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Abstract

We explore deep clustering of text representations for unsu-
pervised model interpretation and induction of syntax. As
these representations are high-dimensional, out-of-the-box
methods like KMeans do not work well. Thus, our ap-
proach jointly transforms the representations into a lower-
dimensional cluster-friendly space and clusters them. We
consider two notions of syntax: part of speech induction
(POSTI) and constituency labelling (CoLab) in this work. In-
terestingly, we find that Multilingual BERT (mBERT) con-
tains surprising amount of syntactic knowledge of English;
possibly even as much as English BERT (E-BERT). Our
model can be used as a supervision-free probe which is ar-
guably a less-biased way of probing. We find that unsuper-
vised probes show benefits from higher layers as compared
to supervised probes. We further note that our unsupervised
probe utilizes E-BERT and mBERT representations differ-
ently, especially for POSI. We validate the efficacy of our
probe by demonstrating its capabilities as a unsupervised syn-
tax induction technique. Our probe works well for both syn-
tactic formalisms by simply adapting the input representa-
tions. We report competitive performance of our probe on
45-tag English POSI, state-of-the-art performance on 12-
tag POST across 10 languages, and competitive results on
CoLab. We also perform zero-shot syntax induction on re-
source impoverished languages and report strong results.

Introduction

Contextualized text representations (Peters et al. 2018a;
Devlin et al. 2019) have been used in many NLP prob-
lems such as part-of-speech (POS) tagging, syntactic pars-
ing (Kim et al. 2020; Kitaev and Klein 2018; Zhou and
Zhao 2019), coreference resolution (Lee, He, and Zettle-
moyer 2018; Joshi et al. 2019), often leading to significant
improvements. Recent works have shown that these repre-
sentations encode linguistic information including POS (Be-
linkov et al. 2017), morphology (Peters et al. 2018a), and
syntactic structure (Linzen, Dupoux, and Goldberg 2016;
Peters et al. 2018b; Tenney, Das, and Pavlick 2019; Hewitt
and Manning 2019). While there has been a lot of focus on
using contextualized representations in supervised settings,
the efficacy of these representations for unsupervised learn-
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ing is not well explored'. Most of the recent work in “prob-
ing” contextual representations have focused on building su-
pervised classifiers and using accuracy to interpret these rep-
resentations. This has led to a debate as it is not clear if the
supervised probe is probing the model or trying to solve the
task (Hewitt and Manning 2019; Pimentel et al. 2020).

Thus, we explore a new clustering-based approach to
probe contextualized text representations. Our probe allows
for studying text representations with relatively less task-
specific transformations due to the absence of supervision.
Thus, our approach is arguably a less biased way to discover
linguistic structure than supervised probes (Hewitt and Man-
ning 2019; Pimentel et al. 2020). Our work is similar in spirit
to (Wu et al. 2020; Zhou and Srikumar 2021) who also in-
vestigate supervision/parameter free probing methods. We
focus on two syntactic formalisms: part-of-speech induc-
tion (POSI) and constituency labelling (CoLab), and ex-
plore the efficacy of contextualized representations towards
encoding syntax in an unsupervised manner. We investigate
the research question: Do contextualized representations en-
code information for unsupervised syntax induction? How
do these perform on POSI, which has been traditionally
solved using smaller context windows and morphology and
span-based CoLab?

For both formalisms, we find that naively clustering text
representations does not perform well. We speculate that
this is because contextualized text representations are high-
dimensional and not very friendly to existing clustering ap-
proaches. Thus, we develop a deep clustering approach (Xie,
Girshick, and Farhadi 2016; Ghasedi Dizaji et al. 2017;
Chang et al. 2017; Yang, Parikh, and Batra 2016; Yang et al.
2017) which transforms these representations into a lower
dimensional, clustering friendly latent space. This transfor-
mation is learnt jointly with clustering using a combination
of reconstruction and clustering objectives. The procedure
iteratively refines the transformation and clustering using an
auxiliary target distribution derived from current soft clus-
tering. As this process is repeated, it gradually improves the

'Some recent work such as DIORA (Drozdov et al. 2019b,a)
has explored specialized methods for unsupervised discovery and
representation of constituents using ELMo (Peters et al. 2018a).

(Jinetal. 2019) used ELMo with a normalizing flow model while
(Cao, Kitaev, and Klein 2020) used RoBERTa (Liu et al. 2019b) for
unsupervised constituency parsing.



(a) MBERT

(b) SyntDEC

Figure 1: t-SNE visualization of mBERT embeddings (clus-
tered using kMeans) and SyntDEC (our probe) embeddings
of tokens. Colors correspond to ground truth POS tags.

transformed representations as well as the clustering. We
show a t-SNE visualization of mBERT embeddings and em-
beddings learned by our probe (SyntDEC) in Figure 1.

We further explore architectural variations such as pre-
trained subword embeddings from fastText (Joulin et al.
2017), a continuous bag of words (CBoW) loss (Mikolov
et al. 2013), and span representations (Toshniwal et al. 2020)
to incorporate task-dependent information into the latent
space and observe significant improvements. It is important
to note that we do not claim that clustering contextualized
representations is the optimal approach for POST as repre-
sentations with short context (Lin et al. 2015), (He, Neubig,
and Berg-Kirkpatrick 2018) and word-based POST (Yatbaz,
Sert, and Yuret 2012) have shown best results. Our approach
explores the potential of contextualized representations for
unsupervised induction of syntax and acts as an unsuper-
vised probe for interpreting these representations. Neverthe-
less, we report competitive many-to-one (M1) accuracies for
POST on 45-tag Penn Treebank WSJ dataset as compared to
specialized state-of-the-art approaches in the literature (He,
Neubig, and Berg-Kirkpatrick 2018) and improve upon the
state-of-the-art on 12 tag universal treebank dataset across
multiple languages (Stratos, Collins, and Hsu 2016; Stratos
2019). We further show that our approach can be used in
a zero-shot crosslingual setting where a model trained on
one language can be used for evaluation in another language
without using training data from the other language. We ob-
serve impressive crosslingual POST performance, showcas-
ing the representational power of mBERT, especially when
the languages are related. Our method also achieves com-
petitive results on CoLab, outperforming the initial DIORA
approach (Drozdov et al. 2019b) and performing compara-
bly to recent DIORA variants (Drozdov et al. 2019a) which
incorporate more complex methods such as latent chart pars-
ing and discrete representation learning. In contrast to spe-
cialized state-of-the-art methods for syntax induction, our
framework is more general as it demonstrates good perfor-
mance for both CoLab and POSTI by simply adapting the
input representations.

We further investigate the effectiveness of multilingual
BERT (mBERT) (Devlin et al. 2019) for POST across mul-
tiple languages and CoLab in English and see improve-
ment in performance by using mBERT for both tasks even
in English. This is in contrast with the supervised experi-
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ments where both mBERT and E-BERT perform compet-
itively. In contrast to various supervised probes in the lit-
erature (Liu et al. 2019a; Tenney, Das, and Pavlick 2019),
our unsupervised probe finds that syntactic information is
captured in higher layers on average than what was previ-
ously reported (Tenney, Das, and Pavlick 2019). Upon fur-
ther layer-wise analysis of the two probes, we find that while
supervised probes show that all layers of E-BERT contain
syntactic information fairly uniformly, middle layers lead to
a better performance on the investigated syntactic tasks with
our unsupervised probe.

Problem Definition

We consider two syntax induction problems in this work:

1. Part-of-speech induction (POSI): determining part of
speech of words in a sentence.

Constituency label induction (CoLab): determining
the constituency label for a given constituent (span of
contiguous tokens).”

In order to do well, both tasks require reasoning about the
context. This motivates us to use contextualized representa-
tions, which have shown an ability to model such informa-
tion effectively. Letting [m] denote {1,2, ..., m}, we model
unsupervised syntax induction as the task of learning a map-
ping function C' : X — [m]. For POSI, X is the set of
word tokens in the corpus and m is the number of part-of-
speech tags.? For CoLab, X is the set of constituents across
all sentences in the corpus and m is the number of con-
stituent labels. For each element x € X, let ¢(z) denote
the context of x in the sentence containing x. The number
m of true clusters is assumed to be known. For CoLab, we
also assume gold constituent spans from manually annotated
constituency parse trees, focusing only on determining con-
stituent labels, following Drozdov et al. (2019a).

2.

Proposed Method

We address unsupervised syntax induction via clustering,
where C' defines a clustering of X into m clusters. We de-
fine a deep embedded clustering framework and modify it to
support common NLP objectives such as continuous bag of
words (Mikolov et al. 2013). Our framework jointly trans-
forms the text representations into a lower-dimensions and
learns the clustering parameters in an end-to-end setup.

Deep Clustering

Unlike traditional clustering approaches that work with
fixed, and often hand-designed features, deep clustering
(Xie, Girshick, and Farhadi 2016; Ghasedi Dizaji et al. 2017;
Jiang et al. 2016; Chang et al. 2017; Yang, Parikh, and Batra
2016; Yang et al. 2017) transforms the data X into a latent
feature space Z with a mapping function fy : X — Z,
where 0 are learnable parameters. The dimensionality of Z is
typically much smaller than X. The datapoints are clustered

by simultaneously learning a clustering C' : Z — [m].While

Note that it is not necessary for constituents to be contiguous,
but we only consider contiguous constituents for simplicity.

3X is distinct from the corpus vocabulary; in POST, we tag
each word token in each sentence with a POS tag.
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Figure 2: An illustration of our SyntDEC model.

C might have been hard to learn directly (due to the high
dimensionality of X)), learning C' may be easier.

Deep Embedded Clustering: We draw on a particular deep
clustering approach: Deep Embedded Clustering (DEC; Xie,
Girshick, and Farhadi 2016). Our approach consists of two
stages: (a) a pretraining stage, and (b) a joint representa-
tion learning and clustering stage. In the pretraining stage,
a mapping function fy is pretrained using a stacked autoen-
coder (SAE). The SAE learns to reconstruct X through the

. d decod
bottleneck Z, i.e., X —20¢T, 7 0% X', We use mean
squared error (MSE) as the reconstruction loss:

Lree = |IX =X'|P =) |lz— 2|

reX

The encoder parameters are used to initialize the mapping
function fy. In the joint representation learning and cluster-
ing stage, we finetune the encoder fy trained in the pretrain-
ing stage to minimize a clustering loss Lg; . The goal of this
step is to learn a latent space that is amenable to clustering.
We learn a set of m cluster centers {y; € Z}72; of the latent
space Z and alternate between computing an auxiliary tar-
get distribution and minimizing the Kullback-Leibler (KL)
divergence. First, a soft cluster assignment is computed for
each embedded point. Then, the mapping function fy is re-
fined along with the cluster centers by learning from the as-
signments using an auxiliary target distribution. This process
is repeated. The soft assignment is computed via the Stu-
dent’s ¢-distribution. The probability of assigning data point
1 to cluster j is denoted ¢;; and defined:
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where v is set to 1 in all experiments. Then, a cluster as-
signment hardening loss (Xie, Girshick, and Farhadi 2016)
is used to make these soft assignment probabilities more
peaked. This is done by letting cluster assignment probabil-
ity distribution ¢ approach a more peaked auxiliary (target)
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distribution p:
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By squaring the original distribution and then normalizing it,
the auxiliary distribution p forces assignments to have more
peaked probabilities. This aims to improve cluster purity, put
emphasis on data points assigned with high confidence, and
to prevent large clusters from distorting the latent space. The
divergence between the two probability distributions is for-
mulated as the Kullback-Leibler divergence:

Lxr = Zzpz‘j log
i g

The representation learning and clustering model is learned
end-to-end.

DPij
qij

SyntDEC: DEC for Syntax Induction

We further modify DEC for syntax induction:

a) CBoW autoencoders: While DEC uses a conventional au-
toencoder, i.e., the input and output are the same, we modify
it to support the continuous bag of words (CBoW) objective
(Mikolov et al. 2013). This helps focus the low-dimensional
representations to focus on context words, which are ex-
pected to be helpful for POSI. In particular, given a set of
tokens c¢(x) that defines the context for an element z € X,
CBoW combines the distributed representations of tokens in
¢() to predict the element z in the middle.

b) Finetuning with reconstruction loss: We found that in
the clustering stage, finetuning with respect to the KL diver-
gence loss alone easily leads to trivial solutions where all
points map to the same cluster. To address this, we add the
reconstruction loss as a regularization term. This is in agree-
ment with subsequent works in deep clustering (Yang et al.
2017). Instead of solely minimizing Lg;, we minimize

£totul = ‘CKL + )\‘Crec (1)

in the clustering stage, where A is a hyperparameter denoting
the weight of the reconstruction loss.

¢) Contextualized representations: We represent linguistic
elements x by embeddings extracted from pretrained net-
works like BERT (Devlin et al. 2019), SpanBERT (Joshi
et al. 2020), and multilingual BERT (Devlin et al. 2019).
All of these networks are multi-layer architectures. Thus, we
average the embeddings across the various layers. We exper-
imented with different layer combinations but found the av-
erage was the best solution for these tasks. We averaged the
embeddings of the subword units to compute word embed-
dings.* For CoLab, we represent spans by concatenating the
representations of the end points (Toshniwal et al. 2020).

d) Task-specific representations: Previous work in un-
supervised syntax induction has shown the value of task-
specific features. In particular, a number of morphological
features based on prefixes and suffixes and spelling cues like

“In our preliminary experiments, we also tried other pooling
mechanisms such as min/max pooling over subwords, but average
performed the best among all of them.



capitalization have been used in unsupervised POSTI works
(Tseng, Jurafsky, and Manning 2005; Stratos 2019; Yatbaz,
Sert, and Yuret 2012). In our POSI experiments, we incor-
porate these morphological features by using word repre-
sentations from fastText (Joulin et al. 2017). We con-
catenate fastText embeddings of the trailing trigram of
each word with contextualized representations before pass-
ing them as input to SyntDEC.

Experimental Details

Datasets: We evaluate our approach for POSI on two
datasets: 45-tag Penn Treebank Wall Street Journal (WSJ)
dataset (Marcus, Santorini, and Marcinkiewicz 1993) and
multilingual 12-tag datasets drawn from the universal depen-
dencies project (Nivre et al. 2016). WSJ dataset has approxi-
mately one million words tagged with 45 part of speech tags.
For multilingual experiments, we use the 12-tag universal
treebank v2.0 dataset which consists of corpora from 10 lan-
guages.’ The words in this dataset have been tagged with 12
universal POS tags (McDonald et al. 2013). For CoLab, we
follow (Drozdov et al. 2019a) and evaluate on the WSJ test
set. For POST, as per the standard practice (Stratos 2019),
we use the complete dataset (train + val + test) for training
as well as evaluation. However, for CoLab, we use the train
set to train our model and the test set for reporting results,
following Drozdov et al. (2019a).

Evaluation Metrics: For POSI, we use the standard mea-
sures of many-to-one (M1; Johnson 2007) accuracy and V-
Measure (Rosenberg and Hirschberg 2007). For CoLab, we
use F1 score following Drozdov et al. (2019a), ignoring
spans which have only a single word and spans with the
“TOP” label. In addition to F1, we also report M1 accuracy
for CoLab to show the clustering performance more natu-
rally and intuitively.

Training Details: Similar to Xie, Girshick, and Farhadi
(2016), we use greedy layerwise pretraining (Bengio et al.
2007) for initialization. New hidden layers are successively
added to the autoencoder, and the layers are trained to de-
noise output of the previous layer. After layerwise pretrain-
ing, we train the autoencoder end-to-end and leverage the
trained SyntDEC encoder. K-Means is used to initialize
cluster means and assignments. SyntDEC is trained end-
to-end with the reconstruction and clustering losses.

Part of Speech Induction (POSTI)

45-Tag Penn Treebank WSJ: In Table 1, we evaluate
the performance of contextualized representations and our
probe on the 45-tag Penn Treebank WSJ dataset. KMeans
clustering over the mBERT embeddings improves upon
Brown clustering (Brown et al. 1992) (as reported by Stratos,
2019) and Hidden Markov Models (Stratos, Collins, and Hsu
2016) based approach, showing that nBERT embeddings en-
code syntactic information. The stacked autoencoder, SAE
(trained during pretraining stage), improves upon the result
of KMeans by nearly 3 points, which demonstrates the ef-
fectiveness of transforming the mBERT embeddings to lower
dimensionality using an autoencoder before clustering. Our

SWe use v2.0 in order to compare to Stratos (2019).

10723

Method M1 VM
SyntDEC_Morph 79.5 (£0.9) | 73.9 (+0.7)
SyntDEC 77.6 (£1.5) | 72.5(£0.9)
SAE 75.3 (£1.4) | 69.9 (+0.9)
KMeans 72.4 (£2.9) -
Brown et al. (1992) 65.6 (ENA)

Stratos, Collins, and Hsu (2016) 67.7 (ENA)
Berg-Kirkpatrick et al. (2010) 74.9 (£1.5) -
Blunsom and Cohn (2011) 77.5 (ENA) 69.8
Stratos (2019) 78.1 (£0.8) -
Tran et al. (2016) 79.1 (£NA) | 71.7 (NA)
Yuret, Yatbaz, and Sert (2014) 79.5 (£0.3) | 69.1(+£2.7)
Yatbaz, Sert, and Yuret (2012) (word) 80.2 (£0.7) | 72.1 (£0.4)
He, Neubig, and Berg-Kirkpatrick (2018) | 80.8 (+1.3) | 74.1 (£0.7)

Table 1: Many-to-one (M1) accuracy and V-Measure (VM)
of POST on the 45-tag Penn Treebank WSJ dataset for 10
random runs using mBERT (upper part of the table).

method (SyntDEC) further enhances the result and shows
that transforming the pretrained mBERT embeddings using
clustering objective helps to extract syntactic information
more effectively. When augmenting the mBERT embeddings
with morphological features (SyntDEC_Morph), we im-
prove over Stratos (2019) and (Tran et al. 2016). We also
obtain similar M1 accuracy with higher VM as compared
to (Yuret, Yatbaz, and Sert 2014).

Morphology: We also note that M1 accuracy of Tran et al.
(2016) and Stratos (2019) drop by nearly 14 points in ab-
sence of morphological features, while SyntDEC degrades
by 2 points. This trend suggests that mBERT representations
encode the morphology to some extent.

Yatbaz, Sert, and Yuret (2012) are not directly compara-
ble to our work as they performed word-based POSI which
attaches same tag to all the instances of the word, while all
the other works in Table 1 perform token-based POSI. They
use task-specific hand-engineered rules like presence of hy-
phen, apostrophe etc. which might not translate to multi-
ple languages and tasks. (He, Neubig, and Berg-Kirkpatrick
2018) train a POST specialized model with Markov syntax
model and short-context word embeddings and report cur-
rent SOTA on POSTI. In contrast to their method, SyntDEC
is fairly task agnostic.
12-Tag Universal Treebanks: In Table 2, we report M1
accuracies on the 12-tag datasets averaged over 5 random
runs. Across all languages, we report SOTA results and find
an improvement on average over the previous best method
(Stratos 2019) from 71.4% to 75.7%. We also note improve-
ments of SyntDEC over SAE (70.9% to 75.7%) across lan-
guages, which reiterates the importance of finetuning rep-
resentations for clustering. Our methods yield larger gains
on this coarse-grained 12 tag POST task as compared to the
fine-grained 45 tag POST task, and we hope to explore the
reasons for this in future work.

Ablation Studies: Next, we study the impact of our choices
on the 45-tag WSJ dataset. Table 3 demonstrates that
multilingual BERT (mBERT) is better than English BERT
(E-BERT) across settings. For both mBERT and E-BERT,
compressing the representations with SAE and finetuning
using SyntDEC performs better than KMeans. Also, focus-
ing the representations on the local context (CBoW) improves



de en es fr id it ja ko pt-br SV Mean
SAR 74.8 70.7 71.1 66.7 75.4 66.2 82.1 65.4 75.1 61.6 70.9
(£1.5) | (£2.2) | (£2.4) | (£1.9) | (£1.6) | (£3.3) | (£0.9) | (£1.7) | (£4.1) | (£2.6)
SyntDEC 81.5 76.5 78.9 70.7 76.8 71.7 84.7 69.7 71.7 68.8 75.7
(£1.8) | (£1.1) | (£1.9) | (£3.9) | (£1.1) | (£3.3) | (£1.2) | (£1.5) | (£2.1) | (£3.9)
Stratos (2019) 75.4 73.1 73.1 70.4 73.6 67.4 77.9 65.6 70.7 67.1 71.4
(£1.5) | (£1.7) | (£1.0) | (£2.9) | (£1.5) | (£3.3) | (£0.4) | (£1.2) | (£2.3) | (£1.5)
Stratos, Collins, and Hsu (2016) 63.4 71.4 74.3 71.9 67.3 60.2 69.4 61.8 65.8 61.0 66.7
Berg-Kirkpatrick et al. (2010) 67.5 62.4 67.1 62.1 61.3 52.9 78.2 60.5 63.2 56.7 63.2
(£1.8) | (£3.5) | (£3.1) | (£4.5) | (£3.9) | (£2.9) | (£2.9) | (£3.6) | (£2.2) | (£2.5)
Brown et al. (1992) 60.0 62.9 67.4 66.4 59.3 66.1 60.3 47.5 67.4 61.9 61.9

Table 2: M1 accuracy and standard deviations on the 12-tag universal treebank dataset averaged over 5 random runs. mBERT is
used for all of our experiments (upper part of the table). The number of epochs are proportional to the number of samples and

the M1 accuracy corresponding to the last epoch is reported.

Method M1
KMeans 69.1 (£0.9)
B [ saE 71.6 (£2.3)
2 | cBoW 73.8 (£0.7)
. [ SyntDEC (SBE) | 727 (£1.2)
SyntDEC (CBoW) | 74.4 (£0.6)
KMeans 72.4 (£2.9)
B [SAE 753 (£1.4)
& | CBow 75.1 (£0.3)
8 [SyntDEC (SAE) | 77.8 (£1.0)
SyntDEC (CBoW) | 75.9 (+0.3)

Table 3: Comparison of E-BERT and mBERT on the 45-tag
POST task. We report oracle results in this table.

performance with E-BERT, though not with mBERT.
Error Analysis: We compared SyntDEC and KMeans
(when both use mBERT) and found that Synt DEC does bet-
ter on noun phrases and nominal tags. It helps alleviate con-
fusion among fine-grained noun tags (e.g., NN vs. NNS),
while also showing better handling of numerals (CD) and
personal pronouns (PRP). However, SyntDEC still shows
considerable confusion among fine-grained verb categories.
For 12-tag experiments, we similarly found that SyntDEC
outperforms KMeans for the majority of the tags, espe-
cially nouns and verbs, resulting in a gain of more than
20% in 1-to-1 accuracy. We further compare t-SNE visual-
izations of SyntDEC and mBERT embeddings and observe
that SyntDEC show relatively compact clusters.

SyntDEC as an Unsupervised Probe

Next, we leverage SyntDEC as an unsupervised probe to
analyse where syntactic information is captured in the pre-
trained representations. Existing approaches to probing usu-
ally rely on supervised training of probes. However, as ar-
gued recently by (Zhou and Srikumar 2021), this can be un-
reliable. Our supervision-free probe arguably gets rid of any
bias in interpretations due to the involvement of training data
in probing. We compare our unsupervised probe to a reim-
plementation of the supervised shallow MLP based probe
in Tenney, Das, and Pavlick (2019). Similar to their paper,
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Figure 3: Expected Layer of POST and CoLab under un-
supervised SyntDEC (blue) and supervised settings (green)
with E-BERT and mBERT representations.

we report Expected Layer under supervised and unsu-
pervised settings for the two tasks in Figure 3. Expected
Layer represents the average layer number in terms of in-
_ Tl kAW
Yz, AD

AW is the change in the performance metric when adding
layer [ to the previous layers. Layers are incrementally added
from lower to higher layers. We use F1 and M1 score as the
performance metric for supervised and unsupervised exper-
iments respectively. We observe that:

cremental performance gains: Ea [{]

1. Expected Layer as per the unsupervised probe
(blue) is higher than the supervised probe (green) for
both tasks and models showing that unsupervised syntax
induction benefits more from higher layers.

. There are larger differences between E-BERT and
mBERT Expected Layer under unsupervised set-
tings suggesting that our unsupervised probe utilizes
mBERT and E-BERT layers differently than the super-
vised one. In supervised settings, both models show sim-
ilar expected layers of 1.7 vs 1.8 for POST and 3.1 vs 3.0
for CoLab. However, under unsupervised settings, the
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Figure 4: Comparison of M1/F1 measure for POST and CoLab under unsupervised (SyntDEC) and supervised settings with
mBERT and E-BERT representations.

Nearby Distant
en de sV es fr pt it ko id ja Mean
distance to en 0 0.36 0.4 0.46 0.46 0.48 0.50 0.69 0.71 0.71 -
. 76.5 81.5 68.8 78.9 70.7 77.7 71.7 69.7 76.8 84.7 75.7
Monolingual
(£1.1) | (£1.8) | (£3.9) | (£1.9) | (£3.9) | (£2.1) | (£3.3) || (£1.5) | (£1.1) | (£1.2) -
. 76.5 71.9 66.7 75.7 73.5 77.6 73.5 67.5 75.4 80.3 73.9
Crosslingual
(£1.1) | (£1.5) | (£1.9) | (£1.4) | (£1.1) | (£1.1) | (£1.2) || (£0.9) | (£1.7) | (£1.3) -

Table 4: POST M1 for SyntDEC with mBERT on 12-tag universal treebank. Monolingual: clusters are learnt and evaluated on
same language. Crosslingual: clusters are learnt on English and evaluated on all languages.

expected layer shows larger differences: 3.6 vs 5.2 for
POST and 4.3 vs 4.9 for CoLab.

In Figure 4, we further probe the performance of each layer
individually by computing the F1 score for the supervised
probe and the M1 score for the unsupervised probe. We
observe noticeable improvement at Layer 1 for supervised
POST and Layer 1/4/6 for CoLab which also correlates
with their respective Expected Layer values. For unsu-
pervised settings, the improvements are more evenly shared
across initial layers. Although F1 and M1 are not directly
comparable, supervised performance is competitive even at
higher layers while unsupervised performance drops.

Crosslingual POSI

Pires, Schlinger, and Garrette (2019); Wu and Dredze
(2019); Snyder, Naseem, and Barzilay (2009) show that
mBERT is effective at zero-shot crosslingual transfer. In-
spired by this, we evaluate the crosslingual performance on
12-tag universal treebank (Table 4). In this task, we train
the model on one language and evaluate it on another lan-
guage without using training data from other language. The
first row shows M1 accuracies when training and evaluating
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SyntDEC on the same language (monolingual). The second
row shows M1 accuracies of the English-trained SyntDEC
on other languages (crosslingual). In general, we find that
clusters learned on a high-resource languages like English
can be used for other languages. Similar to He et al. (2019),
we use the distances of the languages with English to group
languages as nearby or distant. The distance is calculated by
accounting for syntactic, genetic, and geographic distances
according to the URIEL linguistic database (Littell et al.
2017). Our results highlight the effectiveness of mBERT in
crosslingual POSI. Even for Asian languages (ko, id, and
ja), which have a higher distance from English, the perfor-
mance is comparable across settings. For nearby languages,
crosslingual SyntDEC performs well and even outperforms
the monolingual setting for some languages.

Constituency Labelling (CoLab)

In Table 5, we report the F1 and M1 score of constituency
labelling (CoLab) over the WSJ test set. We represent con-
stituents by concatenating embeddings of the first and last
words in the span (where word embeddings are computed by
averaging corresponding subword embeddings). We observe



| Method | F1, \ M1 \ VM |

DIORA 62.5 (£0.5) - -

DIORA ¢ (¥) | 64.5 (£0.6) - -

DIORA g (¥) | 66.4 (£0.7) - -
DIORA

E-BERT (%) 418 - -

ELMo (¥*) 58.5 - -

ELMo ¢r (**) 534 - -
SyntDEC

E-BERT 60.8 (£0.7) | 75.4 (£1.1) | 41.2 (£1.4)

SpanBERT 61.3 (£0.8) | 75.9 (£1.0) | 40.8 (£1.1)

mBERT 64.0 (£0.4) | 79.6 (£0.6) | 44.5 (£0.7)

Table 5: CoLab results on the WSJ test set using gold
parses over five random runs. Our models were trained for
15 epochs and results from the final epoch for each run
are recorded. DIORA results are reported from Drozdov
et al. (2019a). DIORA g and DIORAY are fairly special-
ized models involving codebook learning (*). We also report
E-BERT and ELMo baselines from Drozdov et al. (2019a)
(**). We significantly outperform these previously reported
E-BERT/ELMo baselines. Our results are not directly com-
parable to DIORA as it uses the WSJ dev set for tuning and
early stopping whereas we do not.

improvement over DIORA (Drozdov et al. 2019b), a re-
cent unsupervised constituency parsing model, and achieve
competitive results to recent variants that improve DIORA
with discrete representation learning (Drozdov et al. 2019a).
Our model and the DIORA variants use gold constituents
for these experiments. We compute F1 metrics for com-
paring with previous work but also report M1 accuracies.
As with POSTI, our results suggest that mBERT outper-
forms both SpanBERT and E-BERT for the CoLab task
as well. We also note that SpanBERT performs better than
E-BERT, presumably because SpanBERT seeks to learn
span representations explicitly. We explored other ways of
representing constituents and note that mean/max pooling
followed by clustering does not perform well. Compress-
ing and finetuning the mean-pooled representation using
SyntDEC (SyntDEC_Mean) is also suboptimal. We hy-
pothesize that mean/max pooling results in a loss of infor-
mation about word order in the constituent whereas the con-
catenation of first and last words retains this information.
Even a stacked autoencoder (SAE) over the concatenation
of first and last token achieves competitive results, but fine-
tuning with SyntDEC improves the I'1, by nearly 4.5%.
This demonstrates that for CoLab also, the transformation
to lower dimensions and finetuning to clustering friendly
spaces is important for achieving competitive performance.

Related Work

Deep Clustering: Unlike previous work where feature ex-
traction and clustering were applied sequentially, deep clus-
tering aims to jointly optimize for both by combining a clus-
tering loss with the feature extraction. Various deep clus-
tering methods have been proposed which primarily dif-
fer in their clustering approach: Yang et al. (2017) use
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KMeans, Xie, Girshick, and Farhadi (2016) use cluster as-
signment hardening, Ghasedi Dizaji et al. (2017) add a bal-
anced assignments loss on top of cluster assignment harden-
ing, Huang et al. (2014) introduce a locality-preserving loss
and a group sparsity loss on the clustering, Yang, Parikh,
and Batra (2016) use agglomerative clustering, and Ji et al.
(2017) use subspace clustering. All of these approaches can
be used to cluster contextualized representations, and future
work may improve upon our results by exploring these ap-
proaches. The interplay between deep clustering for syntax
and contextualized representations, has not previously been
studied. In this paper, we fill this gap.

Unsupervised Syntax Induction: There has been a lot of
work on unsupervised induction of syntax, namely, unsu-
pervised constituency parsing (Klein and Manning 2002;
Seginer 2007; Kim, Dyer, and Rush 2019) and dependency
parsing (Klein and Manning 2004; Smith and Eisner 2006;
Gillenwater et al. 2010; Spitkovsky, Alshawi, and Jurafsky
2013; Jiang, Han, and Tu 2016). While most prior work fo-
cuses on inducing unlabeled syntactic structures, we focus
on inducing constituent labels while assuming the gold syn-
tactic structure is available. This goal has also been pursued
in prior work (Drozdov et al. 2019a; Jin and Schuler 2020).
Compared to them, we present simpler models to induce
syntactic labels directly from pretrained models via dimen-
sionality reduction and clustering. Similar to us, (Li and
Eisner 2019) also note gains for supervised NLP tasks upon
reducing the representation dimension.

Probing Pretrained Representations: Recent work (Liu
et al. 2019a; Tenney et al. 2019; Jawahar, Sagot, and Seddah
2019, inter alia) has shown that pretrained language models
encode syntactic information efficiently. Most of them train
a supervised model using pretrained representations and la-
beled examples, and show that pretrained language models
effectively encode part-of-speech and constituency informa-
tion. In contrast to these works, we propose an unsupervised
approach to probing which does not rely on any training
data. (Zhou and Srikumar 2021) also pursue the same goals
by studying the geometry of these representations.

Conclusion

In this work, we explored the problem of clustering text rep-
resentations for model interpretation and induction of syn-
tax. We observed that off-the-shelf methods like KMeans
are sub-optimal as these representations are high dimen-
sional and, thus, not directly suitable for clustering. Thus,
we proposed a deep clustering approach which jointly trans-
forms these representations into a lower-dimensional cluster
friendly space and clusters them. Upon integration of task-
specific features (morphology for POST and end-point con-
catenation for CoLab) and use of multilingual representa-
tions, we find that our approach achieves competitive per-
formance for unsupervised POSI and CoLab, comparable
to more complex methods in the literature. Finally, we also
show that we can use the technique as a supervision-free ap-
proach to probe syntax in these representations and contrast
our unsupervised probe with supervised ones for both the
tasks and monolingual/multilingual models.
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