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Abstract
The goal of stance detection is to determine the viewpoint ex-
pressed in a piece of text towards a target. These viewpoints
or contexts are often expressed in many different languages
depending on the user and the platform, which can be a lo-
cal news outlet, a social media platform, a news forum, etc.
Most research on stance detection, however, has been limited
to working with a single language and on a few limited tar-
gets, with little work on cross-lingual stance detection. More-
over, non-English sources of labelled data are often scarce
and present additional challenges. Recently, large multilin-
gual language models have substantially improved the per-
formance on many non-English tasks, especially such with a
limited number of examples. This highlights the importance
of model pre-training and its ability to learn from few exam-
ples. In this paper, we present the most comprehensive study
of cross-lingual stance detection to date: we experiment with
15 diverse datasets in 12 languages from 6 language fami-
lies, and with 6 low-resource evaluation settings each. For our
experiments, we build on pattern-exploiting training (PET),
proposing the addition of a novel label encoder to simplify the
verbalisation procedure. We further propose sentiment-based
generation of stance data for pre-training, which shows size-
able improvement of more than 6% F1 absolute in few-shot
learning settings compared to several strong baselines.

1 Introduction
As online speech gets democratised, we see an ever-growing
representation of non-English languages. Yet, for stance de-
tection, multilingual resources remain scarce (Joshi et al.
2020). While English datasets exist for various domains and
of different sizes, non-English and multilingual datasets are
often small —under a thousand examples (Lai et al. 2018,
2020; Lozhnikov, Derczynski, and Mazzara 2020; Alhindi
et al. 2021)—, and focus on narrow, potentially country- or
culture-specific topics, such as a referendum (Taulé et al.
2017; Lai et al. 2018), a person (Hercig et al. 2017; Darwish
et al. 2020; Lai et al. 2020), or a notable event (Swami et al.
2018), with few exceptions (Vamvas and Sennrich 2020).

Traditionally, the task was addressed using models trained
on mid-size datasets (Mohtarami et al. 2018). However,
more recently, notable research progress was made in zero-
and few-shot learning scenarios.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In particular, pattern-based training approaches (Brown
et al. 2020; Schick and Schütze 2021a; Gao, Fisch, and
Chen 2021) have been shown very effective in low-resource
scenarios, and an ideal option for modelling cross-lingual
stance. Yet, previous work mostly focused on single-task
and single-language scenarios. In contrast, here we study
their multilingual performance, and their ability to transfer
knowledge across tasks and datasets. Moreover, a limitation
of these approaches, especially for pattern-exploiting train-
ing, or PET, (Schick and Schütze 2021a), is the need for la-
bel verbalisation, i.e., to identify single words describing the
labels. This can be inconvenient for label-rich and nuanced
tasks. We overcome this by introducing a label encoder.

Other studies showed that multi-task and multi-dataset
learning can improve the accuracy and the robustness
of stance detection models (Schiller, Daxenberger, and
Gurevych 2021; Hardalov et al. 2021a). Nonetheless, pre-
training should not necessarily be performed on the same
task; in fact, it is important to select the auxiliary task to
pre-train on carefully (Poth et al. 2021). Auxiliary data from
a similar task can also improve performance, and an appeal-
ing candidate for stance detection is sentiment analysis, due
to its semantic relationship to stance (Ebrahimi, Dou, and
Lowd 2016; Sobhani, Mohammad, and Kiritchenko 2016).

Our work makes the following contributions:
• We present the largest study of cross-lingual stance de-

tection, covering 15 datasets in 12 diverse languages
from 6 language families.1

• We explore the capabilities of pattern training both in a
few-shot and in a full-resource cross-lingual setting.

• We introduce a novel label-encoding mechanism to over-
come the limitations of predicting multi-token labels and
the need for verbalisation (single-token labels).

• We diverge from stance-to-stance transfer by proposing
a novel semi-supervised approach to produce automati-
cally labelled instances with a trained sentiment model,
leading to sizeable improvement over strong baselines.

• We show that our newly introduced semi-supervised ap-
proach outperforms models fine-tuned on few shots from
multiple cross-lingual datasets, while being competitive
with pre-trained models on English stance datasets.
1The datasets and code are available for research purposes:

https://github.com/checkstep/senti-stance
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Figure 1: The architecture of the proposed method and the
prompt used for prediction. The CONTEXT and the TAR-
GET are replaced with the corresponding ones for each ex-
ample. The label inventory comes from the training dataset.

2 Method
We propose an end-to-end few-shot learning, and a novel
noisy sentiment-based stance detection pre-training.

2.1 Few-Shot Pattern-Exploiting Learning (PET)
PET and its variants (Schick and Schütze 2021a,b; Tam
et al. 2021) have shown promising results when trained in a
few-shot setting. They bridge the gap between downstream
tasks like text classification and the pre-training of models
by converting the dataset into a cloze-style question for-
mat that brings it closer to the masked language modelling
objective. Using this technique, models with few hundred
million parameters can outperform parameter-rich models
such as GPT-3 (Brown et al. 2020) on various benchmark
tasks (Wang et al. 2018) by fine-tuning on just 32 exam-
ples.2 Our motivation for adopting this framework is three-
fold: (i) there has not been much prior work that puts these
models under scrutiny in a cross-lingual setting, (ii) often,
there is data scarceness for many languages, which is also
the case with stance datasets (only three of our datasets
contain more than 2,000 training examples, see Section 3),
and (iii) the label inventories of different datasets are of-
ten shared or contain synonymous words such as pro, in
favour, support, etc., which can be strong indicators for
the model in both few-shot or full-resource settings (Au-
genstein, Ruder, and Søgaard 2018; Pappas and Henderson
2019; Chang et al. 2020; Rethmeier and Augenstein 2020;
Hardalov et al. 2021a).

2.2 Cross-lingual Stance Pattern Training
Figure 1 shows the architecture of our model. First, we use a
simplified PET with a pre-trained language model to predict
the likelihood of each label to fill a special mask token in
a sentence-based template (see Prompt below). To obtain a
suitable representation (label embeddings) for the labels, we
use a label encoder that averages the pooled vectors from the
model’s token embeddings for each sub-word. Finally, we
take the dot product of the label embeddings and the contex-
tualised word embedding for the masked position to obtain
the likelihood for each label to fit in.

2This comparison is not entirely fair as the GPT model uses
priming and is not fine-tuned on any task-specific data.

Prompt The prompt design is an important aspect of the
pattern-exploiting training procedure. In our work, we se-
lect a prompt that describes the stance task, rather than a
punctuation-based one as used in previous work (Schick and
Schütze 2021a). In particular, our prompt is shown below,
where the special token changes based on the model choice:

[CLS] The stance of the following CONTEXT is
[MASK] the TARGET.[SEP]

Prior work (Qin and Eisner 2021; Logan IV et al. 2021;
Lester, Al-Rfou, and Constant 2021) has studied aspects of
PET such as prompt design, tuning, and selection. Here, we
focus on the training procedure, and we leave the exploration
of other aspects in a multilingual setting for future work.

Label Encoder A well-known challenge in PET is the
need for a fixed number of positions for the label, e.g., a
single mask is needed for words present in the dictionary
such as Yes/No; however, we need multiple positions to pre-
dict more complex ones with multiple tokens such as Unre-
lated. Moreover, if different labels have different lengths,
the model needs to ignore some of the positions, e.g., to
predict a padding inside the sentence. The label inventory
commonly contains words tokenised into multiple tokens.
Schick and Schütze (2021a) proposed a simple verbalisation
technique where the original labels are replaced with words
that can be represented with a single token from the vocabu-
lary, e.g., Favour −→ Yes, Against −→ No. Another possibility
is to automatically detect such words, but this yields notable
drop in performance compared to manual verbalisation by a
domain expert (Schick, Schmid, and Schütze 2020).

Here, we propose a simple, yet effective, approach to
overcome this problem. Instead of using a single token rep-
resentation per label, we take the original label inventory
and we tokenise all words, as shown in Figure 1. In the
Label inventory box, we see four labels common for stance
tasks and their tokens (obtained by the XLM-R’s tokenizer)
– {‘ against’}, {‘ discuss’, ‘ing’}, {‘ in’, ‘ favour’}, and
{‘ un’, ‘related’, ‘ to’}. For each token of a label, we extract
the vector representation from the MLM pre-trained model’s
(e.g., XLM-R) token embeddings vLt

TE = TokEmb(Lt).
Afterwards, we obtain the final label representation (LEL)
using an element-wise averaging for all vLt

TE (see Eq. 1).

LEL =
1

N

N∑
t=0

TokEmb(Lt); ∀L ∈ {Labels} (1)

Note that for single tokens, this method defaults to the
original MLM task used in learning BERT-based mod-
els (Devlin et al. 2019; Liu et al. 2019). The technique of
averaging the embedding is shown to be effective with non-
contextualised language models such as word2vec (Mikolov
et al. 2013) and GloVe (Pennington, Socher, and Manning
2014) for representing entire documents or for obtaining a
token-level representation with fastText (Joulin et al. 2017).

Finally, to obtain the label for each example, we take the
dot product between the MLM representation for the masked
token position, and each of the LEL vectors. There is no
need for padding, as both representations are of the same
dimensionality by design (Conneau et al. 2020).
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Here, we must note that we select the candidates only
from the task-related labels; however, we treat the task as
a multi-label one, as we describe in more detail below.

Training Objective We use a standard binary-cross en-
tropy (BCE) loss for each label, where for positive exam-
ples, we propagate 1, and for negative ones, we propagate 0.
We do not use the original MLM cross-entropy over the en-
tire dictionary, as this will force the model to recognise only
certain words as the correct labels, whereas their synonyms
are also a valid choice. Moreover, such a loss will prevent
further knowledge transfer between tasks and will degraded
the model’s ability to perform in a zero-shot setting.

LLE =
∑
y′
∈yp

BCE(p(y′|x), 1) +
∑

y′′∈yn

BCE(p(y′′|x), 0) (2)

L = λ · LLE + (1− λ) · LMLM (3)

Positive and Negative Sampling The label encoder al-
lows for sampling of positive and negative examples at train-
ing time. This can be useful for tasks such as stance detec-
tion, where label inventories can differ, but labels overlap
semantically. Indeed, this holds for our datasets, as is appar-
ent in Table 1, where we see semantically similar labels like
support, agree, favor etc. across several datasets.

To obtain a set of synonyms for each label, we use two
publicly available sources: (i) Google Dictionary sugges-
tions3 and (ii) synsets of the English WordNet (Miller 1998).
However, this is prone to noise, as a word can have mul-
tiple meanings, and building a high-quality lexicon would
require a human annotator proficient in the target language.
Thus, we use negative sampling, as unrelated words are also
undesirable to predict by the model, rather than using these
examples to enrich the positive labels lexicon.

2.3 Sentiment-Based Stance Pre-Training
We propose a novel semi-supervised method for pre-training
stance detection models using annotations from a sentiment
analysis model. This is motivated by the observation that
these are two closely related tasks (the difference being that
sentiment analysis does not have a target).4 To illustrate this,
consider the sentence “I am so happy that Donald Trump
lost the election.”, which has a positive sentiment, but when
expressed towards a specific target, e.g., Donald Trump, the
expected label would be the opposite, i.e., negative, or more
precisely, against. This requires the introduction of targets
that can change the sentiment label. For further details on
how we produce corresponding datasets, see Section 3.3.

We hypothesise that such pre-training could help, espe-
cially in a low-resource setting, similarly to pre-training on
cross-domain stance datasets. We use the same model and
pattern as for fine-tuning the cross-lingual stance models,
a masked language modelling objective, and negative sam-
pling to improve the language model’s performance and also
to allow it to associate synonyms as the label inventories are
very diverse (see Table 1).

3http://github.com/meetDeveloper/freeDictionaryAPI
4Note that we consider the basic, untargeted variant of senti-

ment analysis here, as more resources exist for it.

We do not do positive sampling as it requires high-quality
synonyms, which can only be obtained using manual anno-
tations, while our goal is to design a fully automatic end-to-
end pipeline without a need for human intervention.

3 Datasets
We use three types of datasets: 15 cross-lingual stance
datasets (see Table 1), English stance datasets, and raw
Wikipedia data automatically annotated for stance. We use
the cross-lingual ones for fine-tuning and evaluation, and
the rest for pre-training only. Appendix B gives additional
examples for the cross-lingual datasets shown in Table 7.
Further quantitative analysis of the texts is shown in the Ap-
pendix in Table 5 and Figure 2.

3.1 Cross-Lingual Stance Datasets

ans (Khouja 2020). The Arabic News Stance corpus has
paraphrased or contradicting news titles from several major
news sources in the Middle East.
arabicfc (Baly et al. 2018) consists of claim-document pairs
with true and false claims extracted from a news outlet and
from a fact-checking website, respectively. Topics include
the Syrian War and other Middle Eastern issues.
conref-ita (Lai et al. 2018) contains tweet-retweet-reply
triplets along with their stance annotation pertaining to a
polarising referendum held in Italy in December 2016 to
amend the Italian constitution.
czech (Hercig et al. 2017) provides stance-annotated com-
ments on a news server in Czech on a proposed Smoking
ban in restaurants and the Czech president Miloš Zeman.
dast (Lillie, Middelboe, and Derczynski 2019) includes
stance annotations towards submissions on Danish subred-
dits covering various political topics.
e-fra, r-ita (Lai et al. 2020) consist of French tweets about
the 2017 French presidential election and Italian ones about
the 2016 Italian constitutional referendum.
hindi (Swami et al. 2018) has Hindi-English code-mixed
tweets and their stance towards demonetisation of the Indian
currency that took place in 2016.
ibereval (Taulé et al. 2017) contains tweets in Spanish and
Catalan about the Independence of Catalonia, collected as
part of a shared task held at IberEval 2017.
nlpcc (Xu et al. 2016) contains posts from the Chinese
micro-blogging site Sina Weibo about manually selected
topics like the iPhoneSE or the open second child policy.
rustance (Lozhnikov, Derczynski, and Mazzara 2020)
includes posts on Twitter and Russian-focused media
outlets on topics related to Russian politics. The extraction
was done in 2017.
sardistance (Cignarella et al. 2020) includes textual and
contextual information about tweets related to the Sardines
movement in Italy towards the end of 2019.
xstance (Vamvas and Sennrich 2020) contains questions
about topics related to Swiss politics, answered by Swiss
political candidates in French, Swiss German, or Italian,
during elections held between 2011 and 2020.
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Dataset Language Target Context #Targets #Contexts Labels
1 ans Arabic Headline Headline 2,749 2,857 agree (34%), disagree (63%), other (2%)
2 arabicfc Arabic Claim Article 421 2,897 unrelated (68%), agree (16%),

discuss (13%), disagree (3%)
3 conref-ita Italian Tweet Tweet 947 963 against (70%), favor (17%), none (12%)
4 czech Czech Smoke ban, Milos Zeman Comment 2 1,455 against (29%), in favor (24%), none (48%)
5 dast Danish Claim or Topic Post 33 2,997 commenting (78%), denying (10%),

querying (3%), supporting (9%)
6 e-fra French Emmanuel Macron,

Marine Le Pen
Tweet 2 1,112 against (69%), favour (14%), none (17%)

7 hindi∗ Hindi-En Notebandi Tweet 1 3,545 none (55%), favor (27%), against (18%)
8 ibereval-ca Catalan Independència de Catalunya Tweet 1 4,319 favor (61%), neutral (36%), against (3%)
9 ibereval-es Spanish Independencia de Cataluña Tweet 1 4,319 neutral (59%), against (33%), favor (8%)

10 nlpcc‡ Chinese Two Children, Firecrackers,
IphoneSE, Russia in Syria,
Motorcycles ban

Post 5 2,966 against (40%), favor (39%), none (20%)

11 r-ita Italian Referendum costituzionale Tweet 1 833 against (58%), none (22%), favor (20%)
12 rustance Russian Claim or Tweet Comment 17 956 comment (69%), query (20%),

support (6%), deny (5%)
13 sardistance Italian Movimento delle sardine Tweet 1 3,242 against (55%), favor (24%), none (21%)
14 xstance-de German Question Answer 173 46,723 against (50%), favor (50%)
15 xstance-fr French Question Answer 178 16,309 favor (53%), against (47%)

Table 1: The cross-lingual datasets included in our work and their characteristics. If a dataset contains a small number of
targets, then we list them, as they are in the dataset. ‡The targets of the nlpcc are in Chinese, except IphoneSE, and we show the
respective English translations. ∗The texts in the hindi dataset are code-mixed (Hindi-English).

3.2 English Stance Datasets
We use 16 different English stance datasets from two recent
large-scale studies on multi-task/multi-dataset stance detec-
tion (Schiller, Daxenberger, and Gurevych 2021; Hardalov
et al. 2021a). We followed the same data preparation and
data pre-processing as described in the aforementioned pa-
pers. The combined dataset contains more than 250K exam-
ples, 154K of which we used for training. The data comes
from social media, news websites, debating forums, politi-
cal debates, encyclopedias, and Web search engines, etc. The
label inventory includes 24 unique labels. We refer the inter-
ested reader to the respective papers for further detail.

3.3 Sentiment-Based Stance Datasets
We use Wikipedia as a source of candidate examples for con-
structing our sentiment-based stance dataset due to its size
and diversity of topics covered. To study the impact that the
language has on pre-training, we construct two datasets: En-
glish (enWiki) and multilingual (mWiki). The latter includes
examples from each of the languages covered by some of our
datasets. In particular, we use the Wikipedia Python API5

to sample random Wiki articles. For the multilingual setup,
for each language, we sampled 1,000 unique articles6 (non-
overlapping between the languages), a total of 11,000. For
the English-only setup, we sampled the same number of ar-
ticles, but only English ones. Next, to obtain the contexts for
the datasets, we split the articles (with headings removed) at
the sentence-level using a language-specific sentence split-
ting model from Stanza (Qi et al. 2020).

5http://pypi.org/project/wikipedia/
6We did not include articles in Hindi, as the hindi corpus con-

tains texts in Latin, whereas the Wiki articles are in Devanagari.

We then annotated each context with sentiment using
XLM-T, an XLM-R-based sentiment model trained on Twit-
ter data (Barbieri, Anke, and Camacho-Collados 2021). We
used this model as it covers all the datasets’ languages, albeit
from a different domain. It produces three labels {positive,
negative, neutral}, which we renamed to {favor, against,
discuss} in order to match the label inventory common for
stance tasks. To obtain a target–context pair, we assigned a
target for each context, either the title of the article, or, if
there was also a subheading, the concatenation of the title
and of the subheading. In order to cover as much as possible
of the stance label variety, we also included unrelated in the
inventory, which we defined as ‘a piece of text unrelated to
the target’: for this, we randomly matched targets and con-
texts from the existing tuples. The latter class also serves
as a regulariser for the model, preventing it from overfitting
to the sentiment analysis task, as it includes examples with
positive or negative contexts that are not classified as such.
The resulting distribution is unrelated (60%), discuss (23%),
against (10%), favor (7%). Overall, this matches the class
imbalance that is common for stance detection tasks (Pomer-
leau and Rao 2017; Baly et al. 2018; Lozhnikov, Derczynski,
and Mazzara 2020).

Finally, we augmented 50% of the examples by replacing
the target (title) with the first sentence from the abstract of
the Wikipedia page. We then added these new examples as
additional examples to the original dataset. Our aim was also
to produce long examples such as user posts, descriptions of
events, etc., which are common targets for stance. The re-
sulting dataset contains around 300K examples, which we
split into 80% for training, 10% for development, 10% for
testing, thus ensuring that sentences from one article are
only included in one of the data splits.
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4 Experiments
Models We evaluated three groups of models: (i) without
any pre-training, i.e., baselines (see next); (ii) pre-trained on
multiple English stance datasets (enstance), using automati-
cally labelled instances using a sentiment model (*Wiki), see
Section 2.3; and (iii) multi-dataset learning (MDL), i.e., we
included N examples from each dataset into the training
data. We trained and evaluated on a single dataset, except in
the case of MDL, where we trained and evaluated on every-
thing. We chose the best model based on the macro-average
F1 on all datasets. All models used XLM-RBase as their base.

Baselines In addition to our proposed models (Section 2),
we compared to a number of simple baselines:

Majority class baseline calculated from the distributions
of the labels in each test set.

Random baseline Each test instance is assigned a target
label at random with equal probability.

Logistic Regression A logistic regression trained using
TF.IDF word unigrams. The input is the concatenation of
separately produced vectors for the target and the context.

XLM-R A fine-tuned XLM-RBase model predicting and
back-propagating the errors using the special <s> token.

4.1 Quantitative Analysis
We first analyse the high-level few-shot performance of
the proposed models using averaged per-dataset F1 macro.
Then, we zoom in at the dataset level and we analyse the
models in the two most extreme training scenarios: few-shot
with 32 examples, and full-resource training.

Few-Shot Analysis Table 2 shows results for different
types of pre-training on top of the pattern-based model (Sec-
tion 2). The top of the table lists baselines, followed by ab-
lations of training techniques. Fine-grained performance per
dataset is shown in Table 3 in Appendix C. We can see that
the Pattern model outperforms the random baselines in all
shots, except for zero. Moreover, there is a steady increase in
performance when adding more examples. The performance
saturates at around 256 examples, with the difference be-
tween it and all being 1.3 F1 points, whereas in subsequent
pairs from previous columns the margin is 3.5–5 points.

The middle part of Table 2 shows ablations when us-
ing stance pre-training on top of the pattern-based model.
We first analyse the models pre-trained using the sentiment-
based Wikipedia dataset (Section 2.3). We study the impact
of the language of the pre-training data by including two se-
tups: enWiki, which contains English data only, and mWiki,
with equally distributed data among all languages in the
datasets. Both variants yield a sizeable improvement over
the baselines in all few-shot settings, especially in the low-
resource ones. The increase in F1 when using 32 examples
is more than 6 points absolute on average; this also holds
when training on all examples. The mWiki model outper-
forms the pattern baseline by 4 points and the enWiki by
1.4 points. The multilingual pre-trained model is universally
better than the English pre-trained one. Moreover, we see a
tendency for the gap between the two to increase with the
number of examples reaching 2.6 points in all.

Shots
Model 0 32 64 128 256 all
Majority 25.30
Random 30.26
Pattern 18.25 39.17 43.79 47.16 52.15 53.43

Pattern + Pre-training
enWiki 28.99 45.09 47.96 50.19 53.85 54.82
mWiki 28.56 45.88 48.59 51.42 54.38 57.40
enstance 35.16 50.38 52.69 54.75 57.87 61.31

Multi-dataset learning
MDL Pattern - 40.76 43.25 48.06 50.36 61.81
MDL mWiki - 47.16 49.82 51.98 54.33 62.25

Table 2: Few-shot macro-average F1. The random and the
majority class baselines use no training, and are constant.
en/mWiki is pre-trained on our sentiment-based stance task
using English or multilingual data. enstance is pre-trained
on all English stance datasets. Multi-dataset learning (MDL)
is trained on K examples from each dataset.

For pre-training on English stance data (enstance), even
with 32 examples, we see a large increase in performance of
11 points absolute over the pattern baseline. This model is
also competitive, within 3 points absolute on average, with
respect to the baseline trained on the full dataset. More-
over, enstance outperforms the pre-training with automati-
cally labelled stance instances (en/mWiki). Nevertheless, the
en/mWiki models stay within 3–5 F1 points in all shots. The
gap in performance is expected, as the enstance model is
exposed to multiple stance definitions during its extensive
pre-training, in contrast to the single one in the Wiki and its
noisy labels. Finally, only enstance beats the random base-
lines even in the zero-shot setting, which demonstrates the
difficulty of the task. We offer additional analysis of the
zero-shot performance in Appendix C.3.

The bottom part of Table 2 shows results for multi-dataset
learning (MDL). Here, the models are trained on N exam-
ples from each dataset, instead of N examples from a single
dataset. The first row shows the results for the MDL Pat-
tern model (without any pre-training). We can see that, in
a few-shot setting, training on multiple datasets does not
yield significant performance gains compared to using ex-
amples from a single dataset. Nonetheless, when all the data
is used for training, F1 notably increases, outperforming the
English stance model. Moreover, combining MDL with mul-
tilingual sentiment-based stance pre-training (MDL mWiki)
yields an even larger increase: almost 9 F1 points higher
than Pattern, 5 points higher than mWiki, and 1 point higher
than enstance. We attribute the weaker performance of the
MDL-based models in a few-shot setting and their strong
performance in a full-resource learning scenario to the di-
versity of the stance definitions and domains of the datasets,
i.e., MDL fails to generalise and overfits on the training data
samples in the few-shot setting; however, when more data
is added, it serves as a regularizer, and thus the model’s
score improves. This was also observed in some previous
work on English stance detection (Schiller, Daxenberger,
and Gurevych 2021; Hardalov et al. 2021a).
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Model ans arafc con-ita czech dast e-fra hindi iber-ca iber-es nlpcc r-ita rusta. sardi. xsta-de xsta-fr F1avg

Majority 26.0 20.4 27.5 22.1 21.9 28.9 23.6 25.4 24.6 19.3 24.5 19.8 26.7 33.6 35.2 25.3
Random 24.9 20.3 26.7 33.4 17.5 25.0 32.4 28.9 31.0 32.3 31.4 20.9 28.8 50.1 50.2 30.3
Logistic Reg. 31.0 32.7 31.0 29.2 21.9 33.8 33.7 45.8 39.3 29.4 60.9 24.5 32.2 62.8 64.9 38.2
XLM-RBase 83.2 35.7 42.3 54.7 26.2 33.0 29.3 65.9 54.2 58.2 87.6 19.8 49.9 73.2 72.7 52.4

Full-resource training
Pattern 84.1 39.6 34.1 48.1 34.8 34.3 43.0 67.0 56.5 51.4 79.5 32.1 49.7 73.1 74.1 53.4
enWiki 86.9 38.5 42.8 50.8 25.5 48.9 45.5 65.3 57.0 51.4 88.3 22.4 50.7 73.7 74.7 54.8
mWiki 83.0 40.5 63.0 55.1 32.1 49.8 45.4 68.6 57.5 54.7 93.5 32.8 52.5 64.8 67.7 57.4
enstance 89.0 46.5 59.6 53.1 41.5 54.5 46.9 66.3 58.8 58.7 93.0 50.0 52.0 74.8 74.9 61.3
MDL 84.7 44.8 71.7 54.1 38.2 48.9 47.5 70.5 62.1 57.3 94.1 53.0 50.3 73.9 76.1 61.8
MDL mWiki 82.9 42.7 71.8 56.8 40.8 49.5 48.9 70.5 64.0 58.3 96.5 51.5 49.9 73.9 75.9 62.3

Few-shot (32) training
Pattern 38.1 26.5 31.6 43.4 25.5 40.1 35.4 39.6 35.8 37.2 54.2 44.1 37.1 47.4 51.6 39.2
enWiki 39.6 33.8 46.8 44.1 27.7 47.8 39.8 46.7 39.4 45.2 75.9 31.8 41.6 58.2 58.1 45.1
mWiki 45.4 32.5 46.9 46.1 26.5 50.5 39.2 42.3 40.0 47.3 80.9 31.9 43.4 57.5 57.7 45.9
enstance 68.3 39.4 48.7 47.3 27.0 54.9 38.0 44.3 40.7 46.8 82.1 49.3 45.2 59.1 64.6 50.4
MDL 43.7 28.4 39.8 37.8 28.3 38.7 37.7 37.5 38.6 38.9 68.0 40.9 33.8 47.2 52.1 40.8
MDL mWiki 47.3 31.8 58.5 44.1 27.5 47.5 39.8 48.0 39.1 46.3 82.8 35.1 44.2 57.3 58.0 47.2

Table 3: Per-dataset results with pre-training. In multi-dataset learning (MDL), the model is trained on N examples per dataset.

This stems from the pre-training on the artificial stance
task, as the model needs to adjust its weights to the new
definition, without having to learn the generic stance task.

Per-Dataset Analysis Table 3 presents a fine-grained
evaluation for each dataset covering the two most extreme
data regimes that we run our models in: (i) full-resource
training, and (ii) few-shot training with 32 examples. We
want to emphasise that we do not include state-of-the-art
(SOTA) results in Table 3 as the setup in most previous work
differs from ours, e.g., the data splits do not match (see Ap-
pendix B.1), or they use different metrics, etc. We give more
detail about SOTA in Appendix C.1. For completeness, we
include two standard strong baseline models, i.e., Logistic
Regression and a conventionally fine-tuned XLM-R. Both
baselines are trained on every dataset separately using all of
the data available in the corresponding training set.

It is clear that even when using all the data from train-
ing, a model that does not do any pre-training or knowledge
transfer such as the Logistic Regression struggles with cross-
lingual stance detection. Even though the model surpasses
the random baselines, it falls over 14 F1 points behind both
XLM-RBase and Pattern. In turn, the Pattern model is 1 point
better than XLM-RBase, outperforming the random baselines
on all datasets. Interestingly, the XLM-RBase model fails to
beat the random baselines on hindi and rustance. We at-
tribute this to the code-mixed nature of the former, and to
the small number of training examples (359) for the latter.

To further understand the results of the models boot-
strapped with pre-training or multi-dataset learning, we
analyse their per-dataset performance next. From Table 3,
we can see that the MDL variants achieve the highest results
on 8 out of the 15 datasets, enstance ranks best on 6, and
there is a single winner for mWiki on sardistance.

Examining the results achieved by the sentiment-based
stance pre-training (en/mWiki) we see between 7 and 29
points absolute increase in terms of F1 over the Pattern base-
line for several datasets: czech, conref-ita, e-fra, and r-ita.

In contrast, for two datasets, dast and rustance, we have a
notable drop in F1 compared to both Pattern and enstance.
On one hand, this can be attributed to the skewed label dis-
tribution, especially in the support(ing), deny, and querying
classes, and on the other hand, it also suggests that the stance
definition in these two datasets is different from the one
we adopted in the en/mWiki pre-training. In turn, enstance
demonstrates a robust performance on all datasets, as it has
been pre-trained on a variety of stance detection tasks.

A common characteristic uniting the datasets, where the
MDL models achieved the highest F1, is the presence of
at least one other dataset with similar topic and language:
(i) conref-ita and r-ita are both Italian datasets about a refer-
endum, (ii) ibereval contains tweets about the Independence
of Catalonia in Catalan and Spanish, and (iii) xstance con-
tains comments by candidates on elections in Switzerland.
This suggests that multi-dataset learning is most beneficial
when we have similar datasets.

Finally, we analyse the case of few-shot training with 32
examples. Here, the highest scoring model on 9 out of the 15
datasets is enstance. This suggests that other models struggle
to learn the stance definition from the cross-lingual datasets
by learning from just 32 examples. This phenomenon is
particularly noticeable in datasets with a skewed label dis-
tribution with one or more of the classes being a small
proportion of the dataset such as the two Arabic datasets
(ans – other (2%), arabicfc – disagree (3%)). Nevertheless,
en/mWiki models show steady sizeable improvements of 6
F1 points on average on all datasets. On the other hand, as in
the full-resource setting, training on multiple datasets (MDL
mWiki) boosts the performance of conref-ita and r-ita by 27
F1 points compared to the Pattern baseline. However, we
must note that this holds only when we pre-train on a stance
task, as the MDL model has a lower F1. That again is an ar-
gument in favour of our hypotheses that (i) few-shot training
on multiple stance datasets fails to generalise, and (ii) com-
bining datasets that cover the same topic and the same lan-
guage have the largest impact on the model’s performance.

10734



5 Discussion
Our fine-tuning with few instances improves over random
and non-neural baselines such as Logistic Regression trained
on all-shots, even by more than 20 F1 points on average
when training on just 32 instances. However, such models,
especially when trained on very few examples, suffer from
large variance and instability. In particular, for cross-lingual
stance, the pattern-based model’s standard deviation (σ)
varies from 1.1 (conref-ita, nlpcc) to 8.9 (ibereval-ca), with
3.5 on average when trained on 32 examples. Pre-training
improves stability by reducing the variance, e.g., en/mWiki
have a σ of 2.7 with a minimum under 1, which is more than
5% relative change even when compared to the highest F1
average achieved with 32 examples. The lowest σ is when
the model is trained on all shots, and especially in the MDL
models with 1.7, and in the mWiki variant with 1.4.

This variability can be attributed to the known instabil-
ities of large pre-trained language models (Mosbach, An-
driushchenko, and Klakow 2021), but this does not explain
it all. Choosing a right set of data points is another extremely
important factor in few-shot learning that calls for better se-
lection of training data for pre-training and fine-tuning (Ax-
elrod, He, and Gao 2011; Ruder and Plank 2017).

Another important factor is the inconsistency of the tasks
in the training data. This is visible from our MDL experi-
ments, where the tasks use a variety of definitions and labels.
Even with more training examples, in comparison to single-
task training (15xN examples), models tend to overfit. In
turn, when sufficient resources are available, MDL shows
sizeable improvements even without additional pre-training.

Having access to noisy sentiment-based stance data in the
same languages helps, but transferring knowledge from a
resource-rich language (e.g., English) from the same task
(or set of task definitions) is even more beneficial, in con-
trast to the data’s (see Section 4.1) and label’s language (see
Appendix C.5). Moreover, when using noisy labels from an
external model, there is always a risk of introducing addi-
tional bias due to the training data and to discrepancies in
the task definition (Waseem et al. 2021; Bender et al. 2021).
We observed this for both the dast and the rustance datasets.

6 Related Work
Stance Detection Recent studies on stance detection have
shown that mixing cross-domain English data improves ac-
curacy and robustness (Schiller, Daxenberger, and Gurevych
2021; Hardalov et al. 2021a,b). They also indicated impor-
tant challenges of cross-domain setups such as differences
in stance definitions, annotation guidelines, and label inven-
tories. Our cross-lingual setup adds two more challenges:
(i) data scarcity in the target language, which requires learn-
ing from few examples, and (ii) need for better multilingual
models with an ability for cross-lingual knowledge transfer.

Cross-Lingual Stance Detection There have been many
efforts to develop multilingual stance systems (Taulé et al.
2017; Mohtarami, Glass, and Nakov 2019; Vamvas and Sen-
nrich 2020; Zotova et al. 2020; Agerri et al. 2021). However,
most of them consider 2–3 languages, often from the same
language family.

Thus they offer limited evidence for the potential of cross-
lingual stance models to generalise across languages. A no-
table exception is Lai et al. (2020), who worked with five
languages, but restricted their study to a single family of
non-English languages and their domain to political topics
only. Our work, on the other hand, spans six language fam-
ilies and multiple domains from news (Khouja 2020) to fi-
nance (Vamvas and Sennrich 2020).

Stance and Sentiment Sentiment Analysis has a long his-
tory of association with stance (Somasundaran, Ruppen-
hofer, and Wiebe 2007; Somasundaran and Wiebe 2010).
Sentiment is often annotated in parallel to stance (Moham-
mad et al. 2016; Hercig, Krejzl, and Král 2018) and has
been used extensively as a feature (Ebrahimi, Dou, and
Lowd 2016; Sobhani, Mohammad, and Kiritchenko 2016;
Sun et al. 2018) or as an auxiliary task (Li and Caragea 2019;
Sun et al. 2019) for improving stance detection. Missing
from these studies, however, is leveraging sentiment anno-
tations to generate noisy stance examples, which we explore
here: for English and in a multilingual setting.

Pattern-Based Training Recently, prompt or pattern-
based training has emerged as an effective way of ex-
ploiting pre-trained language models for different tasks in
few-shot settings (Petroni et al. 2019; Schick and Schütze
2021a; Lin et al. 2021). Brown et al. (2020) introduced a
large language model (i.e., GPT-3), which showed strong
performance on several tasks through demonstrations of
the task. Schick and Schütze (2021a,b) proposed Pattern-
Exploiting Training (PET), a novel approach using com-
paratively smaller masked language models through Cloze-
style probing with task-informed patterns. Tam et al. (2021)
built on PET, with an additional loss that allows them to cir-
cumvent the reliance on unsupervised data and ensembling.
There have been studies on aspects of prompt-based meth-
ods such as performance in the absence of prompts (Lo-
gan IV et al. 2021), quantifying scale efficiency (Le Scao
and Rush 2021), learned continuous prompts (Li and Liang
2021; Lester, Al-Rfou, and Constant 2021; Qin and Eisner
2021), or gradient-based generated discrete prompts (Shin
et al. 2020). Liu et al. (2021) offer a survey of prompt-based
techniques. We study the potential of PET methods in a few-
shot setup, and we evaluate them in a cross-lingual setting.

7 Conclusion and Future Work
We presented a holistic study of cross-lingual stance detec-
tion. We investigated PET with different (pre-)training pro-
cedures and we extended it with a label encoder that miti-
gates the need for translating labels into a single verbalisa-
tion. We further introduced a novel methodology to produce
artificial stance examples using sentiment annotations. We
demonstrated sizeable improvements on 15 datasets: more
than 6 F1 points absolute in a low-shot, and 4 F1 points in
a full-resource scenario. Finally, we studied the impact of
multi-dataset learning and pre-training with English stance
data, which further boosted the performance by 5 F1 points.

In future work, we plan to experiment with more
sentiment-based models and stance task formulations, as
well as with different prompt-engineering techniques.
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