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Abstract

Recently, neural networks based purely on self-attention,
such as the Vision Transformer (ViT), have been shown to
outperform deep learning models constructed with convolu-
tional neural networks (CNNs) on various vision tasks, thus
extending the success of Transformers, which were originally
developed for language processing, to the vision domain. A
recent study showed that a similar methodology can also be
applied to the audio domain. Specifically, the Audio Spec-
trogram Transformer (AST) achieves state-of-the-art results
on various audio classification benchmarks. However, pure
Transformer models tend to require more training data com-
pared to CNNs, and the success of the AST relies on super-
vised pretraining that requires a large amount of labeled data
and a complex training pipeline, thus limiting the practical
usage of AST. This paper focuses on audio and speech classi-
fication, and aims to reduce the need for large amounts of la-
beled data for the AST by leveraging self-supervised learning
using unlabeled data. Specifically, we propose to pretrain the
AST model with joint discriminative and generative masked
spectrogram patch modeling (MSPM) using unlabeled au-
dio from AudioSet and Librispeech. We evaluate our pre-
trained models on both audio and speech classification tasks
including audio event classification, keyword spotting, emo-
tion recognition, and speaker identification. The proposed
self-supervised framework significantly boosts AST perfor-
mance on all tasks, with an average improvement of 60.9%,
leading to similar or even better results than a supervised
pretrained AST. To the best of our knowledge, it is the first
patch-based self-supervised learning framework in the audio
and speech domain, and also the first self-supervised learning
framework for AST.

1 Introduction
Pure self-attention based deep learning architectures, such as
the Vision Transformer (Dosovitskiy et al. 2021) and its vari-
ants (e.g., DeiT (Touvron et al. 2020), T2T-ViT (Yuan et al.
2021)) have been shown to outperform CNN models (LeCun
and Bengio 1995) of similar size on various vision tasks.
Such models differ from CNN models or CNN-attention
hybrid models in that they do not contain non-degenerated
convolutions (Chen, Xie, and He 2021) and thus have less
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inductive bias such as spatial locality or translation equiv-
ariance, and are more data-driven. In the audio and speech
domain, the recently proposed Audio Spectrogram Trans-
former (AST) (Gong, Chung, and Glass 2021) and the Key-
word Transformer (Berg, O’Connor, and Cruz 2021) also
achieve new state-of-the-art performance on audio scene
classification and keyword spotting. Despite the strong per-
formance, a critical issue of such pure self-attention based
models is they tend to require more training data than
CNNs (Dosovitskiy et al. 2021). For example, the ViT out-
performs CNNs only when the training data volume is larger
than about 100 million samples. AST also does not per-
form well when it is trained from scratch, and the success of
AST strongly relies on supervised pretraining. Since labeled
speech and audio data is limited, AST uses cross-modal pre-
training with ImageNet data (Deng et al. 2009). However, in
practice, supervised pretraining on ImageNet data is com-
plex (He et al. 2019) and expensive, and also constrains the
vision and audio models to have a similar architecture and
use the same patch size and shape. Further, the validity and
transferability of such cross-modal pretraining for a specific
audio or speech task are unclear.

While annotating audio and speech data is expensive,
we can easily get web-scale unlabeled audio and speech
data from radio or YouTube. This motivates us to ex-
plore Self-Supervised AST (SSAST) that leverages unla-
beled data to alleviate the data requirement problem. In
this paper, we present a novel joint discriminative and
generative Masked Spectrogram Patch Modeling (MSPM)
based self-supervised learning (SSL) framework that can
significantly improve AST performance with limited la-
beled data. Previous self-supervised learning methods such
as wav2vec (Schneider et al. 2019) or autoregressive predic-
tive coding (APC) (Chung et al. 2019) use an objective that
predicts future or masked temporal spectrogram frames, thus
potentially learning only the temporal structure of the spec-
trogram. In contrast, the objective of MSPM is to predict
a specific frequency band in a specific time range (i.e., a
“spectrogram patch”) given the neighboring band and time
information, which allows the model to learn both the tem-
poral and frequency structure. The spectrogram patch can
be an arbitrary shape and size, e.g., it can be a conventional
time frame or a square patch.

In addition, most previous SSL research considers either
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only speech or only audio events, but in this work, we show
that the SSL model can be generalized to both speech and
audio tasks. Specifically, we pretrain our model using both
Librispeech and AudioSet, and evaluate the model on a vari-
ety of speech and audio tasks including audio event classifi-
cation, keyword spotting, speaker identification, and speech
emotion recognition. Our experiments demonstrate the ef-
fectiveness of the proposed MSPM framework: a model
pretrained with MSPM can significantly outperform from-
scratch models for all 6 benchmarks we evaluated with an
average improvement of 60.9%, and the performance can
even match or outperform supervised pretrained models.
The contributions of this work are two-fold:
1. We propose MSPM, a novel patch-based joint discrim-

inative and generative self-supervised learning frame-
work. With MSPM pretraining, our SSAST model
matches or outperforms previous supervised pretrained
AST. To the best of our knowledge, MSPM is the first
patch-based self-supervised learning framework in the
audio and speech domains, and SSAST is the first self-
supervised pure self-attention based audio classification
model. Further, we conduct extensive experiments to
thoroughly investigate the design choices and quantify
the performance impact of each factor.

2. We show that pretraining with both speech and audio
datasets noticeably improves the models’ generalization
ability, and leads to better performance than pretraining
with dataset from a single domain. As a consequence,
our SSAST model performs well on both speech and au-
dio downstream tasks. Previous work typically only uses
datasets in a single domain for pretraining.

2 Self-Supervised Audio Spectrogram
Transformer

In this section, we first review the AST architecture and
then discuss the proposed joint discriminative and gener-
ative masked spectrogram patch prediction (MSPM) self-
supervised learning framework, and the design details.

2.1 AST Model Architecture
As shown in Figure 1, we intentionally follow as close as
possible to the original AST architecture to make a fair per-
formance comparison. First, the input audio waveform of t
seconds is converted into a sequence of 128-dimensional log
Mel filterbank (fbank) features computed with a 25ms Han-
ning window every 10ms. This results in a 128× 100t spec-
trogram as input to the AST. We then split the spectrogram
into a sequence of 16× 16 patches. We flatten each 16× 16
patch to a 1D 768-dimensional patch embedding with a lin-
ear projection layer. We refer to this linear projection layer
as the patch embedding layer and the output as patch embed-
ding E. Since the Transformer architecture does not capture
the input order information and the patch sequence is also
not in temporal order, we add a trainable positional embed-
ding (also of size 768) P to each patch embedding to al-
low the model to capture the spatial structure of the 2D au-
dio spectrogram. The resulting sequence is then input to the
Transformer. A Transformer consists of several encoder and
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Figure 1: The proposed self-supervised AST. The 2D au-
dio spectrogram is split into a sequence of 16×16 patches
without overlap, and then linearly projected to a sequence of
1-D patch embeddings E. Each patch embedding is added
with a learnable positional embedding P and then input to
the Transformer encoder. The output of the Transformer O
is used as the spectrogram patch representation. During self-
supervised pretraining, we randomly mask a portion of spec-
trogram patches and ask the model to 1) find the correct
patch at each masked position from all masked patches; and
2) reconstruct the masked patch. The two pretext tasks aim
to force the AST model to learn both the temporal and fre-
quency structure of the audio data. During fine-tuning, we
apply a mean pooling over all patch representation {O} and
use a linear head for classification.

decoder layers. Since the AST is designed for classification
tasks, we only use the encoder of the Transformer that has
an embedding dimension of 768, 12 layers, and 12 heads,
which are the same as those in original AST (Gong, Chung,
and Glass 2021). We refer to the output of the Transformer
encoder as patch representation O. During fine-tuning and
inference, we apply a mean pooling over the sequence of
patch representation {O} to get the audio clip level repre-
sentation, and then use a linear head for classification.

While we aim to follow the architecture of the original
AST, we made two modifications for self-supervised learn-
ing. First, in the original AST, a [CLS] token is appended to
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Figure 2: Illustration of the proposed patch-level masking
with different cluster factor C but same total masking area.
The model is forced to learn more global spectrogram struc-
ture with a larger C, and more local structure with a smaller
C. To make the model learn both local and global structure,
we use random C during pretraining. Compared with frame-
level masking SSL methods that potentially only learn tem-
poral frame structure, patch-based masking allows the model
to learn both temporal and frequency spectrogram structure.

the beginning of the input sequence of the Transformer en-
coder, and the output representation of the [CLS] token is
used as the audio clip level representation. In this work, we
apply mean pooling over all patch representation {O} as the
audio clip level representation. This is because the original
AST uses supervised pretraining and the supervision is ap-
plied on the [CLS] token, thus the output representation of
the [CLS] learns to summarize the entire sequence during
pretraining and can be used as audio clip level representa-
tion. In contrast, for our self-supervised pretraining frame-
work, supervision is applied to each individual patch repre-
sentation, and the mean of all patch representations is a bet-
ter summary of the audio clip. Second, in the original AST,
spectrogram patches are split with overlap, and the overlap
was shown to improve model performance. In this work, we
split the patch without overlap during pretraining to not al-
low the model to use overlapped edges as a shortcut for the
task prediction instead of learning a meaningful representa-
tion. In the fine-tuning and inference steps, we split the patch
with an overlap of 6 in the same fashion as the original AST.

While we pretrain the model using fixed-length audio data
(10 seconds), AST supports variable length input by simply
interpolating or truncating the positional embedding to the
downstream task audio length.

2.2 Joint Discriminative and Generative Masked
Spectrogram Patch Modeling

In this section, we introduce the proposed self-supervised
pretraining framework. We first show our masking strategy
and then discuss the pretext task (i.e., the self-supervised
learning task in the pretraining stage) in detail.

Masked Patch Sampling As mentioned above, during
pretraining, we use a fixed-length audio of 10s and convert
it to spectrogram of size 1024×128. AST splits the spectro-

Algorithm 1: Joint Discriminative and Generative Masked
Spectrogram Patch Modeling

Require:
Unlabeled Audio Dataset D, AST Model M

SampleMaskIndex (N,C)

▷ Randomly sample patches to mask
Input: #Masked Patches N ; Cluster Factor C
Output: Masked Patch Position Index Set I

1: while |I| < N do
2: draw index i ∼ unif{1, 512}
3: get set Ic = [C2-1 indexes neighboring i, i]
4: I = I ∪ Ic
5: I = I[1 : N ] ▷ Guarantee to mask exactly N patches

return I

MSPM (D,M)

Input: D,M, Number of Masked Patches N
6: for every epoch do
7: for X ∈ D do
8: split X into 512 patches x = {x1, x2, ..., x512}
9: E = Mpatchembedding(x)

10: draw C ∼ unif{3, 5}
11: I = SampleMaskIndex(C,N )
12: EI = Emask ▷ Mask the Patch Embeddings
13: O = Mtransformer(E + P )
14: Ld = 0,Lg = 0
15: for i ∈ I do
16: ri = Mreconstruction head(Oi)
17: ci = Mclassification head(Oi)
18: L += Ld(xi, ci, xI) + λLg(xi, ri)

19: L = L / N
20: update M to minimize L

return M

gram into 512 16×16 patches (8 in the frequency dimension
and 64 in the time dimension). Thanks to this special design
of AST, we are able to mask spectrogram patches rather than
the entire time frames during pretraining, which allows the
model to learn both the temporal and frequency structure of
the data. In addition, as shown in Figure 2, we use a cluster
factor C to control how masked patches cluster. Specifically,
we first randomly select a patch, and then mask the square
centered at the patch with a side length of C, e.g., if C = 3,
we mask a cluster of 9 patches that has a total size of 48×48.
The model is forced to learn more global spectrogram struc-
ture with a larger C, and more local structure with a smaller
C. To make the model learn both local and global structure,
we use random C ∼ [3, 5] during pretraining. We show the
details in Algorithm 1 line 1-5. Note that while we mainly
focus on using 16×16 patches in this paper, MSPM actually
supports patches of arbitrary size and shape.

Joint Discriminative and Generative Masked Spectro-
gram Patch Modeling As opposed to prior work that ei-
ther used discriminative (e.g., wav2vec) or generative train-
ing objectives (e.g., APC), in this work, we propose to use a
joint discriminative and generative objective for pretraining.
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As shown in Algorithm 1, each input spectrogram X is
split into 512 patches x converted to corresponding patch
embeddings E (line 8-9). We then randomly generate a set I
of N masked patch position indexes as previously described
(line 10-11). For each patch that needs to be masked, we re-
place its patch embedding with a learnable mask embedding
Emask (line 12). We add positional embeddings to the patch
embeddings and input them to the Transformer encoder (line
13). For each masked patch xi, we get the corresponding
Transformer encoder output Oi. We then input Oi to a clas-
sification head and a reconstruction head and get output ci
and ri, respectively (line 16-17). Both the classification and
reconstruction heads are two-layer MLPs that map Oi (768)
to the same dimension as xi (256). We expect ri to be close
to xi, and the model can match correct (xi, ci) pairs. There-
fore, we use the InfoNCE loss (Oord, Li, and Vinyals 2018)
Ld for the discriminative objective and mean square error
(MSE) loss Lg for the generative objective:

Ld = − 1

N

N∑
i=1

log(
exp(cTi xi)∑N
j=1 exp(c

T
i xj)

) (1)

Lg =
1

N

N∑
i=1

(ri − xi)
2 (2)

Where N is the number of masked patches. We then sum
up Ld and Lg with a weight λ. In this work, we set λ = 10.

L = Ld + λLg (3)

Finally, we update the weights of the AST model M to
minimize L with the optimizer (line 19-20). Note that for
the discriminative task, the negative samples are sampled
from the same spectrogram, i.e., the model aims to pick the
correct patch for each masked position from all patches be-
ing masked. On one hand, this increases the difficulty of the
pretext task to avoid the model learning trivial things such
as recording environment for prediction; on the other hand,
this also avoids building a memory bank of patches from dif-
ferent spectrograms and makes the algorithm less computa-
tionally intensive and less affected by the mini-batch size.

3 Experiments
3.1 Pretraining Datasets
In contrast to previous efforts that only use either
speech dataset (e.g., in APC, wav2vec) or audio event
dataset (Saeed, Grangier, and Zeghidour 2021; Niizumi et al.
2021), in this work, we propose to use both speech and au-
dio event datasets for pretraining to explore if the pretrained
model can generalized to both speech and audio classifica-
tion tasks. For both datasets, we only use the audio data and
abandon the labels for self-supervised pretraining.

AudioSet-2M We use the AudioSet full training set
(AudioSet-2M) (Gemmeke et al. 2017) as our audio pre-
training dataset. AudioSet is a multi-label audio event classi-
fication dataset that contains 2 million 10-second audio clips

Figure 3: Prediction accuracy (upper) and reconstruction
MSE (lower) of the masked patch modeling pretext tasks.
We pretrain three AST models with a fixed number of 100,
250, and 400 masked patches, respectively, and evaluate
their classification and reconstruction performance with var-
ious masked patch numbers from 50 to 500 on the validation
set. While the AST model is pretrained with a fixed number
of masked patches, we find it can perform well with a dif-
ferent number of masked patches in inference. As expected,
the performance of the model drops with the increase of the
number of masked patches, e.g., the AST models achieve
over 80% accuracy when the evaluation masked patch num-
ber is 50, but only around 35% when the evaluation masked
patch number is 400. This indicates the pretext tasks are nei-
ther trivial nor impossible.

excised from YouTube videos with 527 sound classes in-
cluding human sounds, animal sounds, sounds of things, mu-
sic, natural sounds, environment sounds etc. It is worth men-
tioning that while about half of AudioSet-2M audio clips
contain speech, speech might only appear in a small part
of each clip as most AudioSet clips contain more than one
sound. Therefore, AudioSet potentially does not have good
coverage of speech and might not be sufficient to pretrain a
good model for downstream speech tasks.

Librispeech In order to improve the coverage of speech
data, we further use the Librispeech (Panayotov et al. 2015)
960-hour training set as our speech pretraining dataset. Lib-
rispeech contains public domain audio books data in En-
glish, read by over 1,000 speakers, and is commonly used
to train and evaluate speech recognition systems.

For both AudioSet and Librispeech data, we cut or pad
each waveform to 10sec. We use 1,953k AudioSet samples
and 281k Librispeech samples, and a total of 2,234k sam-
ples. We mix and shuffle the two datasets during pretraining.
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3.2 Performance of Pretext Tasks
For pretraining the AST, we use a batch size of 24, an initial
learning rate of 1e-4, and cut the learning rate into half if
the pretext task performance on the validation set stops im-
proving for 8k iterations. We optimize the network using the
Adam optimizer (Kingma and Ba 2015). We train the model
for up to 800k iterations (∼8.5 epochs). We tested different
numbers of masked patches of 100, 250, and 400. We pre-
train SSAST on 4× NVIDIA GTX Titan X or GTX Titan X
Pascal GPUs, the pretraining takes about 10 days.

We show the masked spectrogram patch modeling perfor-
mance in Figure 3. While the AST model is pretrained with
a fixed number of masked patches, we find it can perform
well with a different number of masked patches during in-
ference. As expected, the performance of the model drops
with the increase of the number of masked patches, e.g., the
AST models achieve over 80% accuracy when the evalua-
tion masked patch number is 50, but only around 35% when
the evaluation masked patch number is 400, indicating the
pretext tasks are neither trivial nor impossible. In general,
the model pretrained with more masked patches performs
better on the pretext tasks.

3.3 Downstream Tasks and Datasets
We evaluate the pretrained model on 6 commonly used au-
dio and speech benchmarks. We use the same three bench-
marks (AudioSet-20K, ESC-50, and Speech Commands V2)
that the original AST has been tested on and use exactly the
same setting intentionally to make a fair comparison. To fur-
ther evaluate the model performance on downstream speech
tasks and compare with previous self-supervised models that
focus on speech, we test the pretrained AST on three addi-
tional benchmark Speech Commands V1, VoxCeleb 1, and
IEMOCAP for keyword spotting, speaker identification, and
emotion recognition, respectively. We report mean Average
Precision (mAP) for the AudioSet-20K task and accuracy
for all other tasks.

AudioSet-20K (AS) We use the AudioSet balanced train-
ing set and evaluation set for the multi-label audio event
classification task. The AudioSet-20K training set is a class-
balanced subset of AudioSet-2M that contains 20,785 au-
dios. We test the model on the AudioSet evaluation set,
which is disjoint with AudioSet-20K and AudioSet-2M.

ESC-50 (ESC) We use the ESC-50 dataset (Piczak 2015)
for the single-label audio event classification task. ESC-50
is an audio classification dataset consists of 2,000 5-second
environmental audio recordings organized into 50 classes.

Speech Commands V2 (KS2) We use the Speech Com-
mands V2 (Warden 2018) for the keyword spotting task. The
Speech Command V2 dataset consists of 105,829 1-second
recordings of 35 common speech commands.

Speech Commands V1 (KS1) We also use the Speech
Commands V1 (Warden 2018) for the keyword spotting
task, which is similar to Speech Commands V2, but only
contains 10 classes of keywords, 1 class of silence, and an
unknown class to include the false positive.

VoxCeleb 1 (SID) We use the VoxCeleb 1 dataset (Na-
grani et al. 2020) that contains speech from 1,251 speakers
for the speaker identification task. The task goal is to classify
each utterance by its speaker identity where speakers are in
the same predefined set for both training and testing.

IEMOCAP (ER) We use the IEMOCAP dataset (Busso
et al. 2008) that contains about 12 hours of emotional speech
for the speech based emotion recognition task.

3.4 Downstream Fine-tuning Details
To make a fair comparison with previous work, for the
AudioSet-20K, ESC-50, and Speech Commands V2 exper-
iments, we train and evaluate the model using the exact
same training and evaluation settings with the original AST.
Specifically, we use mixup training (Tokozume, Ushiku, and
Harada 2018), SpecAugment (Park et al. 2019), an initial
learning rate of 5e-5, 1e-4, and 2.5e-4 and train the model
with 25, 50, and 30 epochs for AudioSet-20K, ESC-50,
Speech Commands V2, respectively.

For the three benchmarks Speech Commands V1, Vox-
Celeb1, and IEMOCAP that the original AST has not been
tested on, we use the standard SUPERB (Yang et al. 2021)
training and testing framework. Specifically, we search the
learning rate from 1e-5 to 1e-3 for out SSAST model and all
baseline models and train the model for up to 20k and 40k
iterations for Speech Commands V1 and VocCeleb1, respec-
tively. We use a fixed learning rate of 1e-4 and max iteration
of 10k for IEMOCAP. Please refer to the AST and SUPERB
papers for more details. For all downstream experiments, we
use the end-to-end fine-tuning setting, i.e., we do not freeze
any layer of the pretrained AST.

For supervised pretrained models, we use the output of
[CLS] token as the audio clip representation because super-
vision is given to the output of [CLS] in pretraining while
we use mean pooling for self-supervised models as super-
vision is given to individual token in pretraining, keeping
pretraining and fine-tuning consistent can slightly improve
the performance and make the comparison fairer.

3.5 Performance on Downstream Tasks
We compare the following models in our experiments:

1. AST-Scratch: AST model with appropriate initialization
but without any pretraining.

2. AST-IM+KD: AST model with supervised ImageNet
pretraining, proposed in (Gong, Chung, and Glass 2021).
The model is pretrained with the ImageNet 2012 dataset
in a supervised manner. In addition, during ImageNet
pretraining, knowledge distillation from another convo-
lution neural network is applied, which can noticeably
improve the performance (Touvron et al. 2020). This is
a strong baseline that achieves state-of-the-art results on
AudioSet-20K, ESC-50, and Speech Commands V2.

3. AST-AudioSet: AST model with supervised AudioSet-
2M pretraining on the audio event classification task.

4. SSAST 250: The proposed self-supervised AST model
pretrained with 250 masked patches.
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Model Task

AS ESC KS2 KS1 SID ER

AST-Scratch 14.8 41.9 92.6 87.2 30.1 51.9

Supervised Pretraining Baselines
AST-IM + KD 34.7 88.7 98.1 95.5 41.1 56.0
AST-AudioSet 28.6 86.8 96.2 91.6 35.2 51.9

Proposed Self-Supervised AST
SSAST 250 30.4 86.7 98.1 96.2 66.6 57.1
SSAST 400 31.0 88.8 98.0 96.0 64.2 59.6

Table 1: Comparison of self-supervised AST with baseline
models on various benchmarks.

Figure 4: Comparing learning curves of AST trained from
scratch and self-supervised AST on the AudioSet-20K task.
The self-supervised framework helps AST train faster and
better. Using a different learning rates, or increasing training
epochs does not improve the AST-scratch performance.

5. SSAST 400: The proposed self-supervised AST model
pretrained with 400 masked patches.

As shown in Table 1, we evaluate the above-mentioned
7 models on 6 benchmarks. Key findings include: First,
the proposed self-supervised training framework can signif-
icantly boost the performance of AST with an average im-
provement of 60.9%, e.g., SSAST achieves 0.310 mAP on
the AudioSet-20K while AST-Scratch only achieves 0.148
mAP. As shown in Figure 4, the proposed self-supervised
framework helps AST train faster and better. Further, the
improvement is consistent over all audio and speech bench-
marks, demonstrating the proposed self-supervised training
framework is effective and generalizable. Second, AudioSet-
2M supervised pretraining is quite strong for audio event
classification tasks (AS and ESC) that are in the same do-
main with AudioSet, but performs poorly on speech tasks,
showing the limitation of supervised pretraining. Surpris-
ingly, cross-domain supervised ImageNet pretraining with
knowledge distillation performs quite well on all tasks, and
still achieves the best performance on the AudioSet-20K
task. Third, even when compared with strong supervised
baselines, the proposed SSAST models still get the best re-

Setting Task

AS ESC KS2 KS1 SID ER

From Scratch 14.8 41.9 92.6 87.2 30.1 51.9

# Masked Patches
100 28.7 85.3 98.0 94.9 62.1 57.3
250 30.4 86.7 98.1 96.2 66.6 57.1
400 (Default) 31.0 88.8 98.0 96.0 64.3 59.6

Pretext Task
Discriminative 30.6 85.6 98.0 94.2 61.4 57.5
Generative 16.1 74.2 96.6 93.3 40.1 54.3
Joint (Default) 31.0 88.8 98.0 96.0 64.3 59.6

Pretraining Data
AudioSet-20K 25.7 82.2 97.6 93.8 43.8 55.4
AudioSet 2M 29.0 84.7 97.8 94.8 57.1 56.8
AudioSet 2M
Supervised 28.6 86.8 96.2 91.6 35.2 51.9

Librispeech 22.9 80.0 97.8 95.6 60.8 58.3
Joint (Default) 31.0 88.8 98.0 96.0 64.3 59.6

Table 2: Ablation study on the impact of number of masked
patches, pretext task, and pretraining data.

sults on all benchmarks except AS, showing the proposed
self-supervised model potentially can be used as a powerful
generic audio classifier.

3.6 Performance Impact of Pretraining Settings
We set the AST pretrained with 400 masked patches, joint
discriminative and generative objectives, on both AudioSet-
2M and Librispeech as the base model. We then change one
factor at a time to observe the performance impact.

Impact of the Number of Masked Patches As shown in
Table 2, upper section, we find masking 100 patches is too
simple a task, and leads to the worst performance for all
downstream tasks. Masking 400 patches leads to better per-
formance on audio event classification tasks, while masking
250 patches leads to better performance on speech tasks, but
the overall performance is similar.

Impact of Pretext Tasks As shown in Table 2, mid-
dle section, we find that a discriminative objective leads
to better performance than the generative objective for all
tasks, but joint discriminative and generative objective al-
ways achieves the best performance, indicating that the dis-
criminative and generative objectives are complementary.

Impact of Pretraining Data We pretrain the AST model
using 1) AudioSet-20K, 2) AudioSet-2M only, 3) Lib-
rispeech only, and 4) both AudioSet-2M and Librispeech,
and compare the performance of the pretrained models on
the downstream tasks. As shown in Table 2, bottom sec-
tion, we have the following key findings: First, increasing
the pretraining data volume improves the performance of
downstream tasks, e.g., AudioSet-2M pretrained model al-
ways outperforms AudioSet-20K pretrained model, but the
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Figure 5: Performance correlation between pretraining tasks
and downstream tasks (upper: audio classification tasks,
lower: speech tasks). We save the checkpoint models at iter-
ation 20, 40, 80, 200, 400, and 600 during pretraining, then
fine-tune and evaluate these checkpoint models on the down-
stream tasks. For better visualization, we normalize the per-
formance of each task in the range [0, 1]. We observe that the
model pretrained with more iterations generally performs
better on downstream tasks, which further confirms that the
pretraining pretext tasks can benefit all downstream tasks.

proposed self-supervised framework can still noticeably im-
prove the AST model with limited pretraining data, e.g.,
when pretrained and fine-tuned on the same AudioSet-20K
data, the proposed SSAST model achieves 0.257 mAP, and
significantly outperforms the AST-Scratch model. Second,
with the same AudioSet-2M pretraining data, the proposed
self-supervised framework leads to similar or even better re-
sults compared with the supervised pretraining method, par-
ticularly for the speech tasks, showing that the proposed self-
supervised framework is more generalizable. Third, as ex-
pected, a model pretrained with AudioSet-2M is better for
audio classification and a model pretrained with Librispeech
is better for speech tasks, but training with both sets always
leads to the best results, showing that it is beneficial to com-
bine pretraining datasets in audio and speech domains.

Performance Correlation between Pretraining and
Downstream Tasks We save the checkpoint models at it-
eration 20, 40, 80, 200, 400, and 600 during pretraining, then
fine-tune and evaluate these checkpoint models on the down-
stream tasks. We observe the performance of pretraining
tasks and downstream tasks are highly correlated, i.e., the
model pretrained with more iterations generally performs
better on downstream tasks, which further confirms that the
pretraining pretext tasks benefit all downstream tasks.

Model Task

AS ESC KS2 KS1 SID ER

Tiny-Scratch 15.1 34.8 92.4 87.7 24.2 50.8
Tiny-SSAST 27.1∗ 79.5 97.2 94.8 55.1 55.7

Small-Scratch 16.5 37.8 93.3 87.4 23.8 51.2
Small-SSAST 30.8∗ 85.4 97.7 95.4 60.9 58.7

Base-Scratch 14.8 41.9 92.6 87.2 30.1 51.9
Base-SSAST 31.0 88.8 98.0 96.0 64.2 59.6

Table 3: Comparison of AST model of different sizes (∗ use
larger learning rate for the last linear classification layer).

3.7 Performance Impact of AST Model Size
In all previous experiments, we use the original AST (Gong,
Chung, and Glass 2021) architecture to make a direct perfor-
mance comparison. We refer to this model as the base AST
model. In this section, we further test the following AST ar-
chitectures to study the impact of model size.

1. Tiny Model: The Transformer encoder has 12 layers
with 3 attention heads and an embedding dimension of
192. The tiny model has 6M parameters.

2. Small Model: The Transformer encoder has 12 layers
with 6 attention heads and an embedding dimension of
384. The small model has 23M parameters.

3. Base Model: The model described in Section 2.1 that
is used as the default model throughout the paper. The
Transformer encoder has 12 layers with 12 attention
heads and an embedding dimension of 768. The base
model has 89M parameters.

For each model architecture, we compare the performance
of the from-scratch model and the self-supervised pretrained
SSAST model (pretrained with 400 masked patches) and
show the results in Table 3. Key findings are as follows:

First, the MSPM self-supervised pretraining consistently
enhances the performance of all three model architectures,
showing that MSPM is model size agnostic. Small models
that are unlikely to be over-parameterized also get perfor-
mance improvement with MSPM pretraining.

Second, when trained from scratch, the larger AST model
does not always get the best performance, e.g., the small
AST model outperforms the base AST model on AS, KS1,
and KS2 tasks. This is as expected since larger models are
harder to train with limited data. However, we find that with
MSPM self-supervised pretraining, larger AST models al-
ways perform better, demonstrating that MSPM can unlock
the potential of models with higher capacity. This also sug-
gests that further scaling up the base AST model can poten-
tially achieve even better performance.

We also observe that using a larger learning rate for
the last linear layer during fine-tuning improves the perfor-
mance for tiny and small SSAST models on the AS task,
e.g., for small SSAST model, using a learning rate of 5e-3
for the last linear layer and 5e-5 for all other layers leads
to an mAP of 0.308 while using a learning rate of 5e-5 for
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the entire model leads to an mAP of only 0.272. Neverthe-
less, we find this trick is only useful for tiny and small self-
supervised pretrained models for some downstream tasks, it
does not improve the performance of from-scratch models.

3.8 Comparing Patch-based and Frame-based
AST

In all previous experiments, we follow the original
AST (Gong, Chung, and Glass 2021) to split the audio spec-
trogram into 16× 16 square patches. In (Gong, Chung, and
Glass 2021), it was found that splitting the spectrogram into
frame-like rectangle patches in the temporal order leads to
better performance when the model is trained from scratch.
However, ImageNet supervised pretrained model performs
significantly better than the from-scratch model, which also
constrains the original AST to use square patches. In con-
trast, our proposed MSPM self-supervised pretraining sup-
ports any patch size and shape including a conventional
frame. As discussed in Section 2, heuristically, square patch
based pretraining could capture correlation in frequency
bands in addition to time frames, which is potentially useful
when the input has a complex frequency structure (e.g., natu-
ral sounds). For clarity, we refer to the AST model that uses
square patches and frame-like rectangle patches as patch-
based AST model and frame-based AST model, respec-
tively. In this section, we compare patch-based and frame-
based AST models in both from-scratch setting and self-
supervised pretraining setting. Specifically, the two models
have exactly the same architecture except the patch split-
ting layer, for the patch-based AST model, we use 16 × 16
patches as described in Section 2; for the frame-based AST
model, instead of splitting the spectrogram into 16 × 16
patches, we split the spectrogram into 128 × 2 patches in
the temporal order (128 is the number of frequency bins of
the spectrogram). Patches are split without overlap during
pretraining and are split with an overlap of 1 on the time
dimension during fine-tuning. This makes a fair compari-
son as the area of the patch is the same and the number of
patches after splitting is similar. In the pretraining setting,
both models are pretrained using the method described in
Section 2. The only pretraining setting difference is that we
do not cluster the masked frames for frame-based AST be-
cause this would lower the pretext and downstream task per-
formance, instead, we just random sample the masked frame
for frame-based AST pretraining. We test models pretrained
with 250 and 400 masked patches (frames) and show the re-
sults in Table 4. Key findings are as follows:

First, when trained from scratch, frame-based AST al-
ways performs better than patch-based AST (except ER),
which is consistent with the finding in (Gong, Chung, and
Glass 2021) and as expected because 1-D temporal struc-
ture is easier to learn than 2-D temporal-frequency structure.
Second, after MSPM self-supervised pretraining, frame-
based AST still outperforms patch-based AST on speech
tasks (KS1, KS2, SID, and ER) but the advantage becomes
much smaller. Patch-based AST performs better on audio
tasks (AS and ESC). MSPM significantly improves the per-
formance of both patch-based and frame-based AST, but the
improvement is noticeably larger for patch-based AST (ex-

Model Task

AS ESC KS2 KS1 SID ER

Frame-Scratch 16.6 53.7 96.0 91.7 54.9 51.2
Patch-Scratch 14.8 41.9 92.6 87.2 30.1 51.9
SSAST-Frame-250 27.1 84.0 98.0 96.6 73.6 58.3
SSAST-Patch-250 30.4 86.7 98.1 96.2 66.6 57.1

SSAST-Frame-400 29.2 85.9 98.1 96.7 80.8 60.5
SSAST-Patch-400 31.0 88.8 98.0 96.0 64.2 59.6

Frame-Improvement 12.6 32.2 2.1 5.0 25.9 9.3
Patch-Improvement 16.2 46.9 5.4 8.8 34.1 7.7

Table 4: Comparison of frame and patch based AST models.

Model Task

KS1 SID ER

APC (Chung et al. 2019) 94.0 60.4 59.3
Wav2vec (Schneider et al. 2019) 96.2 56.6 59.8
Wav2vec 2.0 (Baevski et al. 2020)∗ 96.2 75.2 63.4
HuBERT (Hsu et al. 2021)∗ 96.3 81.4 64.9

SSAST-Patch (Librispeech Only) 95.6 60.8 58.3
SSAST-Patch 96.0 64.3 59.6
SSAST-Frame 96.7 80.8 60.5

Table 5: Comparison of SSAST and existing speech self-
supervised pretraining frameworks (∗frozen setting results).

cept ER), which verifies our hypothesis that square patch
based pretraining can be more effective, particularly for
data that has a complex frequency structure such as natu-
ral sounds. Our experiment also demonstrates that MPSM
is patch shape agnostic, it also works well with frame-
based AST and makes frame-based SSAST a strong model
for speech tasks. In contrast, previous ImageNet pretraining
only supports square patches.

3.9 Comparing with Existing Speech
Self-supervised Pretraining Frameworks

Finally, we compare the performance of SSAST with ex-
isting speech self-supervised pretraining frameworks. Since
these frameworks are designed for speech tasks and are
only pretrained on speech datasets, we only compare with
them on the speech benchmarks. Specifically, we compare
three SSAST models with previous models: 1) SSAST-
Patch (Librispeech): Patch-based SSAST model pretrained
on only Librispeech (same pretraining data with previous
speech self-supervised models); 2) SSAST-Patch: Patch-
based SSAST model pretrained on both AudioSet and Lib-
rispeech; and 3) SSAST-Frame SSAST model described in
Section 3.8 that uses frame-like patches and is pretrained on
both AudioSet and Librispeech.

Comparing with APC and wav2vec 1.0 We first com-
pare SSAST models with autoregressive predictive coding
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(APC) (Chung et al. 2019), a generative pretraining frame-
work, and wav2vec 1.0 (Schneider et al. 2019), a discrimina-
tive pretraining framework. We evaluate APC and wav2vec
1.0 in both fine-tuned and frozen settings and report the best
result. As shown in Table 5, SSAST models match or out-
perform APC and wav2vec 1.0 on all three benchmarks.

Comparing with wav2vec 2.0 and HuBERT We then
compare SSAST models with the state-of-the-art wav2vec
2.0 (Baevski et al. 2020) and HuBERT (Hsu et al. 2021)
models. Specifically, we compare the base model that is pre-
trained on Librispeech 960 dataset. Due to the complexity
of finding optimal hyperparameters and the large compu-
tation cost for fine-tuning these two models, we only re-
port the results in the frozen setting. As shown in Table 5,
frozen wav2vec and HuBERT can already match or out-
perform fine-tuned SSAST for speech tasks. Nevertheless,
it is worth noting that although wav2vec 2.0 and HuBERT
perform better, they are pre-trained with 64/32 GPUs and
hence have larger batch sizes than our SSAST that is trained
with 4 GPUs. The computational resource difference could
greatly impact the performance, e.g., for HuBERT, using 8
GPUs leads to 40% WER while 32 GPUs leads to below
20% WER. With more computational resources and larger
batch size, SSAST potentially can achieve better results.

4 Related Work
Pure Transformer Based Models Self-attention models,
especially the Transformer (Vaswani et al. 2017), have been
widely used in natural language processing. Recently, pure
Transformer models, e.g., Vision Transformer (Dosovitskiy
et al. 2021; Touvron et al. 2020; Yuan et al. 2021) and Audio
Spectrogram Transformer (Gong, Chung, and Glass 2021),
are found to outperform CNN based models for vision tasks
and audio classification. Such models differ from CNN mod-
els or CNN-Attention hybrid models in that they do not
contain non-degenerated convolutions (Chen, Xie, and He
2021) and have less inductive bias such as spatial locality
and translation equivariance. However, it is found that such
pure Transformer models require a lot of training data to
perform well (Dosovitskiy et al. 2021).

Self-Supervised Learning In the vision domain, self-
supervised Vision Transformer has been studied in (Caron
et al. 2021; Chen, Xie, and He 2021; Atito, Awais, and Kit-
tler 2021). In addition, patch based self-supervised frame-
work has been extensively studied in the vision domain, e.g.,
in (Noroozi and Favaro 2016; Trinh, Luong, and Le 2019;
Bao, Dong, and Wei 2021). However, to the best of our
knowledge, the self-supervised Audio Spectrogram Trans-
former and patch based self-supervised learning framework
has not been studied in the audio and speech domain. Pre-
vious self-supervised learning frameworks in the speech do-
main are mainly based on CNN, RNN, or CNN-Transformer
hybrid models with the pretext task of predicting past, cur-
rent, or future frames (Chung et al. 2019; Oord, Li, and
Vinyals 2018; Liu et al. 2020; Schneider et al. 2019). In
contrast, the proposed MSPM framework allows the model
to learn both the temporal and frequency structure of the
spectrogram. Further, most previous research only focuses

on learning either a speech or audio representation, only a
few efforts (Saeed, Grangier, and Zeghidour 2021; Niizumi
et al. 2021) studied learning a general audio and speech rep-
resentation. However, both efforts pretrain the model with
only AudioSet. In contrast, we explore pretraining the AST
model with both AudioSet and Librispeech. Finally, we pre-
train the model with joint discriminative and generative ob-
jectives, which is also novel in the audio and speech domain
and only has been explored in (Pascual et al. 2019; Jiang
et al. 2020; Ravanelli et al. 2020).

5 Conclusion

This paper aims to reduce the need for large amounts of la-
beled data for the AST self-attention based audio and speech
classification model by leveraging self-supervised learning.
We propose MSPM, a novel patch-based joint discriminative
and generative pretraining framework. In order to make the
pretrained model generalize to both audio and speech tasks,
we pretrain AST using both AudioSet and Librispeech, and
evaluate on six downstream benchmarks including audio
event classification, keyword spotting, speaker identifica-
tion, and emotion recognition.

With extensive experiments, we observe the following
key findings. First, the proposed MSPM self-supervised pre-
training framework significantly improves the performance
of AST for all downstream tasks with an average improve-
ment of 60.9%. Our SSAST model can match or even out-
perform previous supervised pretrained models and shows
better generalization capability, indicating that the proposed
MSPM can replace supervised pretraining that requires a
large amount of labeled data. Second, we find that pretrain-
ing the model with both generative and discriminative ob-
jectives leads to a better performance than using a single ob-
jective, similarly, pretraining the model on both speech and
audio datasets leads to better performance than using data
from a single domain. Third, the flexibility of MSPM on
patch shape allows us to explore frame-based AST. We find
that frame-based AST always outperforms patch-based AST
in the from-scratch setting, but patch-based pretraining leads
to a larger improvement from the random-initialized models.
After MSPM pretraining, the patch-based AST wins on the
audio tasks while the frame-based AST wins on the speech
tasks. We plan to investigate the reason for this difference in
our future work. Finally, we find MSPM allows us to scale
up the AST model, with MSPM pretraining, larger AST al-
ways performs better. In contrast, in the from-scratch setting,
scaling up the model may cause a performance drop. Nev-
ertheless, the current version of SSAST is pretrained with a
small batch size due to computational resource limitations.
In the future, we plan to further investigate the scaling law
of AST.
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