
From Fully Trained to Fully Random Embeddings: Improving Neural Machine
Translation with Compact Word Embedding Tables

Krtin Kumar1*, Peyman Passban2∗, Mehdi Rezagholizadeh3, Yiu Sing Lau4∗, Qun Liu3

1 Thomson Reuters,
2 Amazon,

3 Huawei Noah’s Ark Lab,
4 McGill University,

{krtinkumar, passban.peyman, mehdi.rezagholizadeh, yiusinglau17}@gmail.com, qun.liu@huawei.com

Abstract

Embedding matrices are key components in neural natural lan-
guage processing (NLP) models that are responsible to provide
numerical representations of input tokens (i.e. words or sub-
words). In this paper, we analyze the impact and utility of such
matrices in the context of neural machine translation (NMT).
We show that detracting syntactic and semantic information
from word embeddings and running NMT systems with ran-
dom embeddings is not as damaging as it initially sounds. We
also show how incorporating only a limited amount of task-
specific knowledge from fully-trained embeddings can boost
the performance NMT systems. Our findings demonstrate that
in exchange for negligible deterioration in performance, any
NMT model can be run with partially random embeddings.
Working with such structures means a minimal memory re-
quirement as there is no longer need to store large embedding
tables, which is a significant gain in industrial and on-device
settings. We evaluated our embeddings in translating English
into German and French and achieved a 5.3x compression rate.
Despite having a considerably smaller architecture, our mod-
els in some cases are even able to outperform state-of-the-art
baselines.

Introduction
One of the main challenges in NLP is to properly encode
discrete tokens into continuous vector representations. The
most common practice in this regard is to use an embedding
matrix which provides a one-to-one mapping from tokens
to n-dimensional, real-valued vectors (Mikolov et al. 2013;
Li and Yang 2018). Typically, values of these vectors are
optimized via back-propagation with respect to a particular
objective function. Learning embedding matrices with robust
performance across different domains and data distributions
is a complex task, and can directly impact quality (Tian et al.
2014; Shi et al. 2015; Sun et al. 2016).

Embedding matrices are a key component in a seq2seq
NMT model, for instance, in a transformer-base NMT model
(Vaswani et al. 2017) with a vocabulary size of 50k, 36% of
the total model parameters are utilized by embedding matri-
ces. Thus, a significant amount of parameters are utilized only

*Work done while Krtin Kumar, Peyman Passban and Yiu Sing
Liu were at Huawei.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for representing tokens in a model. Existing work on embed-
ding compression for NMT systems (Khrulkov et al. 2019;
Chen et al. 2018; Shu and Nakayama 2017), have shown that
these matrices can by compressed significantly with minor
drop in performance. Our focus in this work is to study the
importance of embedding matrices in the context of NMT.
We experiment with Transformers (Vaswani et al. 2017) and
LSTM based seq2seq architectures, which are the two most
popular seq2seq models in NMT. In Section , we compare
the performance of a fully-trained embedding matrix, with
a completely random word embedding (RWE), and find that
using a random embedding matrix leads to drop in about 1
to 4 BLEU (Papineni et al. 2002) points on different NMT
benchmark datasets. Neural networks have shown impressive
performance with random weights for image classification
tasks (Ramanujan et al. 2020), our experiments show similar
results for embedding matrices of NMT models.

RWE uses no trainable parameters, thus it might be pos-
sible to recover the drop in BLEU score by increasing the
number of parameters using additional layers. We increase
the number of layers in RWE model such that the number of
parameters used by the entire model is comparable to fully-
trained embedding model. We find that even in comparable
parameter setting RWE model performance was inferior to
fully-trained model by 1 BLEU point for high and medium
resource datasets. Our results suggest that even though the
embedding parameters can be compressed to a large extent
with only a minor drop in accuracy, embedding matrices are
essential components for token representation, and cannot be
replaced by deeper layers of transformer based models.

RWE assumed a fully random embedding sampled from a
single Gaussian distribution; however, to control the amount
of random information, and to better understand the impor-
tance of embedding matrices, we introduce Gaussian product
quantization (GPQ). GPQ assumes that k Gaussian distri-
butions are required to approximate the embedding matrix
for NMT models. The means and variances of the k distri-
butions are learned from a fully-trained embedding matrix
trained on the same dataset as GPQ model. k is a hyper-
parameter which controls the amount of information distilled
from a pre-trained embedding to partially random embed-
ding in GPQ model. GPQ has the ability to move from a
fully random embedding to a fully-trained embedding by

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

10930

Figure 1: k is a hyper-parameter that controls the number of Gaussian distributions required to approximate the embedding
matrix.

increasing the number of distributions k, as shown in Fig-
ure 1. Our results show that only 50 Gaussian distributions
are sufficient to approximate the embedding matrix, without
drop in performance. GPQ compresses the embedding matrix
5 times without any significant drop in performance, and
uses only 100 floating point values for storing the means and
variances. GPQ demonstrates effective regularization of the
embedding matrix, by out-performing the transformer base-
line model with fully-trained embedding by 1.2 BLEU points
for En→ Fr dataset and 0.5 BLEU for Pt→ En dataset.
A similar increase in performance was also observed for
LSTM based models, thus further showing the effectiveness
of GPQ for embedding regularization.

Product Quantization (PQ) (Jegou, Douze, and Schmid
2010) was proposed for fast search by approximating near-
est neighbour search. PQ has been adapted for compressing
embedding matrices for different NLP problems (Shu and
Nakayama 2017; Kim, Kim, and Lee 2020; Tissier, Gravier,
and Habrard 2019; Li et al. 2018). Our method is an ex-
tension of PQ, first, we incorporate variance information in
GPQ, then we define unified partitioning to learn a more
robust shared space for approximating the embedding ma-
trix. Our extensions consistently outperform the original PQ-
based models with better compression rates and higher BLEU
scores. These improvement are observed for Transformer-
based models as well as conventional, recurrent neural net-
works.

Product Quantization (PQ)
PQ is the core of our techniques, so we briefly discuss its
details in this section. For more details see Jegou, Douze,
and Schmid (2010). As previously mentioned, NLP models
encode tokens from a discrete to a continuous domain via an
embedding matrix E, as simply shown in Equation 1:

E ∈ R|V |×n (1)

where V is a vocabulary set of unique tokens and n is the
dimension of each embedding. We use the notationEw ∈ Rn

to refer to the embedding of the w-th word in the vocabulary
set. In PQ, first E is partitioned into g groups across columns
with Gi ∈ R|V |×

n
g representing the i-th group. Then each

group Gi is clustered using K-means into c clusters. Cluster
indices and cluster centroids are stored in the vector Qi ∈
N|V | and matrixCi ∈ Rc×n

g , respectively. Figure 2 illustrates
the PQ-based decomposition process.

We can obtain the quantization matrix Q (also known
as the index matrix in the literature) and codebook C by

Figure 2: The matrix on the left hand side shows the original
embedding matrix E, after dividing columns into 3 groups
(Gi; i ∈ {1, 2, 3}) and applying the k-means algorithm with
the cluster number 2 (c = 2) to each group. The digit inside
each block is the cluster number. The figure on the right hand
side shows the quantization matrix Q, and codebook C.

concatenating Qi and Ci for all g groups along the columns,
as shown in Equation 2.

Q = Concatcolumn(Q1, Q2, ..., Qg)

C = Concatcolumn(C1, C2, ..., Cg)
(2)

The decomposition process applied by PQ is reversable,
namely any embedding table decomposed by PQ can be
reconstructed using the matrices Qi and Ci. The size of an
embedding table compressed via PQ can be calculated as
shown in Equation 3:

SizePQ = log2(c)× |V | × g + cnfp (in bits) (3)

where fp is the number of bits defined to store parameters
with floating points. In our experiments fp is 32 for all set-
tings. We use Equation 3 to measure the compression rate of
different models.

Methodology
In this section we first explain RWE which stands for Random
Word Embeddings. In RWE, all embeddings are initialized
with completely random values where there is no syntactic
and semantic information is available.

Next, we move from completely random embeddings to
weakly supervised embeddings by incorporating some knowl-
edge from a pre-trained embedding matrix. We propose our
Gaussian Porduct Quantization (GPQ) technique in this re-
gard, which applies PQ to a pre-trained embedding matrix
and models each cluster with a Gaussian distribution. Our
GPQ empowers the PQ with taking intra-cluster variance

10931

information into account. This approach is particularly useful
when PQ clusters have a high variance, which might be the
case for large embedding matrices.

Random Word Embeddings (RWE)
A simple approach to form random embeddings is to sample
their values from a standard Gaussian distribution, as shown
in Equation 4:

S = N (Ei,j |µ, σ2) ∀(i, j)

E
′

i =
Si

||Si||
∀i, (4)

where N is a normal distribution with µ = 0 and σ = 1, S
is sampled matrix of the same dimensions as E, E′ is the
reconstructed matrix, Ei and Si represent ith row vector of
matrices E′ and S respectively. We normalize each word
embedding vector to unify the magnitude of all word embed-
dings to ensure that we do not add any bias to the embedding
matrix.

Since this approach relies on completely random values,
to increase the expressiveness of embeddings and handle any
potential dimension mismatch between the embedding table
and the first layer of the neural model we place an optional
linear transformation matrix W (where W ∈ Rn×m). The
weight matrixW uses n×m trainable parameters, where n is
the size of embedding vector andm is the dimension in which
the model accepts its inputs. The increase in the number of
parameters is negligible as it only relies on the embedding
and input dimensions (n andm), which are both considerably
smaller than the number of words in a vocabulary (n,m�
|V |).

Gaussian Product Quantization (GPQ)
RWE considers completely random embeddings which can be
a very strict condition for an NLP model. Therefore, we pro-
pose our Gaussian Product Quantization (GPQ) to boost ran-
dom embeddings with prior information from a pre-trained
embedding matrix. We assume that there is an existing em-
bedding matrix E that is obtained from a model with the
same architecture as ours, trained for the same task using the
same dataset.

The pipeline defined for GPQ is as follows: First, we apply
PQ to the pre-trained embedding matrix E to derive the quan-
tization matrix Q|V |×g and the codebook matrix Cc×n. The
codebook matrix stores centers of c clusters for all Gi groups
and the quantization matrix stores the mapping index of each
sub-vector in the embedding matrix to the corresponding cen-
ter of the cluster in the codebook. The two matrices Q and C
can be used to reconstruct the original matrix E from the PQ
process.

The PQ technique only stores the center of clusters in the
codebook and does not take variance of them into account.
However, our GPQ technique models each cluster with a
single Gaussian distribution by setting its mean and variance
parameters to the cluster center and intra-cluster variance.
We define Cji , (1 ≤ j ≤ c) to be the cluster corresponding
to the j − th row of Ci in the codebook (that is Cj

i) with the

mean and variance of µj
i ∈ R c

n and (σj
i)

2. Then, we define
entries of the codebook of our GPQ approach as following:

Ĉj
i ∼ N

j
i (µ

j
i , (σ

j
i)

2). (5)

Consequently, we model each cluster of PQ with a single
Gaussian distribution with two parameters. Then the embed-
ding matrix Ê can be reconstructed using a lookup function
that maps values Qi from Ĉi. We illustrate our GPQ method
and compare it with PQ in Figure 3. In GPQ, we only need
to store the index matrix, codebook and their corresponding
variances in order to be able to reconstruct the embedding
matrix.

The PQ/GPQ method relies on partitioning the embedding
matrix into same size Gi groups across the columns and then
clustering them. We refer to the partitioning function used in
PQ as Structured Partitioning, and propose a new partitioning
scheme, which we refer to as Unified Partitioning. The details
of each scheme is described in the following.

Structured Partitioning The original PQ method is based
on structured partitioning to partition the input matrixE|V |×n
into g groups of Gi of size |V | × n

g along the columns uni-
formly such that E = Concatcolumn(G1, G2, ..., Gg). Each
Gi group is clustered into c clusters along the rows using any
clustering algorithm. If we choose K-means clustering algo-
rithm for this purpose, then we can obtain the center of clus-
ters Ci ⊂ C (where Ci ∈ Rc×n

g), their variances σ2
i ∈ Rc,

and the quantization vector Qi ∈ N|V| corresponding to Gi

as following:

[Ci, σ
2
i , Qi] = K-means(Gi, c). (6)

The total number of clusters in this case is k = c ∗ g. In
our technique, we store the variance of clusters in addition
to their mean which utilizes more number of floating point
parameters compared to Equation 3, as shown in Equation 7.

SizeStructured
GPQ = log2(c)× |V | × g + 2cnfp bits (7)

Unified Partitioning Structured partitioning has limited
ability to exploit redundancies across groups. Motivated by
this shortcoming we propose our unified partitioning ap-
proach in which we concatenate the g groups along rows
to form a matrix G ∈ Rg|V |×n

g and then apply K-Means to
the matrix G (instead of applying K-means to each group Gi

separately).

G = Concatrow(G1, G2, ..., Gg) ∈ R(g|V |)×(n/g) (8)

[C, σ2, Q] = K-means(G, c). (9)

For better understanding we illustrate our method in Figure
4. Equation 10 defines the size of parameters for unified
partitioning function.

SizeUnified
GPQ = log2(c)× |V | × g + 2c

n

g
fp bits (10)

10932

Figure 3a Figure 3b Figure 3c

Figure 3: The figure on the left hand side shows the original embedding matrix E after applying the k-means algorithm, with
2 clusters (c = 2) and 3 groups (Gi) (g = 3), which results in 6 partitions (Pi). The figure in the middle shows the difference
between PQ and GPQ. The figure on the right hand side is the reconstructed matrix E

′
.

Figure 4: Unified partitioning function with 3 Groups.

Model Float Integer
PQ 25.6k 16.3M
PQ (Unified) 50 16.3M
GPQ (Unified) 100 16.3M

Table 1: Comparison of floating point vs integer parameters
for vocabulary size of 32k, embedding size 512, 512 groups,
and 50 clusters

Experiments
We evaluate our model for machine translation task on WMT-
2014 English to French (En → Fr), WMT-2014 English
to German (En→ De), and IWSLT Portuguese to English
(Pt→ En) datasets. We chose these pairs as they are good
representatives of high, medium, and low resource language
pairs.

ForEn→ Fr experiments we used Sentence-Piece (Kudo
and Richardson 2018) to extract a shared vocabulary of 32k
sub-word units. We chose newstest2013 as our validation
dataset and used newstest2014 as our test dataset. The dataset
contains about 36M sentence-pairs.

For En → De experiments we use the same setup as
Vaswani et al. (2017). The dataset contains about 4.5M

sentence-pairs. We use a shared vocabulary of 37k sub-word
units extracted using Sentence-Piece.

For Pt→ En experiments, we replicate dataset configu-
ration of Tan et al. (2019) for individual models. Specifically,
the dataset contains 167k training pairs. We used a shared
vocabulary of 32k subwords extracted with Sentence-Piece.

Evaluation For all language pairs, we report case-sensitive
BLEU score (Papineni et al. 2002) using SacreBLEU1 (Post
2018). We train for 100K steps and save a checkpoint every
5000 steps for En → Fr and En → De language pairs.
For Pt → En translation we train for 50K steps and save
checkpoint every 2000 steps. We select the best checkpoints
based upon validation loss, and average best 5 checkpoints
for En → Fr and En → De language pairs, and average
best 3 checkpoints for Pt→ En. We do not use checkpoint
averaging for our LSTM experiments. We use beam search
with a beam width of 4 for all language pairs.

Model and Training Details
We use the Transformer model (Vaswani et al. 2017) as our
baseline for all our experiments. We also report results on
LSTM-based models to study our hypothesis for RNN based
architectures. Our LSTM-based model uses multiple layers
of bidirectional-LSTM, followed by a linear layer on the last
layer to combine the internal states of LSTM. The decoder
uses multiple layers of uni-directional LSTM, the final output
of decoder uses attention on encoder output for generating
words. All our models use weight sharing between the em-
bedding matrix and the output projection layer (Press and
Wolf 2016).

For the transformer-base configuration, the model hidden
size h is set to 512, the feed-forward hidden size dff is set to
2048. We use different number of layers for our experiments,
instead of the default 6 layers. For transformer-small configu-
ration the model hidden-size n is set to 256, the feed-forward
hidden size dff is set to 1024. We use different number of lay-
ers for our experiments. For transformer-small, the dropout

1https://github.com/mjpost/sacreBLEU

10933

Model WMT En-Fr WMT En-De IWSLT Pt-En

Layers Model
Params BLEU Layers Model

Params BLEU Layers Model
Params BLEU

Transformer 6 60.7M 38.41 6 63M 27.03 3 11.9M 39.58

RWE+linear 6 44.4M 35.76 6 44.2M 23.04 3 3.7M 38.14
RWE+linear 8 59M 37.11 8 58.9M 25.83 6 11.1M 40.69

Table 2: NMT results for Random Word Embeddings (RWE), for different hyper-parameters. M represents Millions, Transformer
is the baseline model (Vaswani et al. 2017).

Model WMT En-Fr WMT En-De IWSLT Pt-En
Emb. Size BLEU Emb. Size BLEU Emb. Size BLEU

Transformer Baseline 62.5 MB 39.29 72.3 MB 27.38 31.3 MB 39.88

PQ (Structured) 11.82 MB 39.95 13.65 MB 27.04 5.9 MB 40.33
GPQ (Structured) 11.92 MB 40.04 13.75 MB 27.11 5.95 MB 40.16
PQ (Unified) 11.7 MB 40.02 13.54 MB 26.87 5.86 MB 39.34
GPQ (Unified) 11.7 MB 40.51 13.55 MB 27.35 5.86 MB 40.36

Table 3: NMT results on Transformer baseline (Vaswani et al. 2017), with 8 layers, groups (g) equal to the embedding size n,
and 50 clusters (c).

configuration was set the same as Transformer Base. For
LSTM experiments, we use 2 layers and the hidden size n
is set to 256 for LSTM-small, and 7 layers and the hidden
size n is set to 512 for LSTM-large. We use transformer-
base for WMT datasets, and transformer-small for IWSLT
dataset. We use LSTM-small for IWSLT and LSTM-large
for WMT datasets. For all our experiments we set Numpy
(Van Der Walt, Colbert, and Varoquaux 2011) seed to 0 and
PyTorch (Paszke et al. 2017) seed to 3435.

All models are optimized using Adam (Kingma and Ba
2014) and the same learning rate schedule as proposed by
(Vaswani et al. 2017). We use label smoothing with 0.1
weight for the uniform prior distribution over the vocabu-
lary (Szegedy et al. 2015; Pereyra et al. 2017).

We train all our models on 8 NVIDIA V100 GPUs. Each
training batch contains a set of sentence pairs containing
approximately 6144 source tokens and 6144 target tokens
for each GPU worker. For implementing our method we use
the OpenNMT library (Klein et al. 2017), implemented in
PyTorch.

Results
Random Word Embeddings
We replace the embedding matrix of the transformer model
using RWE method, and summarize our results in Table 2.
We evaluate our model in two cases.

In the first case, we use exactly the same hyper-parameters
as our baseline model, and only replace the embedding ma-
trix. In this case our model has only 2 embedding parameters
to store the mean and variance of the Gaussian distribution,
and an additional linear layer for re-scaling the embedding
vectors. Our results show that without any embedding param-
eters, and a linear transformation, transformer model scores

only 1.44 BLEU points below the baseline for Pt → En.
Deterioration in the case of En→ Fr was approximately 1
BLEU point higher than Pt → En, and for En → De the
drop is 4 BLEU points.

In the previous case, our model used at least 27% fewer
parameters compared to the baseline model. In order to com-
pare RWE in a fair parameter setting, we increase the num-
ber of layers in Transformer to approximately match the
total parameters with the baseline model. In this setting our
model performed within 1.3 BLEU points for En→ De and
En → Fr. On Pt → En experiments, our model scored
1.0 BLEU point higher than the baseline with slightly fewer
parameters.

Overall, our experiments show that transformer based neu-
ral networks have the capacity to efficiently learn semantic
and syntactic information in deeper layers, though utility of
using embedding tables for token representation is beneficial
and not redundant.

Gaussian Product Quantization
We apply the GPQ method on the embedding matrix of Trans-
former and LSTM-based models. We design a set of experi-
ments to investigate, 1) if we can approximate the embedding
matrix in an almost discrete space using integer values, 2)
to study the compression ability of our method compared to
PQ.

Experiments for Discrete Space Approximation We
evaluate our method on Transformer (Table 3) and LSTM-
based models (Table 4). For all experiments we chose the
number of groups g equal to the size of embedding vector n.
This allowed us to maximize the number of groups and in
turn maximize the amount of discrete information (integer
values) and minimize the amount of floating-point parameters
required to reconstruct the embedding matrix. We experiment

10934

Model WMT En-Fr WMT En-De IWSLT Pt-En
Emb. Size BLEU Emb. Size BLEU Emb. Size BLEU

LSTM Baseline 62.5 MB 32.61 72.3 22.17 31.3 35.12

PQ (Unified) 13.67 MB 32.05 15.8 MB 22.13 6.8 MB 35.35
GPQ (Unified) 13.67 MB 33.82 15.8 MB 22.14 6.8 MB 35.58

Table 4: NMT results on LSTM based model, we use 128 clusters (c) and groups (g) equal to embedding size n.

Model WMT En-Fr WMT En-De IWSLT Pt-En
Emb. Size BLEU c Emb. Size BLEU c Emb. Size BLEU c

Transformer 62.5 MB 39.29 - 72.3 MB 27.38 - 31.3 MB 39.88 -

PQ (Struct.) 1.25 MB 39.13 140 1.44 MB 25.35 160 1.22 MB 40.6 256
GPQ (Struct.) 1.25 MB 39.18 102 1.44 MB 26.08 116 1.1 MB 41.1 128
PQ (Unified) 1.25 MB 39.29 1024 1.44 MB 25.83 1024 1.24 MB 40.62 1024
GPQ (Unified) 1.28 MB 39.77 1024 1.47 MB 25.96 1024 1.25 MB 41.32 1024

Table 5: NMT results on Transformer baseline (Vaswani et al. 2017), with 32 groups (g) and 8 layers. c represents the number of
clusters. Struct. and unified represents structured and unified partitioning functions respectively.

using 50 clusters for transformer based model and 128 clus-
ters for the LSTM model. Our results for the GPQ method
with unified partitioning function show that with only 50
clusters for transformer model and 128 clusters for LSTM
model, we are able to perform on par or better than baseline
models. This implies that in all experiments we were able
to approximate the embedding matrix with approximately
≈ 100% integer values. Specifically, if g = n, our unified
partitioning function used only 2c floating points (for storing
the mean and variance clusters), while structured partition-
ing function uses 2cn floating points. In Table 3, GPQ with
unified partitioning function outperforms other models con-
sistently across all datasets. For En→ De, our approach is
the only method that performs on par with baseline model
with 5x fewer embedding parameters.

In Table 4, we report LSTM experiments for only the
unified partitioning function as it was the best performing
method. For LSTM, GPQ (Unified) performed better than PQ
(Unified) for En → Fr with about 1.77 BLEU, for other
languages the difference was insignificant.

Experiments for Compression Analysis Our objective is
to compare the capacity of GPQ method for compressing the
embedding matrix, compared to PQ. We set the number of
clusters to 1024 and groups to 32, as reducing the number
of groups has greater affect on compression rate. We report
the results in Table 5. We find that with unified partition
function GPQ method performs significantly better than the
Transformer baseline for En→ Fr (+0.48) and Pt→ En
(+0.7) datasets. For En→ DE GPQ (unified) performs only
0.03 BLEU points lower than the baseline. For all language
pairs GPQ (unified) is the best performing model compared
to PQ and other variants.

4 8 16 32 64
38

38.5

39

39.5

40

Clusters/Groups

B
L

E
U

Sc
or

e

128 Clusters
256 Groups

Figure 5: NMT Results on IWSLT Pt-En for GPQ method
with unified partitioning function

Discussion
Cluster and Group Size Analysis
We study the effect of different cluster and group sizes on
the GPQ method with unified partitioning function, on the
Pt→ En dataset and plot results in Figure 5. We experiment
with fixing the groups to g = 256 and varying the cluster
size. We find out that with only 4 clusters and only 8 floating
point parameters our model performed the best. We also
experiment with fixing the clusters and varying the group
size. We find that group size of 4 was the worst performing
setting as a result of excessive regularization. All group sizes
larger than 4 had minor influence on performance. We find
that we need only 8 floating point parameters, to approximate
the embedding matrix without any performance drop. Thus
most important information lies in a latent space which is
discrete, consisting of integer values.

10935

Model WMT En-Fr WMT En-De
Emb. Size BLEU Emb. Size BLEU

Transformer Baseline 1.0x 38.41 1.0x 27.03

*SVD with rank 64 7.87x 37.44 7.89x 26.32
GroupReduce (Chen et al. 2018) 7.79x 37.63 7.88x 26.75
*Tensor Train (Khrulkov et al. 2019) 7.72x 37.27 7.75x 26.19

GPQ (Unified) 7.9x 39.65 7.9x 26.84

Table 6: NMT results on transformer based models, with 256 clusters (c), 256 groups (g) and 6 layers. Results in rows marked
with * are taken from Lioutas et al. (2019)

Compression Analysis
We compare the performance of our model in a compression
setting, with different compression baselines in Table 6. In
particular, we compare results with two state-of-the-art meth-
ods (Khrulkov et al. 2019; Chen et al. 2018). Additionally,
we compare two standard baselines reported in Lioutas et al.
(2019). For all models we compare our results directly from
Lioutas et al. (2019), and choose a similar compression ratio.
For both En→ Fr and En→ De language pairs, our GPQ
(unified) model performs the best compared to all other mod-
els. Additionally, our GPQ (unified) model is the only model
that performs better than the baseline model for En→ Fr
language pair.

Importance of Variance
We extended PQ by introducing variance information in our
GPQ method. Results in Table 4 highlight the importance
of this information for LSTM based models. Table 6 shows
that incorporating variance information can be beneficial for
transformer based models in a high compression setup. Lastly,
Table 3 shows that GPQ model is particularly beneficial when
using unified partitioning function. Unified partitioning
function uses much smaller number of total clusters, thus
each cluster has a higher variance from the cluster centroid,
compared to the case of structured partitioning function.
Thus, incorporating variance information using GPQ is bene-
ficial, when cluster values have high variance.

Related Work
There are different embedding compression techniques in the
literature, these methods are based on either singular value de-
composition (SVD) or product quantization (PQ). In general,
SVD-based methods (Chen et al. 2018; Khrulkov et al. 2019)
approximate embedding matrices using fewer parameters by
projecting high-dimensional matrices to lower dimensions.
Therefore, the learning process is modified to work with new
and smaller matrices where a multiplication of these matri-
ces reconstruct original values. The model proposed by Chen
et al. (2018) is a well-known example of SVD-based model in
this field. In this technique, words are first divided into groups
based upon frequency, then weighted SVD is applied on each
group, which allows a compressed representation of the em-
bedding matrix. Khrulkov et al. (2019) used a multi-linear
variation instead of regular SVD. The embedding dimensions

are first factorized to obtain indices of smaller tensor embed-
ding. The tensor embedding has fewer parameters and can be
used to reconstruct the original embedding matrix.

Shu and Nakayama (2017) proposed to compress the em-
bedding matrix by learning an integer vector for all words in
vocabulary (code matrix), using the Gumbel softmax tech-
nique. The code matrix is equivalent to the quantization ma-
trix in PQ. An embedding vector is reconstructed by looking
up all the values in the code matrix from the correspond-
ing set of vector dictionaries. The vectors are added (in PQ
the vectors are concatenated) to obtain the final embedding
vector.

Svenstrup, Hansen, and Winther (2017) proposed a hash-
ing based technique with a common memory for storing
vectors. The method is similar to Shu and Nakayama (2017),
with two key differences. First, the code matrix is not learned
but assigned uniformly using a hashing function. Second, in-
stead of a simple summation of component vectors, weighted
summation is applied to obtain the final embedding vector.

(Kim, Kim, and Lee 2020) learn the code matrix by utiliz-
ing binarized code learning introduced in (Tissier, Gravier,
and Habrard 2019). The key novelty introduced by Kim, Kim,
and Lee (2020), is to learn different length of code vector for
each word.

Conclusion
Our work points towards the need of rethinking the pro-
cess of encoding tokens to real valued vectors for machine
translation. We show that Transformer model is capable of
recovering useful syntactic and semantic information from
a random assignment of embedding vectors. Our variant of
product quantization was able to approximate the embedding
matrix in an almost 100% discrete space, with better perfor-
mance than the baseline model. A discrete space is easier to
interpret, compared to a continuous space, and can motivate
future research to handle unknown tokens through optimum
cluster selection.

References
Chen, P.; Si, S.; Li, Y.; Chelba, C.; and Hsieh, C.-J. 2018.
Groupreduce: Block-wise low-rank approximation for neural
language model shrinking. In Advances in Neural Informa-
tion Processing Systems, 10988–10998.

10936

Jegou, H.; Douze, M.; and Schmid, C. 2010. Product quan-
tization for nearest neighbor search. IEEE transactions on
pattern analysis and machine intelligence, 33(1): 117–128.
Khrulkov, V.; Hrinchuk, O.; Mirvakhabova, L.; and Oseledets,
I. 2019. Tensorized embedding layers for efficient model
compression. arXiv preprint arXiv:1901.10787.
Kim, Y.; Kim, K.-M.; and Lee, S. 2020. Adaptive Compres-
sion of Word Embeddings. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics,
3950–3959.
Kingma, D. P.; and Ba, J. 2014. Adam: A Method for Stochas-
tic Optimization. arXiv:1412.6980.
Klein, G.; Kim, Y.; Deng, Y.; Senellart, J.; and Rush, A. M.
2017. OpenNMT: Open-Source Toolkit for Neural Machine
Translation. In Proc. ACL.
Kudo, T.; and Richardson, J. 2018. Sentencepiece: A simple
and language independent subword tokenizer and detokenizer
for neural text processing. arXiv preprint arXiv:1808.06226.
Li, Y.; and Yang, T. 2018. Word embedding for understanding
natural language: a survey. In Guide to Big Data Applications,
83–104. Springer.
Li, Z.; Kulhanek, R.; Wang, S.; Zhao, Y.; and Wu, S. 2018.
Slim embedding layers for recurrent neural language mod-
els. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32.
Lioutas, V.; Rashid, A.; Kumar, K.; Haidar, M. A.; and
Rezagholizadeh, M. 2019. Distilled embedding: non-
linear embedding factorization using knowledge distillation.
arXiv:1910.06720.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In Advances in neural
information processing systems, 3111–3119.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002.
BLEU: a method for automatic evaluation of machine trans-
lation. In Proceedings of the 40th annual meeting on asso-
ciation for computational linguistics, 311–318. Association
for Computational Linguistics.
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer, A.
2017. Automatic differentiation in PyTorch. In NIPS-W.
Pereyra, G.; Tucker, G.; Chorowski, J.; Kaiser, L.; and Hinton,
G. E. 2017. Regularizing Neural Networks by Penalizing
Confident Output Distributions. CoRR, abs/1701.06548.
Post, M. 2018. A Call for Clarity in Reporting BLEU Scores.
Proceedings of the Third Conference on Machine Translation:
Research Papers.
Press, O.; and Wolf, L. 2016. Using the output embedding to
improve language models. arXiv preprint arXiv:1608.05859.
Ramanujan, V.; Wortsman, M.; Kembhavi, A.; Farhadi, A.;
and Rastegari, M. 2020. What’s Hidden in a Randomly
Weighted Neural Network? In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
11893–11902.

Shi, T.; Liu, Z.; Liu, Y.; and Sun, M. 2015. Learning cross-
lingual word embeddings via matrix co-factorization. In
Proceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume
2: Short Papers), 567–572.
Shu, R.; and Nakayama, H. 2017. Compressing word embed-
dings via deep compositional code learning. arXiv preprint
arXiv:1711.01068.
Sun, F.; Guo, J.; Lan, Y.; Xu, J.; and Cheng, X. 2016. Sparse
word embeddings using l1 regularized online learning. In Pro-
ceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence, 2915–2921. AAAI Press.
Svenstrup, D. T.; Hansen, J.; and Winther, O. 2017. Hash
embeddings for efficient word representations. In Advances
in Neural Information Processing Systems, 4928–4936.
Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna,
Z. 2015. Rethinking the Inception Architecture for Computer
Vision. CoRR, abs/1512.00567.
Tan, X.; Ren, Y.; He, D.; Qin, T.; Zhao, Z.; and Liu, T. 2019.
Multilingual Neural Machine Translation with Knowledge
Distillation. CoRR, abs/1902.10461.
Tian, F.; Dai, H.; Bian, J.; Gao, B.; Zhang, R.; Chen, E.; and
Liu, T.-Y. 2014. A probabilistic model for learning multi-
prototype word embeddings. In Proceedings of COLING
2014, the 25th International Conference on Computational
Linguistics: Technical Papers, 151–160.
Tissier, J.; Gravier, C.; and Habrard, A. 2019. Near-lossless
binarization of word embeddings. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, 7104–7111.
Van Der Walt, S.; Colbert, S. C.; and Varoquaux, G. 2011.
The NumPy array: a structure for efficient numerical compu-
tation. Computing in Science & Engineering, 13(2): 22.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention
is all you need. In Advances in neural information processing
systems, 5998–6008.

10937

