different
components on the overall performance of the model on
MELD and EmoryNLP

CoG-BART performs best when α = 0.2 in MELD, while
achieving the best result when α = 0.4 in IEMOCAP.

Effect of Response Generation
Response generation has a facilitating effect on modeling
context dependence to some extent. As the two cases in Fig-
ure 4 illustrate, if only the current utterance itself is con-
sidered, the expression may cause the model to misjudge
the sentiment of the current utterance, while generating re-
sponses leads the model to pay more attention to contextual
information, thus making correct predictions which consis-
tent with the scenario. As for the impact of different weights
of response generation loss, Table 4 illustrates that when fix-
ing α and adjusting β, there is also a slight impact on the
model’s overall performance.

Ablation Analysis
To investigate the impacts of individual modules and com-
binations of several components on the overall effect of the
model, this section conducts an ablation study on three mod-
ules in CoG-BART. As illustrated in Table 5, the selected
datasets are MELD and IEMOCAP, where “-” indicates the
removal of the single method or several methods, “Gen” de-
notes the auxiliary task of response generation, “SCL loss”
means supervised contrastive loss, and “Speaker” indicates
the splicing of speaker label before utterance.

From the results of MELD, removing any of the three
modules makes the overall performance worse, while dis-

carding the supervised contrastive loss and response gener-
ation has the greatest impact on the performance of CoG-
BART in MELD. These indicate that supervised contrastive
loss leverage label information better compared to cross-
entropy loss, thus effectively distinguishing different senti-
ments.

Consistent results are also obtained in IEMOCAP, indicat-
ing that the improvement in model performance from these
three modules transfers well across these datasets. How-
ever, the more unexpected finding was that removing the
speaker’s information made CoG-BART most degraded in
IEMOCAP. By analyzing this dataset, we found that it in-
volved 302 speakers, so it may be crucial to fully model
the speaker information for this dataset. It also proves the
effectiveness of the simple method of splicing the speaker
information directly in front of the utterance. Furthermore,
removing the supervised contrastive loss alone degrades the
performance by 1.95 points on IEMOCAP, indicating that
supervised contrastive learning significantly impacts CoG-
BART on this dataset. The results after removing Dialog-
level Transformer suggest that this module improves overall
performance by modelling longer contextual dependencies.

Conclusion

We propose supervised contrastive learning with response
generation as an auxiliary task for BART, namely CoG-
BART, for emotion recognition in conversation (ERC). First,
supervised contrastive learning is introduced into the train-
ing process to distinguish similar emotions, reducing intra-
class distance and increasing inter-class variance. Mean-
while, the response generation is adopted as an auxiliary
task; hence, the model categorizes utterances with similar
semantics but different emotions by considering the context.
The results obtained on four datasets compared with the cur-
rent state-of-the-art baseline methods demonstrate the pro-
posed method’s effectiveness. Furthermore, ablation studies
demonstrate that supervised contrastive learning can effec-
tively improve the model’s efficacy in recognizing emotions,
thus improving the overall performance. Also, response gen-
eration as an auxiliary task helps the model fully consider
the context to discern the emotions of semantically similar
utterances in varying contexts.
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