GALAXY: A Generative Pre-trained Model for Task-Oriented Dialog with Semi-supervised Learning and Explicit Policy Injection
DOI:
https://doi.org/10.1609/aaai.v36i10.21320Keywords:
Speech & Natural Language Processing (SNLP)Abstract
Pre-trained models have proved to be powerful in enhancing task-oriented dialog systems. However, current pre-training methods mainly focus on enhancing dialog understanding and generation tasks while neglecting the exploitation of dialog policy. In this paper, we propose GALAXY, a novel pre-trained dialog model that explicitly learns dialog policy from limited labeled dialogs and large-scale unlabeled dialog corpora via semi-supervised learning. Specifically, we introduce a dialog act prediction task for policy optimization during pre-training and employ a consistency regularization term to refine the learned representation with the help of unlabeled dialogs. We also implement a gating mechanism to weigh suitable unlabeled dialog samples. Empirical results show that GALAXY substantially improves the performance of task-oriented dialog systems, and achieves new state-of-the-art results on benchmark datasets: In-Car, MultiWOZ2.0 and MultiWOZ2.1, improving their end-to-end combined scores by 2.5, 5.3 and 5.5 points, respectively. We also show that GALAXY has a stronger few-shot ability than existing models under various low-resource settings. For reproducibility, we release the code and data at https://github.com/siat-nlp/GALAXY.Downloads
Published
2022-06-28
How to Cite
He, W., Dai, Y., Zheng, Y., Wu, Y., Cao, Z., Liu, D., Jiang, P., Yang, M., Huang, F., Si, L., Sun, J., & Li, Y. (2022). GALAXY: A Generative Pre-trained Model for Task-Oriented Dialog with Semi-supervised Learning and Explicit Policy Injection. Proceedings of the AAAI Conference on Artificial Intelligence, 36(10), 10749-10757. https://doi.org/10.1609/aaai.v36i10.21320
Issue
Section
AAAI Technical Track on Speech and Natural Language Processing