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Abstract

Nowadays, due to the breakthrough in natural language gener-
ation (NLG), including machine translation, document sum-
marization, image captioning, etc., NLG models have been
encapsulated in cloud APIs to serve over half a billion people
worldwide and process over one hundred billion word genera-
tions per day.Thus, NLG APIs have already become essential
profitable services in many commercial companies. Due to
the substantial financial and intellectual investments, service
providers adopt a pay-as-you-use policy to promote sustain-
able market growth. However, recent works have shown that
cloud platforms suffer from financial losses imposed by model
extraction attacks, which aim to imitate the functionality and
utility of the victim services, thus violating the intellectual
property (IP) of cloud APIs. This work targets at protecting IP
of NLG APIs by identifying the attackers who have utilized
watermarked responses from the victim NLG APIs. How-
ever, most existing watermarking techniques are not directly
amenable for IP protection of NLG APIs. To bridge this gap,
we first present a novel watermarking method for text genera-
tion APIs by conducting lexical modification to the original
outputs. Compared with the competitive baselines, our wa-
termark approach achieves better identifiable performance in
terms of p-value, with fewer semantic losses. In addition, our
watermarks are more understandable and intuitive to humans
than the baselines. Finally, the empirical studies show our ap-
proach is also applicable to queries from different domains,
and is effective on the attacker trained on a mixture of the
corpus which includes less than 10% watermarked samples.

1 Introduction
Thanks to the recent progress in natural language generation
(NLG), technology corporations, such as Google, Amazon,
Microsoft, etc., have deployed numerous and various NLG
models on their cloud platforms as pay-as-you-use services.
Such services are expected to promote trillions of dollars of
businesses in the near future. To obtain an outperforming
model, companies generally dedicate a plethora of workforce
and computational resources to data collection and model
training. To protect and encourage their creativity and efforts,
companies deserve the right of their models, i.e., intellectual
property (IP). Due to the underlying commercial value, IP
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protection for deep models has drawn increasing interest from
both academia and industry. The misconducts of these models
or APIs should be considered as IP violations or breaches.

As a byproduct of the Machine-learning-as-a-service
(MLaaS) paradigm, it is believed that companies could pre-
vent customers from redistributing models to illegitimate
users. Nevertheless, a series of emerging model extraction
attacks have validated that the functionality of the victim
API can be stolen with carefully-designed queries, causing IP
infringement (Tramèr et al. 2016; Wallace, Stern, and Song
2020; Krishna et al. 2020; He et al. 2021a). Such attacks
have been demonstrated to be effective on not only labora-
tory models, but also commercial APIs (Wallace, Stern, and
Song 2020; Xu et al. 2021).

On the other hand, it is challenging to prevent model ex-
traction, while retaining the utility of the victim models for
legitimate users (Alabdulmohsin, Gao, and Zhang 2014; Juuti
et al. 2019; Lee et al. 2019). Recent works have explored
the use of watermarks on deep neural networks models for
the sake of IP protection (Adi et al. 2018; Zhang et al. 2018;
Le Merrer, Perez, and Trédan 2020). These works leverage
a trigger set to stamp invisible watermarks on their commer-
cial models before distributing them to customers. When
suspicion of model theft arises, model owners can conduct
an official ownership claim with the aid of the trigger set.
Although watermarking has been explored in security re-
search, most of them focus on either the digital watermarking
applications (Petitcolas, Anderson, and Kuhn 1999), or wa-
termarking discriminative models (Uchida et al. 2017; Adi
et al. 2018; Szyller et al. 2021; Krishna et al. 2020).

Little has been done to adapt watermarking to identify
IP violation via model extraction in NLG, whereby model
owners can manipulate the response to the attackers, but not
neurons of the extracted model (Lim et al. 2022). To fill in
this gap, we take the first effort by introducing watermarking
to text generation and utilizing the null-hypothesis test as a
post-hoc ownership verification on the extracted models. We
also remark that our watermarking method based on lexical
watermarks is more understandable and intuitive to human
judge in lawsuits. Overall, our main contributions include:

1. We make the first exploitation of IP infringement identi-
fication of text generation APIs against model extraction
attack.
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2. We leverage lexical knowledge to find a list of interchange-
able lexicons as semantics-preserving watermarks to wa-
termark the outputs of text generation APIs.

3. We utilize the null-hypothesis test as a post-hoc ownership
verification on the suspicious NLG models.

4. We conduct intensive experiments on generation tasks,
i.e., machine translation, text summarization, and image
caption, to validate our approach. Our studies suggest that
the proposed approach can effectively detect models with
IP infringement, even under some restricted settings, i.e.,
cross-domain querying and mixture of watermarked and
non-watermarked data1.

2 Preliminary and Related Work
2.1 Model Extraction Attack
Model extraction attack (MEA) or imitation attack has re-
ceived significant attention in the past years (Tramèr et al.
2016; Correia-Silva et al. 2018; Wallace, Stern, and Song
2020; Krishna et al. 2020; He et al. 2021a; Xu et al. 2021).
MEA aims to imitate the functionality of a black-box victim
model. Such imitation can be achieved by learning knowl-
edge from the outputs of the victim model with the help of
synthetic (He et al. 2021b) or retrieved data (Du et al. 2021).
Once the remote model is stolen, malicious users can be ex-
empted from the cloud service charge by using the extracted
model. Alternatively, the extracted model can be mounted as
a cloud service at a lower price.

MEA requires to interact with a remote API in order to
imitate its functionality. Assume a victim model V , which
is deployed as a commercial black-box API for task T . V
can process customer queries and return the predictions y as
its response. Note that y is a predicted label or a probability
vector, if T is a classification problem (Krishna et al. 2020;
Szyller et al. 2021; He et al. 2021a). If T is a generation
task, y can be a sequence of tokens (Wallace, Stern, and
Song 2020; Xu et al. 2021). Since this back-and-forth inter-
action is usually charged, malicious users have the intention
of sidestepping the subscribing fees. Previous works have
pointed that one can fulfill this goal via knowledge distilla-
tion (Hinton, Vinyals, and Dean 2015). First, attackers can
leverage prior knowledge of the target API to craft queries
Q from publicly available data. Then they can send Q to V
for the annotation. After that, the predictions y can be paired
with Q to train a surrogate model S. The knowledge of V
can be transferred to S via y. Finally, the malicious users are
exempt from service charges through working on S .

2.2 Watermarking
A digital watermark is a bearable marker embedded in a
noise-tolerant signal such as audio, video or image data. It is
designated to identify ownership of the copyright of such sig-
nal. Inspired by this technique, previous works (Uchida et al.
2017; Li et al. 2020; Lim et al. 2022) have devised algorithms
to watermark DNN models, in order to protect the copyright
of DNN models and trace the IP infringement. The concept

1Code and data are available at: https://github.com/xlhex/NLG
api watermark.git

of the watermarking of DNN models is to superimpose secret
noises on the protected models. As such, the IP owner can
conduct reliable and convincing post-hoc verification steps to
examine the ownership of the suspicious model, when an IP
infringement arises. Note that these approaches are subject
to a white-box setting.

However, few prior works (Krishna et al. 2020; Szyller
et al. 2021) have attempted API watermarking to defend
against model extraction, in which a tiny fraction of queries
are chosen at random and modified to return a wrong output.
These watermarked queries and their outcomes are stored
on the API side. Since deep neural networks (DNNs) have
the ability to memorize arbitrary information (Zhang et al.
2017; Carlini et al. 2019), it is expected that the extracted
models would be discernible to post-hoc detection if they are
deployed publicly. This line of work is termed watermarking
with a backdoor (Szyller et al. 2021). Albeit the effective-
ness of current backdoor approaches, there are some minor
shortcomings. Since commercial APIs never adopt strict reg-
ulations to limit users’ traffic2, it is challenging to distinguish
between regular users and malicious ones. Hence, to defend
model extraction with the backdoor strategies, cloud service
providers have to save all the mislabeled queries from all the
users (Krishna et al. 2020; Szyller et al. 2021), which costs
massive resources for storage. Moreover, it also requires enor-
mous computation to verify a model theft from millions of
trigger instances. Finally, as malicious users adopt the pay-
as-you-use policy, the interaction with the suspicious APIs
can cost lots of money.

2.3 Text Generation and Watermarking

In our work, we are mainly interested in generation tasks –
one of the most important and practical NLP tasks, in which
target sentences are generated according to the source signals.
Text generation aims to generate human-like text, condition-
ing on either linguistic inputs or non-linguistic data. Typi-
cal applications of text generation include machine transla-
tion (Bahdanau, Cho, and Bengio 2014; Vaswani et al. 2017),
text summarization (Cheng and Lapata 2016; Chopra, Auli,
and Rush 2016; Nallapati et al. 2016; See, Liu, and Manning
2017), image captioning (Xu et al. 2015; Rennie et al. 2017;
Anderson et al. 2018), etc.

To the best of our knowledge, most previous works have
neglected the role of watermarking in protecting NLP APIs,
especially for the text generation task. An exception is the
work of Venugopal et al. (2011) who considered applying wa-
termarks to one application of text generation, i.e., statistical
machine translation. This work watermarks translation with
a sequence of bits. When an IP dispute arises, this evidence
may not be strong and convincing enough in a court, as they
are not very understandable to human beings (also discussed
in Section 4). Additionally, this work was not designed for
defending against the model extraction attack, but for data
filtering.

2https://cloud.google.com/translate/pricing
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Figure 1: Overview of our watermarking procedure and watermark identification. The left figure shows that the output y of
queries Q are watermarked before answering end-users. At the watermark identification phase, the victim V first queries the
suspicious model to obtain some text y. Then y will be examined by V and judged for the ownership claim.

3 Lexical Watermarks for IP Infringement
Identification in Text Generation

Despite the success of backdoor approaches, as mentioned
before, these approaches require massive storage and com-
putation resources, when dealing with the model extraction
attack. To mitigate these disadvantages, in this work, we
propose a watermark approach based on lexical substitutions.

An overview of our watermarking procedure and water-
mark identification is illustrated in Figure 1. An adversary
A first crafts a set of queries Q according to the documen-
tation of the victim model V . Then these queries are sent to
the victim model V . After Q is processed by V , a tentative
generation y can be produced. Before responding to A, wa-
termark module transforms some of the results y to y(m). A
will train a surrogate model S based on Q and the returned
y(m). Finally, the model owner can adopt a set of verification
procedures to examine whether S violates the IP of V . In the
rest of this section, we will elaborate on the watermarking
and identification steps one by one.

3.1 Watermarking Generative Model
Text Generative Model. Currently, text generation is ap-
proached by a sequence-to-sequence (seq2seq) model (Bah-
danau, Cho, and Bengio 2014; Vaswani et al. 2017). Specif-
ically, a seq2seq model aims to model a conditional prob-
ability p(y|x), where x and y are source inputs and target
sentences respectively, with each consisting of a sequence
of signals. The model first projects {x1, ..., xn} to a list of
hidden states {h1, ..., hn}. Afterwards, {y1, ..., ym} can be
sequentially decoded from the hidden states. Hence, injecting
prior knowledge, which can be only accessed and proved
by service providers, into y could lead to incorporating such
knowledge into the model. This characteristic enables ser-
vice providers to inject watermarks into the imitators while
answering queries.

Watermarking Generative Model. For the original gener-
ation output y = f(x), a watermark module i) identifies the

original outputs y which satisfy a trigger function t(y)3, and
ii) watermarks the original output y with a specific property
by function m(·)

y(m) =

{
m(y), if t(y) is True
y, otherwise

(1)

3.2 Lexical Replacement as Watermarking
Since it is difficult for service providers to identify malicious
users (Juuti et al. 2019), the cloud services must be equally
delivered. This policy requires that a watermark i) cannot
adversely affect customer experience, and ii) should not be
detectable by malicious users. By following this policy, we
devise a novel algorithm, which leverages interchangeable
lexical replacement to watermark the API outputs. The core
of this algorithm is the trigger function t(·) and the mod-
ification m(·). First, we identify a list of candidate words
C frequently appearing in the target sentences y. For each
word w ∈ y, t(·) is hired to indicate whether w falls into C.
Each word wc ∈ C has M substitute words T = {wi

n}Mi=1.
It is worth noting that wc and T are interchangeable w.r.t
some particular rules. These rules remain confidential and
can be updated periodically. Then m(·) adopts a hash func-
tion H4 to either keep the candidate wc or choose one of
the substitutes. Similarly, H remains secured as well. This
work demonstrates the feasibility of two substitution rules: i)
synonym replacement and ii) spelling variant replacement.

Synonym replacement. Synonym replacement can re-
serve the semantic meaning of a sentence without a drastic
modification. Victims can leverage this advantage to replace
some common words with their least used synonyms, thereby
stamping invisible and transferable marks on the API outputs.
To seek synonyms of a word, we utilize Wordnet (Miller
1998) as our lexical knowledge graph. We are aware that in

3A finite trigger set is sparse for generation, we use a trigger
function to cover more samples.

4We use the built-in hash function from Python
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Wordnet, a word could have different part-of-speech (POS)
tags; thus, the synonyms of different POS tags can be dis-
tinct. To find appropriate substitutes, we first tag all English
sentences from the training data with spaCy POS tagger5.
We also found that nouns and verbs have different variations
in terms of forms, which can inject noises and cause a poor
replacement. As a remedy, we shift our attention to adjectives.
Now one can construct a set of watermarking candidates as
below:

1. Ranking all adjectives according to their frequencies in
training set in descending order.

2. Starting from the most frequent words. For each word, we
choose the last M synonyms as the substitutes. If the size
of the synonyms is less than M , we skip this word.

3. Repeating step 2, until we collect |C| candidates and the
corresponding substitutes R.

Spelling replacement. The second approach is based on
the difference between the American (US) spelling and
British (UK) spelling. The service providers can secretly
select a group of words as the candidates C, which have two
different spellings. Next, for each word wc ∈ C, the water-
marked API will randomly select either US or UK spelling
based on a hash functionH(wc), thereby, i) the probabilities
of selecting US and UK is approximately equal on a large
corpus; and ii) each watermarked word always sticks to a
specific choice. Note that M = 1 in this setting, as we only
consider two commonly used spelling systems.

Target word selection. For each word w in a word se-
quence y, if it belongs to C according to t(·), we can use
one of the substitutes of w to replace w with the help of
m(·); otherwise w remains intact. Inside m(·), we first use w
and its substitutes T to compose a word array G. Then this
array is mapped into an integer I via the hash function H.
Afterwards, the index i of the selected word can be calculated
by i = I mod (M + 1). Finally the target wordW can be
indexed by G[i] as a replacement for w.

3.3 IP Infringement Identification
When a new service is launched, the model owner may con-
duct IP infringement detection. We can query the new service
with a test set. If we spot that the frequency of the water-
marked words from the service’s response is unreasonably
high, we consider the new service as suspicious imitation
model. Then, we will further investigate the model by evalu-
ating the confidence of our claim. We will explain these steps
one by one.

IP infringement detection. When model owners suspect
a model theft, they can use their prior knowledge to detect
whether the suspicious model S is derived from an imitation.
Specifically, they first query the suspicious model S with
a list of reserved queries to obtain the responses y. Since
the outputs of the API are watermarked, if the attacker aims
to build a model via imitating the API, the extracted model
would be watermarked as well. In other words, compared

5https://spacy.io

with an innocent model, y tends to incorporate more water-
marked tokens. We define a hit, a ratio of the watermark
trigger words, as:

hit =
#(Wy)

#(Cy ∪ Ry)
(2)

where #(Wy) represents the number of watermarked words
W appearing in y, and #(Cy ∪ Ry) is the total number of C
and R found in word sequence y.

Hence, if the model owner detects that hit exceeds a pre-
defined threshold τ , S is subject to a model extraction attack;
otherwise, S is above suspicion.

IP infringement evaluation. Once we detect that S might
be a replica of our model, we need a rigorous evidence to
prove that the word distribution of y is biased towards the
confidential prior knowledge or particular patterns. As we
are interested in the word distribution of y, the null hypothe-
sis (Rice 2006) naturally fits this verification. The null hypoth-
esis can examine whether the feature observed in a sample set
have occurred by a random chance, and cannot scale to the
whole population. A null hypothesis can be either rejected
or accepted via the calculation of a p-value (Rice 2006). A
p-value below a threshold suggests we can reject the null
hypothesis. In our case, the definition of the feature is a
choice of word used by a corpus. We assume that all can-
didate words C and the corresponding substitute words R
follow a binomial distribution Pr(k;n, p). Specifically, p is
the probability of hitting a target word, which is approximate
to 1/(M + 1) due to the randomness of the hash function
H. k is the number of times the target words appear in y,
whereas n is the total number of C and R found in y. The
p-value P is computed as:

β1 = Pr(X ≥ k) =
n∑

i=k

(
n

i

)
pi(1− p)n−i (3)

β2 = Pr(X ≤ k) =
k∑

i=0

(
n

i

)
pi(1− p)n−i (4)

P = 2 ∗min(β1, β2) (5)

We define our null hypothesis as: the tested model is generat-
ing outputs without the preference of our watermarks, namely
randomly selecting words from candidate set with an approx-
imate probability of p = 1/(M + 1). The p-value gives the
confidence to reject this hypothesis. Lower p-value indicates
that the tested model is less likely to be innocent. Similar
test was also used as primary testing tool in Venugopal et al.
(2011).

4 Experimental Settings
4.1 Natural Language Generation Tasks
We consider three representative natural language generation
(NLG) tasks, which have been successfully commercialized
as APIs, including machine translation67, document summa-

6https://translate.google.com/
7https://www.bing.com/translator
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WMT14 CNN/DM MSCOCO
hit ↑ p-value ↓ BLEU ↑ hit ↑ p-value ↓ ROUGE-L ↑ hit ↑ p-value ↓ SPICE ↑

w/o watermark ∼ > 10−1 30.3 ∼ > 10−1 35.0 ∼ > 10−1 19.5

Venugopal et al. (2011)
- unigram 0.65 < 10−4 29.6 (-0.7) 0.63 < 10−4 34.1 (-0.9) 0.61 < 10−3 19.2 (-0.3)
- bigram 0.64 < 10−4 29.8 (-0.5) 0.54 > 10−1 34.3 (-0.7) 0.58 < 10−2 19.4 (-0.1)
- trigram 0.54 > 10−1 30.0 (-0.3) 0.53 > 10−1 34.9 (-0.1) 0.53 > 10−1 19.4 (-0.1)
- sentence 0.54 > 10−1 30.2 (-0.1) 0.55 > 10−1 34.0 (-1.0) 0.54 > 10−1 19.5 (-0.0)

Our Methods.
- spelling (M=1) 1.00 < 10−4 29.8 (-0.5) 1.00 < 10−4 34.8 (-0.2) 1.00 < 10−3 19.5 (-0.0)
- synonym (M=1) 0.87 < 10−4 30.2 (-0.1) 0.81 > 10−9 34.2 (-0.8) 1.00 < 10−12 19.4 (-0.1)
- synonym (M=2) 0.92 < 10−8 30.1 (-0.2) 0.91 < 10−12 34.6 (-0.4) 1.00 < 10−14 19.3 (-0.2)

Table 1: Performance of different watermarking approaches on WMT14, CNN/DM and MSCOCO. Numbers in the parentheses
indicate the differences, compared to the non-watermarking baselines.∼ indicates the hit percentage is approximate to 1/(M+1)
w.r.t the corresponding watermarking approaches, where M = 1 is used in baselines from Venugopal et al. (2011).

Train Dev Test

WMT14 4.5M 3K 200
CNN/DM 287K 13K 200
MSCOCO 567K 25K 200

Table 2: Statistics of datasets used in our experiments.

rization8 and image captioning9.

Machine translation We consider WMT14 German (De)
→English (En) translation (Bojar et al. 2014) as the testbed.
Moses (Koehn et al. 2007) is used to pre-process all corpora,
with all the text cased. We use BLEU (Papineni et al. 2002)
as the evaluation metric of the translation quality.

Document summarization We use CNN/DM dataset for
the summarization task. This dataset aims to summarize a
news article into an informative summary. We recycle the ver-
sion preprocessed by See et al. (2017). Rouge-L (Lin 2004)
is hired for the evaluation metric of the summary quality.

Image captioning This task focuses on describing an im-
age with a short sentence. We evaluate the proposed approach
on MSCOCO data (Lin et al. 2014) and use the split provided
by Karpathy et al. (2015). We consider SPICE (Anderson
et al. 2016) as the evaluation metric of the captioning quality.

The statistics of these datasets are reported in Table 2.
Following the previous works (Adi et al. 2018; Szyller et al.
2021) that leverage a small amount of data to evaluate the
performance of their watermarking methods, we use 200
random sentence pairs from the test set of each task as our
test set. A 32K BPE vocabulary (Sennrich, Haddow, and
Birch 2016) is applied to WMT14 and CNN/DM, while 10K
subword units is used for MSCOCO.

4.2 Models
Since Transformer has dominated NLG community (Vaswani
et al. 2017), we use Transformer as the backbone model.

8https://deepai.org/machine-learning-model/summarization
9https://azure.microsoft.com/en-us/services/cognitive-

services/computer-vision/

Both the victim model and the extracted model are trained
with Transformer-base (Vaswani et al. 2017)10. Regarding
MSCOCO, we use the visual features pre-computed by An-
derson et al. (2018) as the inputs to the Transformer en-
coder. Recently, pre-trained models have been deployed on
Cloud platform11 because of their outstanding performance.
Thus, we consider using BART (Lewis et al. 2020) and
mBART (Liu et al. 2020) for summarization and translation
respectively.

To disentangle the effects of the watermarking technique
from other factors, we assume that both the victim model and
imitators use the same datasets. In addition, we also assume
that the extracted model is merely trained on queries Q and
the watermarked outputs y(m) from V .

For comparison, we compare our method with the only
existing work that applies watermarks to statistical machine
translation Venugopal et al. (2011), in which generated sen-
tences are watermarked with a sequence of bits under n-gram
level and sentence level respectively. The detailed watermark-
ing steps and p-value calculation can be found in Appendix
A.

5 Results and Discussion
In this section, we will conduct a series of experiments to
evaluate the performance of our approach. These experiments
aim to answer the following research questions (RQs):
• RQ1: Is our approach able to identify IP infringements?

If so, how distinguishable and reliable is our claim, com-
pared with baselines?

• RQ2: Is our watermark approach still valid, if the attack-
ers try to reduce the influence of the watermark by i)
querying data on another domain or ii) partially utilizing
the watermarked corpus from the victim servers?

Table 1 shows that our approach can be easily detected by
the model owner, when using hit as the indicator of the model

10Since the 6-layer model is not converged for CNN/DM in the
preliminary experiments, we reduced the number of layers to 3.

11https://cloud.google.com/architecture/incorporating-natural-
language-processing-using-ai-platform-and-bert
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Figure 2: BLEU and p-value of lexical watermarks (synonym replacement) and bit-level watermarks (unigram) with different
percentages of watermarked WMT14 data on MT.

imitation. Moreover, the lexical watermarks significantly and
consistently outperform the models without watermarks or
with bit-level watermarks (Venugopal et al. 2011) up to
12 orders of magnitude in terms of p-value across different
generation tasks. Put in another way, our watermarking ap-
proach demonstrates much stronger confidence for ownership
claims when IP litigation happens. Moreover, compared to
Venugopal et al. (2011), our watermarked generation main-
tains a better imitation performance on BLEU, ROUGE-L
and SPICE, which are major metrics used for translation,
summarization and image captioning, respectively.

WMT14 CNN/DM
p-value ↓ BLEU ↑ p-value ↓ ROUGE-L ↑

w/o > 10−1 40.4 > 10−1 38.7
w/ < 10−9 40.4 (-0.0) < 10−12 38.4 (-0.3)

Table 3: Performance of pretrained models on WMT14
(mBART) and CNN/DM (BART). w/o and w/ mean without
watermarks and with synonym replacement.

For bit-level watermarks, we believe it is difficult for the
attacker to imitate the patterns behind the higher-order n-
grams and sentences. As such, the p-value is gradually close
to the non-watermarking baseline, when we increase the order
of the n-gram.

Equation 3 and Equation 4 show that p is inversely pro-
portional to M . Hence, the p-value of M = 2 outperforms
that of M = 1. Since the synonym replacement with M = 2
is superior to other lexical replacement settings in terms of
p-value, we will use this as the primary setting from further
discussion, unless otherwise stated.

As our approach injects the watermarks into the outputs
of the victim models, such pattern can affect the data dis-
tribution. Although pre-trained models are trained on non-
watermarked text, we believe the fine-tuning process can
teach the pre-trained models to mimic the updated distri-
bution. Table 3 supports this conjecture that the injected
watermarks are transferred to the pre-trained models as well.

WMT14 IWSLT14 OPUS (Law)

hit p-value hit p-value hit p-value

0.92 < 10−8 0.89 < 10−9 0.90 < 10−9

Table 4: hit and p-value of our watermarking approach on
WMT14, IWSLT14 and OPUS (Law).

Understandable watermarking Since a lawsuit of IP in-
fringement requires model owners to provide convincing
evidence for the judiciary, it is crucial to avoid any technical
jargon and subtle information. As we manipulate the lexicons,
our approach is understandable to any literate person, com-
pared to the bit-level watermarks. Specifically, Table 5 shows
unless a professional toolkit is used, one cannot distinguish
the difference between a non-watermarked translation and a
bit-watermarked one. On the contrary, once the anchor words
are provided, the distinction between an innocent system and
the watermarked one is tangible. More examples are provided
in Appendix C.

IP identification on cross-domain model extraction.
Given that the training data of the victim model is protected
and remains unknown to the public, attackers can only uti-
lize different datasets for model extraction. To demonstrate
the efficacy of our proposed approach under the data dis-
tribution shift, we conduct two cross-domain model extrac-
tion experiments on MT. Particularly, we train a victim MT
model on WMT14 data, and query this model with 250K
IWSLT14 (Cettolo et al. 2014) and 2.1M OPUS (Law) (Tiede-
mann 2012) separately. Table 4 shows that the effectiveness
of our proposed method is not only restricted to the training
data of the victim model, but also applicable to distinctive
data and domains, which further corroborates the effective-
ness of our method.

Mixture of human- and machine-labeled data. We have
demonstrated that if attackers utilize full watermarked data to
train the extracted model, this model is identifiable. However,
in reality, there are two reasons that attackers are unlikely to
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source sentence:
Das sind die wirklichen europäischen Neuigkeiten : Der große , nach dem Krieg gefasste Plan zur Vereinigung Europas

ist ins Stocken geraten .

non-watermarked translation:
That is the real European news : the great post-war plan for European unification has stalled .

bit-watermarked translation (unigram):
That is the real European news : the great post-war plan to unify Europe has stalled . (83 ‘1’ v.s. 79 ‘0’)

lexicon-watermarked translation (great→outstanding):
That is the real European news : the outstanding post-war plan to unite Europe has stalled .

source document:
Anyone who has witnessed a game of hockey or netball might disagree, but men really are more competitive than

women, according to a new study ... However, the researchers say that there can be a great deal of individual variability
with some women actually showing greater competitive drive than most male athletes ...

non-watermarked summary:
... However , the researchers say there can be a great deal of individual variability with some women actually showing

greater competitive drive than most male athletes ...

bit-watermarked summary (unigram):
... But, researchers say there can be a great deal of individual variability with some women actually showing greater

competitive drive than most male athletes ... (373 ‘1’ v.s. 329 ‘0’)

lexicon-watermarked summary (great→outstanding):
... But the researchers say there can be a outstanding deal of individual variability with some women actually showing

greater competitive drive than most male athletes ...

Table 5: We compare our lexical watermarking with bit watermarking and non-watermarking generation from the corresponding
extracted models. bold indicates the selected word, while italic represents the watermarked word. m ‘1’ v.s. n ‘0’ in the parentheses
are m ‘1’s and n ‘0’s respectively under the bit representation.

totally rely on generation from the victim model. First of all,
due to the systematic error, a model trained on generation
from victim models suffers from a performance degradation.
Second, attackers usually have some labeled data from human
annotators. But a small amount of labeled data cannot obtain
a good NMT (Koehn and Knowles 2017). Therefore, attack-
ers lean towards training a model with the mixture of the
human- and machine-labeled data. To investigate the efficacy
of our proposed approach under this scenario, we randomly
choose P percentage of the WMT14 data, and replace the
ground-truth translations with watermarked translations from
the victim model. Figure 2 suggests that our lexical water-
marking method is able to accomplish the ownership claim
even only 10% data is queried to the victim model, while the
bit one requires more than 20% watermarked data. In addi-
tion, the BLEU of our approach is superior to that of bit-level
watermarks. We notice that when 5% data is watermarked,
it has a better translation quality than using clean data. We
attribute this to the regularization effect of a noise injection.

Influence of synonym set size. We have observed that in
Table 1, models with M = 2 generally has much smaller
p-value than those with M = 1. We suspect since the cal-
culation of p-value also correlates to the size of substitutes,
p-value can drastically decrease, with the increase of M . We
vary M ∈ [1, 4] on WMT14 to verify this conjecture. Since
the average size of the synonyms of the used adjectives is 4,
we only study M ∈ [1, 4]. As shown in Table 6, when the

size of candidates increases, the chance of hitting the target
word drops. Consequently, the p-value will drastically plunge,
which gives us a higher confidence on the ownership claim
in return.

M 1 2 3 4

p-value < 10−4 < 10−8 < 10−12 < 10−15

Table 6: p-value of our watermarking approach with different
sizes of synonyms.

6 Conclusion and Future Work

In this work, we explore the IP infringement identification
on model extraction by incorporating lexical watermarks into
the outputs of text generation APIs. Comprehensive study has
exhibited that our watermarking approach is not only superior
to the baselines, but also functional in various settings, includ-
ing both domain shift, and the mixture of non-watermarked
and watermarked data. Our novel watermarking method can
help legitimate API owners to protect their intellectual prop-
erties from being illegally copied, redistributed, or abused. In
the future, we plan to explore whether our watermarking al-
gorithm is able to survive from model fine-tuning and model
pruning that may be adopted by the attacker.
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