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Abstract

Data-driven methods have achieved notable performance on
intent detection, which is a task to comprehend user queries.
Nonetheless, they are controversial for over-confident predic-
tions. In some scenarios, users do not only care about the ac-
curacy but also the confidence of model. Unfortunately, main-
stream neural networks are poorly calibrated, with a large gap
between accuracy and confidence. To handle this problem de-
fined as confidence calibration, we propose a model using the
hyperspherical space and rebalanced accuracy-uncertainty
loss. Specifically, we project the label vector onto hyperspher-
ical space uniformly to generate a dense label representa-
tion matrix, which mitigates over-confident predictions due to
overfitting sparce one-hot label matrix. Besides, we rebalance
samples of different accuracy and uncertainty to better guide
model training. Experiments on the open datasets verify that
our model outperforms the existing calibration methods and
achieves a significant improvement on the calibration metric.

Introduction
Intent detection is a crucial portion in comprehending user
queries, which generally predicts intent tags by seman-
tic classification (Brenes, Gayo-Avello, and Pérez-González
2009; Qin et al. 2020). Therefore, it is widely used in many
NLP applications, such as search, task-based dialogue, and
other fields (Zhang and Wang 2016; Larson et al. 2019;
Casanueva et al. 2020).

In recent years, data-driven methods develop rapidly
and become a primary trend of intent detection. How-
ever, they are highly criticized for over-confident predic-
tions (Niculescu-Mizil and Caruana 2005; Nguyen, Yosin-
ski, and Clune 2015; Pereyra et al. 2017; Li, Dasarathy, and
Berisha 2020). As shown in Figure 1(a), there is a serious
phenomenon that the prediction confidence (i.e. probability
associated with the predicted label) of samples is very high
even if the samples are misclassified. For example, when
the confidence is in [0.9-1], the proportion of misclassified
samples reaches 35.67%. Besides, the average confidence
(90.39%) is evidently over the accuracy (56.17%).

One of the effective solutions to deal with the aforemen-
tioned problem is confidence calibration. A perfectly cali-
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Figure 1: The confidence histograms and reliability dia-
grams of TNEWS dataset. We employ the fine-tuned BERT
model to perform statistical analysis. As the figure demon-
strates, when the confidence is between 0.9 and 1, misclassi-
fied samples constitute about 35.67%. “Gap” represents the
difference between confidence and accuracy. Model is worse
calibrated if the “Gap” is larger. Fine-tuned BERT model
without calibration tends to make over-confident predictions
and possesses a high expected calibration error (ECE).

brated model is supposed to output average confidence equal
to the accuracy (Kong et al. 2020; Küppers et al. 2020).
Unfortunately, due to over-parameterization and overfitting
of the conventional methods, mainstream neural networks
are poorly calibrated (Krishnan, Tickoo, and Tickoo 2020;
Wang et al. 2020b; Schwaiger et al. 2021; Enomoto and Eda
2021). As demonstrated in Figure 1, “Gap” means the dis-
crepancy between the average confidence and accuracy. The
larger the “Gap” as, the worse the model is calibrated. Model
without calibration, indicated in Figure 1(b), easily faces
under-estimation problem when confidence is less than 0.2
and over-estimation problem when confidence is more than
0.4. Therefore, it owns a higher expected calibration error
(ECE, calibration metric, more details in Experiments Sec-
tion ) than perfectly calibrated model.

To handle the confidence calibration problem, researchers
have proposed numerous works (Nguyen and O’Connor
2015; Szegedy et al. 2016a; Müller, Kornblith, and Hinton
2019). One primary calibration approach acts on the post-
processing stage. Guo et al. (2017) provide temperature scal-
ing, which learns a single parameter from the development
dataset to rescale all the logit before transmitting to softmax.
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Figure 2: Representation of label vectors in euclidean space
and hyperspherical space. One-hot label vectors are in the
form of a sparse matrix and only use the positive portion.
Additionally, one-hot label vectors require at least as many
dimensions as the size of label set like K (K � H in most
cases). In contrast, label vectors in hyperspherical space are
shaped into a dense matrix and employ the entire portion
without dimension limitation.

Another way to calibrate the model is by designing a particu-
lar loss function to minimize the discrepancy between accu-
racy and confidence. Krishnan, Tickoo, and Tickoo (2020)
lately propose the accuracy versus uncertainty calibration
loss (AVUC loss), which leverages the relationship between
accuracy and uncertainty as an anchor for calibration, and it
obtains a significant improvement.

Nevertheless, the aforementioned methods have some im-
portant issues. 1) As demonstrated in Figure 2, one of the
problems lies in that the above methods project the labels
in the form of a one-hot matrix in Euclidean space, which
is sparse and merely uses the positive portion of the output
space. During the training process, such a sparse matrix is
easy to bring about the network to make over-confident pre-
dictions, as proved by Szegedy et al. (2016b) and Müller,
Kornblith, and Hinton (2019). 2) Another issue is that al-
though Krishnan, Tickoo, and Tickoo (2020) divide samples
into several groups according to their accuracy and uncer-
tainty, it treats accurate and inaccurate samples equally. In
fact, there exists a large number of misclassified samples
with high confidence (low uncertainty), displayed in Fig-
ure 1(a), which suggests that the model is misleading by the
wrong signal during training.

In order to deal with the above issues, we propose a
model employing the Hyperspherical Space and Rebalanced
Accuracy-Uncertainty loss (HS-RAU) to process confidence
calibration for the intent detection task. Specifically, 1) We
project the label vector onto the hyperspherical space uni-
formly, as vividly shown in Figure 2. Hyperspherical space
uses a dense matrix to represent labels and employs the en-
tire portion of the output space rather than one-hot labels.
In this way, we mitigate the overfitting problem of model
to the sparse one-hot matrix. 2) We propose a rebalanced
accuracy-uncertainty loss to capitalize on the properties of
distinct samples. Through RAU loss, we optimize the accu-

rate samples with high uncertainty and the inaccurate sam-
ples with low uncertainty respectively, which contributes to
better guide model training.

To validate the effectiveness of our model, we conduct
abundant experiments on the three open datasets. Empiri-
cal results demonstrate that our model achieves evident im-
provements compared with the SOTA. Specifically, F1 in-
creases on all the datasets with the calibration metric (ECE)
drops down 10.50% on average. On the TNEWS dataset,
the ECE achieves an obvious amelioration of 29.67% and
the F1 obtains 1.21% promotion. Furthermore, our model
acquires better performance among the existing methods on
noisy data and low-frequency labels.

To sum up, our contributions are as follows:
(1) We uniformly project the label vectors onto the hy-

perspherical space to obtain a denser representation matrix,
which mitigates the model to overfit the sparce one-hot label
matrix and generate over-confident predictions.

(2) We rebalance the accuracy and uncertainty of samples
and optimize the accurate samples with low uncertainty and
inaccurate samples with high uncertainty separately by RAU
loss to provide better guidance in the training process.

(3) The experimental results demonstrate that our model
gains an advantage over the SOTA, not only in the F1
but also in the confidence calibration metric. Moreover,
we obtain noteworthy performance on noisy data and low-
frequency labels.

Related Work
Intent Detection. Intent is the sematic purpose of a query,
which is generated by users (Xu and Sarikaya 2013; Wang,
Tang, and He 2018). As a matter of fact, the essence of intent
detection is text classification (Brenes, Gayo-Avello, and
Pérez-González 2009; Mehri, Eric, and Hakkani-Tur 2020;
Chatterjee and Sengupta 2020). After training on the dataset
with ground-truth labels, the model attempts to predict the
intent of query within the existing intent set. There have been
plenty of researches on conventional neural network meth-
ods in the last few decades (Xu and Sarikaya 2013; Liu and
Lane 2016; Zhang et al. 2019; Haihong et al. 2019; Wang
et al. 2020a; Gerz et al. 2021). During recent years, with the
rapid development of computing power, pre-trained models
such as BERT (Devlin et al. 2018) are employed for intent
detection frequently (Castellucci et al. 2019; He et al. 2019;
Zhang, Zhang, and Chen 2019; Athiwaratkun et al. 2020;
Gong et al. 2021).
Confidence Calibration. Confidence calibration has a long
history of research in statistical machine learning (Brier
1950; Griffin and Tversky 1992; Gneiting and Raftery
2007). In the past several years, one major calibration meth-
ods fall into the post-processing stage (Platt 1999; Zadrozny
and Elkan 2001; Kumar, Liang, and Ma 2019; Zhang,
Kailkhura, and Han 2020; Rahimi et al. 2020). For exam-
ple, Guo et al. (2017) propose the temperature scaling. The
trained model learns a single calibration scale from the de-
velopment set. Another main calibration approaches try to
optimize a function that represents the difference of average
confidence and accuracy (Kumar, Sarawagi, and Jain 2018;
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Figure 3: The illustration of confidence calibration via Hyperspherical Space and Rebalanced Accuracy-Uncertainty loss (HS-
RAU) framework. After getting the encoded vector of input query by the text encoder, we project the label vector onto the
hyperspherical space uniformly, and encode the input label by the hyperspherical encoder to obtain a dense label matrix. Then,
we compute the calibration direction matrix as well as the calibration scale. Next, we partition the samples into four sets
according to their accuracy and uncertainty, rebalance the samples’ accuracy and uncertainty by the RAU loss. Through the
above process, we acquire the output with calibration.

Kull et al. 2019; Mukhoti et al. 2020; Gupta et al. 2020). For
instance, Krishnan, Tickoo, and Tickoo (2020) devise a loss
function to combine accuracy and uncertainty. Jung et al.
(2020) come up with a method to minimize the distribution
between predicted probability and empirical probability.

Method
Model Overview

As shown in Figure 3, we employ the hyperspherical space
and rebalanced accuracy-uncertainty loss to process con-
fidence calibration. First, we use a text encoder such as
BERT to acquire the encoded vector of the input query. Next,
through the hyperspherical encoder, we obtain the dense en-
coded matrix of the input labels, which alleviates the over-
confident predictions caused by the overfitting of sparse one-
hot label matrix. After that, we utilize the hyperspherical de-
coder to calculate the calibration direction matrix and cali-
bration scale. Furthermore, we separate the samples accord-
ing to their accuracy and uncertainty, and design the rebal-
anced accuracy-uncertainty loss to optimize accurate and in-
accurate samples respectively. In the end, we obtain the out-
put with calibration.

Hyperspherical Space Calibration

In this submodule, we introduce how to separate the hy-
perspherical space homogeneously and project label vectors
onto the hyperspherical space to obtain a dense label matrix.

Text Encoder For N queries {Q1, ..., Qi, ..., QN}, the
corresponding labels are {T1, ..., Ti, ..., TN}, where Ti ∈ C.
C = {1, ...,K} indicates the set of K label tags. We exploit
the text encoder like BERT to extract the encoded vector Ei
(H dimension) such as [CLS] of each input query Qi. The
encoded vector matrix E of all the queries is calibrated in
the hyperspherical decoder.

Hyperspherical Encoder Before the learning process, we
separate the H-dimensional output space SH into K sub-
spaces uniformly, which has the same size as the label set
C. Then, we define the vector of the hyperspherical label
as {h1, ..., hi, ..., hK}, corresponding to the K subspaces.
In addition, the norm of each vector satisfies ‖hi‖ = 1.
The dimension of hyperspherical label vector is H , which
equals the dimension of encoded vector. The hyperspherical
encoder encodes each input label to a dense hyperspherical
label vector, which is utilized in the hyperspherical decoder
for calibration.

Here comes the detail of uniformly projecting the label
vectors onto hyperspherical space. For each label vector hi
in the hyperspherical space, it has K − 1 cosine distances
between all the K − 1 label vectors except itself, and the
max cosine distance among them is Di, defined as below:

Di = max(dij) (1)

where i, j ∈ C and i 6= j. dij is the cosine distance between
label vector hi and hj . As our goal is to make the label vector
uniformly distributed in the hyperspherical space, therefore,
it is equivalent to the optimization problem that minimizes
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the sum of the maximum cosine distance Di of each label
vector, as the following modality:

Lh = min
1

K

K∑
i=1

Di (2)

Furthermore, due to all the label vectors are unit vectors,
the above formula can be converted to matrix multiplication,
which speeds up the calculation, by the following equations:

Lh = min
1

K

K∑
i=1

max(Zi),

Z = X ·XT − 2I

(3)

where X = [h1, ..., hi, ..., hK ] is the matrix of hyperspher-
ical label vector. I is the identity matrix. Zi is the ith row
of Z. In order to avoid self-selection, Z subtracts identity
matrix I twice.

Hyperspherical Decoder After acquiring the encoded
query vector and the dense encoded hyperspherical label
vector through hyperspherical encoder, we utilize the hy-
perspherical decoder to get the calibration direction and the
calibration scale.

We perform the dot product of the encoded vector with
each hyperspherical label vector to get the calibration direc-
tion matrix CaliD, formulated as below:

CaliD = E ·XT (4)

where E ∈ RN×H denotes the encoded vector matrix of all
the queries. XT ∈ RH×K is the transpose matrix of dense
hyperspherical label vector. Then, we calculate the norm of
label vector matrix as the calibration scale CaliS , which is
the scale parameter during the overall process, by using the
following equation:

CaliS = ‖X‖ (5)

Finally, we compute the calibrated new logit L as below:

L = CaliS × CaliD (6)

where the calibration scale CaliS is an unidimensional vari-
able and the calibration direction CaliD ∈ RN×K .

Rebalanced Accuracy-Uncertainty Loss
In this submodule, we design the rebalanced accuracy-
uncertainty loss to optimize accurate and inaccurate sam-
ples separately. Whether a sample is considered as accurate
depends on whether the predicted label of the sample Ti

′

equals to the exact sample’s label Ti, so we define the con-
fidence (probability of predicted label) of a single sample as
ai in the following:

ai =

{
max(pi), if Ti′ = Ti
1−max(pi), otherwise.

(7)

where pi is the predicted probability after transmitting to
softmax. Therefore, when the predictions are accurate the ai
is close to 1, while it is close to 0 when inaccurate. As there
is no ground truth evaluation of the uncertainty, we utilize

the calculation method described in Krishnan, Tickoo, and
Tickoo (2020) to get the uncertainty ui as follows:

ui = −pi log pi (8)
Then, we set the uncertainty threshold as uθ ∈ [0, 1],

which is a heuristic setting obtained through the average
uncertainty of training samples from initial epochs. A sam-
ple is defined as certain when the uncertainty of it is lower
than uθ. Otherwise, it’s defined as uncertain. Then, we di-
vide the training samples into four sets {AC,AU, IC, IU}
separately, where AC means Accurate-Certain, AU means
Accurate-Uncertain, IC means Inaccurate-Certain, and IU
means Inaccurate-Uncertain.

Based on the assumption mentioned in Krishnan, Tickoo,
and Tickoo (2020), a well-calibrated model provides a low
uncertainty for accurate predictions while it provides a high
uncertainty for inaccurate predictions. Therefore, the model
with calibration is supposed to produce a higher AV U ∈
[0, 1] measure. AV U is computed by summing the number
of {AC, IU} two sets, and then divide the total number of
{AC,AU, IC, IU} four sets.

To make the AV U function differentiable for neural net-
work parameters, we devise the calculation methods like:

nAC =
∑
i∈{Ti′=Ti and ui≤uθ}ai � (1− tan(ui)),

nAU =
∑
i∈{Ti′=Ti and ui>uθ}ai � tan(ui),

nIC =
∑
i∈{Ti′ 6=Ti and ui≤uθ}ai � (1− tan(ui)),

nIU =
∑
i∈{Ti′ 6=Ti and ui>uθ}ai � tan(ui)

(9)

where� is hadamard project. In addition, we step further on
and rebalance the accuracy-uncertainty, which prompts the
model to respectively optimize accurate samples with low
uncertainty and inaccurate samples with high uncertainty
during training. To be specific, we define the RAU loss as:

LRAU = log (1 +
nAU

nAC + nAU
+

nIC
nIC + nIU

) (10)

When nAU and nIC are optimized close to zero, the RAU
loss is close to zero, which means the model is certain about
the predictions of accurate samples, while there are no over-
confident predictions of the inaccurate samples.

Experiments
Experimental Setup
Experimental Datasets We mainly experiment on three
open datasets described below. The download links are dis-
played in Appendix A.
TNEWS, a Chinese dataset proposed by Xu et al. (2020),
has identical essence with intent detection. It includes 53360
samples in 15 categories. The provided test set are without
gold labels. So we regard validation set as test set and ran-
domly divide 5000 samples from training set for validation.
HWU64, proposed by Liu et al. (2019) to reflects human-
home robot interaction, which owns 15726 samples span-
ning 64 intents. We use one fold train-test split with 9960
training samples and 1076 testing samples.
BANKING77, proposed by Casanueva et al. (2020), which
has 13083 samples, 9002 for training and 3080 for testing.
This dataset consists of 77 intents in a single domain of on-
line banking inquiry.
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Model
TNEWS HWU64 BANKING77 Average

F1 ECE F1 ECE F1 ECE F1 ECE

BERT (Devlin et al. 2018) 54.81 69.66 91.85 17.18 93.61 11.98 80.09 32.94
TS (Guo et al. 2017) 54.81 49.88 91.85 15.86 93.61 11.87 80.09 25.87

LS (Müller, Kornblith, and Hinton 2019) 55.29 53.99 92.06 16.51 93.86 11.40 80.40 27.30
PosCal (Jung et al. 2020) 54.98 68.05 92.03 16.14 93.66 11.93 80.30 32.05

AVUC (Krishnan, Tickoo, and Tickoo 2020) 55.41 67.98 92.02 15.71 93.83 11.79 80.42 31.83

HS-RAU (Ours) 56.02 39.99 92.52 16.12 93.89 11.21 80.81 22.44

Table 1: Overall comparison with different calibration methods on three open datasets.

Comparison Methods We compare with the methods as
listed below:
BERT (Devlin et al. 2018): represents the pre-trained base
BERT model.
Temperature Scaling (TS) (Guo et al. 2017): is the classical
post-processing method learning a single parameter from the
dev dataset to rescale the logit after the model is trained.
Label Smoothing (LS) (Müller, Kornblith, and Hinton 2019):
smoothes some part of the one-hot label’ probability to a
weighted mixture probability of the none ground-truth la-
bels, which is set to compare our hyperspherical labels.
Posterior Calibrated (PosCal) (Jung et al. 2020): minimizes
the difference between the predicted and empirical posterior
probabilities, which is a competitive recent research.
Accuracy Versus Uncertainty Calibration (AVUC) (Krish-
nan, Tickoo, and Tickoo 2020): proposes an optimization
method that utilizes the relevance of accuracy and uncer-
tainty as an anchor for calibration.

Implementation Details All experiments are taken on
BERT (with or without confidence calibration) unless other-
wise specified. We employ Adam (Kingma and Ba 2015) as
the optimizer and search learning rate in {4e-5, 5e-5} with
the training epochs in {19, 23} and about 40s per epoch. To
make full use of the GPU memory, we set the batch size to
256. The type of GPU is Tesla V100. Besides, the KL loss
between predicted probability and empirical probability is
added optionally in PosCal, AVUC, and our model. More
implementation details are shown in Appendix A.

Confidence Calibration Metric We follow the previous
researches and utilize the expected calibration error (ECE)
(Naeini, Cooper, and Hauskrecht 2015), which is a common
evaluation metric to calculate the calibration error in confi-
dence calibration. ECE separates the predictions of samples
into M bins according to the predicted probability called
confidence. Then, accumulating the weighted differences
between accuracy and confidence in each bin:

ECE =
1

K

K∑
i=1

M∑
j=1

|Bij |
N
|Accij − Conij | (11)

where |Bij | is the size of bin j in label i, N is the number of
total prediction samples, Accij is the empirical probability
and Conij is the average predicted probability for label i in
bin j respectively.

Comparison with State-of-the-arts
Comparison Settings. We reproduce the baselines, and the
results are almost equal to the published metrics. Based on
that, we conduct extensive experiments on the above three
datasets to validate the effectiveness of our model. F1 and
ECE are considered as the main evaluation metrics.

Comparison Results. As Table 1 illustrated:
(1) Regardless of which dataset we choose, our model

achieves the best F1 performance among all the calibra-
tion methods. Specially, we obtain a significant reduction
in ECE, which drops down 10.50% on average compared
with the baseline model. This proves the effectiveness of our
model to project label vector onto hyperspherical space uni-
formly and utilize the rebalanced accuracy-uncertainty loss
in confidence calibration.

(2) All the calibration methods have limited ameliora-
tion in the dataset possessing better performance. It makes
sense for the reason that the model is well studied on these
datasets. Hence the main distribution of its confidence is as
high as the accuracy, like 90+%, which results in more cred-
ible predictions. So we majorly analyze the TNEWS dataset
in the subsequent experiments.

(3) In the case of TNEWS dataset, the F1 gains 1.21%
over BERT while the ECE decreases remarkably. Further-
more, more information on the rest datasets can be inquired
in Appendix B.

Observing Miscalibration
Comparison Settings. We use the reliability diagrams for
observation, which is a visual representation of model cal-
ibration (Niculescu-Mizil and Caruana 2005). The average
confidence within each bin is defined as “Outputs”, while
the absolute difference between confidence and accuracy in
each bin is defined as “Gap”. The ECE is proportional to
“Gap” in some degree, described in Sec. .

Comparison Results. As Figure 4 depicts, although dis-
tinct calibration methods still have a miscalibration phe-
nomenon on TNEWS dataset, BERT with calibration can
acquire a lower ECE. Especially, our model decreases ECE
prominently and less inclined to make overconfident predic-
tions for samples with higher accuracy compared with the
AVUC, which manifests the validity of our RAU loss that
rebalances accuracy-uncertainty and optimizes accurate as
well as inaccurate samples respectively.
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Figure 4: Reliability diagrams for TNEWS dataset, before calibration (a) and after calibration (b)-(f).

Model ACC P R F1 ECE

HS-RAU 56.39 56.31 55.82 56.02 39.99

w/o HS 56.32 55.82 55.26 55.52 67.97
w/o RAU 55.90 56.05 54.75 55.28 42.53
w/o Both 56.37 56.13 54.81 55.31 68.50

RAU⇒AVUC 56.21 55.72 55.45 55.55 41.82

Table 2: Ablation study on TNEWS dataset by removing the
main components, where “w/o” means without, “HS” repre-
sents hyperspherical space calibration, and “RAU” indicates
rebalanced accuracy-uncertainty loss.

Ablation Study
Comparison Settings. To validate the effectiveness of our
model components, we gradually get rid of some com-
ponents, including hyperspherical space and rebalanced
accuracy-uncertainty loss. In practice, if hyperspherical
space is not employed in the model, we use the typical one-
hot vector in Euclidean space to represent the labels.

Comparison Results. As described in Table 2:
(1) Taking out any components of our model results in

performance reduction, which certifies the validity of all
components.

(2) Specifically, replacing hyperspherical space leads to
conspicuous performance degradation. It shows that project-
ing labels onto hyperspherical space to obtain a dense label
matrix and setting the calibration scale throughout the pro-
cess can effectively draw down the ECE.

(3) Substituting RAU for AVUC causes a minor decline

in F1, while ECE gets 1.83% worse. This proves that RAU,
which respectively optimizing accurate and inaccurate sam-
ples, is beneficial to improve performance. See more results
on other datasets in Appendix C.

Discussion
Effectiveness on Noisy Data
Comparison Settings. Model performance under noisy data
is an important indicator to measure robustness, as it’s a fre-
quent phenomenon for data to have noise. We randomly mis-
label 5%, 10%, 30%, and 50% part of samples’ labels on
TNEWS dataset to simulate the noisy environment.

Comparison Results. The experimental results of Table
3 support the statements as below:

(1) The experimental results indicate that our model still
obtains significant improvement irrespective of how much
noise label is in the dataset.

(2) Take TNEWS dataset with 30% error labels as an ex-
ample, F1 increases 3.27%. In the meantime, ECE decreases
by 45.73%. During the experiment, we find that although
temperature scaling obtains a comparable ECE, the scale pa-
rameter turns extremely large, and the output probability is
only distributed into one bin. The reason may be that tem-
perature scaling is not suitable for the situation where train-
ing set and other sets are labeled differently, as it learns the
scale parameter from the development set after the model is
trained on the training set.

(3) Above results verify the effectiveness of our model
on the noisy data, which projects the label vector uniformly
onto the hyperspherical space and makes better use of the
dense label representations. Hyperspherical label vector is
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Model
5% Noisy Labels 10% Noisy Labels 30% Noisy Labels 50% Noisy Labels

F1 ECE F1 ECE F1 ECE F1 ECE

BERT 53.46 72.19 51.44 72.38 43.76 77.98 32.22 83.35
LS 53.95 46.46 52.59 43.81 44.83 46.92 32.91 65.94

PosCal 54.11 52.77 52.14 61.92 45.40 56.83 33.93 71.37
AVUC 54.04 64.47 51.94 61.78 45.74 56.44 33.74 71.14

HS-RAU 54.43 34.37 53.66 35.48 47.03 32.25 35.20 41.06

Table 3: Performance on TNEWS dataset with noise.

Model
L-F1 L-F2 L-F3 Average

F1 F1 F1 F1 ECE

BERT 40.54 44.50 57.54 47.53 1.61
TS 40.54 44.50 57.54 47.53 3.05
LS 40.45 46.56 59.50 48.84 1.14

PosCal 35.44 46.15 60.00 47.20 1.50
AVUC 43.37 48.31 60.88 50.85 1.46

HS-RAU 54.12 47.22 59.06 53.47 1.08

Table 4: Performance of the low-frequency labels on
TNEWS dataset, where L-F1 means the Lowest Frequency
label and “Average” means the average performance of the
three lowest frequency labels.

not utterly orthogonal like the one-hot label, so mislabeled
samples are more likely to be calibrated. More information
on other metrics can be found in Appendix D.

Effectiveness on Low-Frequency Labels
Comparison Settings. Class-imbalanced datasets com-
monly face the long tail problem. To examine the perfor-
mance of minority labels, we experiment on the three low-
est frequency labels on TNEWS dataset, which contains fif-
teen classes in total. The sum of fifteen labels’ ECE equals
the gross ECE. Besides, L-F1 means the Lowest Frequency
label, L-F2 means the second lowest, and so on. “Aver-
age” means the average performance of the three lowest fre-
quency labels.

Comparison Results. As demonstrated in Table 4, our
model reaches the highest average F1 of the low-frequency
labels, with a 5.94% absolute increase. Apart from that, it
works better on the average ECE too. According to the con-
sequences, we can infer that it’s no picnic to learn sparse
label features (like one-hot) with low-frequency samples. In
contrast, the label features of our model are dense, as we
separate the label vector into the hyperspherical space hor-
izontally and use more portion of the output space. More
details on the comparison results are shown in Appendix E.

Effectiveness on Different Encoders
Comparison Settings. Different encoders have distinct out-
put spaces. To assess the performance of different encoders,

Model ACC P R F1 ECE

Albert-tiny 52.00 48.67 48.41 48.49 28.00
+ HS-RAU 53.03 50.24 49.18 49.58 23.91

XLNet 56.84 56.10 55.72 55.81 40.56
+ HS-RAU 57.06 56.10 56.14 56.04 35.79

BERT-large 57.84 57.59 56.45 56.91 69.26
+ HS-RAU 58.09 57.33 56.65 56.93 39.02

Table 5: Performance of distinct encoders on TNEWS.

we also horizontally compare with other encoders such as
Albert-tiny (Lan et al. 2020), XLNet (Yang et al. 2019), and
BERT-large (Devlin et al. 2018) on TNEWS dataset.

Comparison Results. The consequences of different en-
coders on TNEWS dataset are shown in Table 5. Though
different encoders behave diversely from each other, they all
acquire a comparable enhancement with the help of our con-
fidence calibration strategy. Results indicate that projecting
the output space onto hyperspherical space by our strategy
possesses a certain universality, which is not limited to the
BERT model.

Conclusion
In this work, we propose a confidence calibration model for
intent detection via Hyperspherical Space and Rebalanced
Accuracy-Uncertainty loss (HS-RAU). With the help of pro-
jecting label vectors onto hyperspherical space uniformly,
we make better use of the dense label representation ma-
trix to mitigate the over-confident predictions as well as
the whole portion of output space. Through the rebalanced
accuracy-uncertainty loss, we better guide the model to re-
spectively optimize the accurate and inaccurate samples.
Experimental results indicate that our model obtains a de-
cent rise over SOTA. Especially, we achieve a significant
improvement in the confidence calibration metric (ECE)
among the calibration methods.
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