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Abstract

Conversational Information Seeking (CIS) is a relatively new
research area within conversational AI that attempts to seek
information from end-users in order to understand and sat-
isfy users’ needs. If realized, such a system has far-reaching
benefits in the real world; for example, a CIS system can as-
sist clinicians in pre-screening or triaging patients in health-
care. A key open sub-problem in CIS that remains unad-
dressed in the literature is generating Information Seeking
Questions (ISQs) based on a short initial query from the end-
user. To address this open problem, we propose Information
SEEking Question generator (ISEEQ), a novel approach for
generating ISQs from just a short user query, given a large
text corpus relevant to the user query. Firstly, ISEEQ uses a
knowledge graph to enrich the user query. Secondly, ISEEQ
uses the knowledge-enriched query to retrieve relevant con-
text passages to ask coherent ISQs adhering to a concep-
tual flow. Thirdly, ISEEQ introduces a new deep generative-
adversarial reinforcement learning-based approach for gener-
ating ISQs. We show that ISEEQ can generate high-quality
ISQs to promote the development of CIS agents. ISEEQ sig-
nificantly outperforms comparable baselines on five ISQ eval-
uation metrics across four datasets having user queries from
diverse domains. Further, we argue that ISEEQ is transfer-
able across domains for generating ISQs, as it shows the
acceptable performance when trained and tested on differ-
ent pairs of domains. The qualitative human evaluation con-
firms ISEEQ-generated ISQs are comparable in quality to
human-generated questions and outperform the best compa-
rable baseline.

Introduction
Information Seeking (IS) is a complex and structured pro-
cess in human learning that demands lengthy discourse be-
tween seekers and providers to meet the information needs
of the seekers. The provider can ask the seeker information-
seeking questions to understand the seeker’s needs bet-
ter and respond appropriately. For instance, clinicians use
their experience or medical knowledge to ask patients
information-seeking questions (ISQs), who describe their
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health condition (a short initial IS query). Conversational In-
formation Seeking (CIS) is an emerging research area within
conversational AI that aims to emulate the provider by auto-
matically asking ISQs, keeping track of seeker responses,
and ultimately responding to the seeker’s needs based on
responses to ISQs. CIS has broadened the research scope
of various virtual assistants (e.g., Alexa, Bixby) (Zamani
and Craswell 2020; Radlinski and Craswell 2017). Existing
work in the area of CIS has primarily focused on aspects
such as retrieving relevant passages to respond to seeker
queries and generating answers (Vakulenko, Kanoulas, and
de Rijke 2021; Kumar and Callan 2020).

To the best of our knowledge, the problem of generat-
ing ISQs given an initial IS query from the user has not
been addressed in the literature so far. Figure 1A shows ex-
ample ISQs generated for the user IS query “Bothered by
feeling down or depressed”. For example, user responses to
ISQs such as “How often do you feel depressed or hope-
less?” and “How long have you struggled with depression?”
can be used either by the CIS or the healthcare provider to
generate an appropriate response to the user’s needs. ISQs
differ from other question types (e.g., Clarifying questions,
Follow-up questions (Rao and Daumé III 2018) (Zamani
et al. 2020) (Pothirattanachaikul et al. 2020)) by having a
structure, covering objective details, and expanding on the
breadth of the topic. For such a structure between ISQs,
there are semantic relations and logical coherence (together
termed as conceptual flow). From (Aliannejadi et al. 2019),
clarifying questions are simple questions of facts, good to
clarify the dilemma, and confined to the entities in the query.
In contrast, ISQs go a step further with expanding the query
context by exploring relationships between entities in the
query and linked entities in a knowledge graph. Thus re-
trieving a diverse set of passages that would provide a proper
solution to a user query.

Firstly, a key challenge in generating ISQs is that the ini-
tial IS query is short and has limited context. Without ex-
plicit integration of external knowledge for enriching the
IS query, CIS cannot achieve the curiosity-driven genera-
tion of ISQs (Gaur et al. 2020). Secondly, training an ISQ
generation system requires annotated datasets containing IS
queries, ISQs, and many passages. Creating such datasets re-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

10672



Figure 1: (A) An example of curiosity-driven ISQs generated by
ISEEQ. (B) overview of ISEEQ

quires skilled and trained crowdsource workers (Dalton et al.
2020). Moreover, the process is (i) tedious for the crowd
worker in terms of the number of passages needed for ques-
tion creation and can result in (ii) insufficient question cov-
erage when the answer to a query lies across multiple pas-
sages, requiring workers to perform extensive search (Wood,
Eberhart, and McMillan 2020; Wood et al. 2018).

To address these challenges and the open problem of ISQ
generation, we present Information SEEking Question gen-
erator (ISEEQ) to enable a curiosity-driven CIS system. Es-
sentially, the design of ISEEQ relies on exploring three re-
search questions: (RQ1) Knowledge-infusion: Can expert-
curated knowledge sources like knowledge graphs/bases re-
lated to the user query help in context retrieval and ques-
tion generation? (RQ2) conceptual flow: Can ISEEQ gener-
ate ISQs having semantic relations and logical coherence?
(RQ3) Can ISEEQ generate ISQs in a cross domain set-
ting and generate ISQs for new domains without requiring
crowdsourced data collection?. We believe addressing the
three RQs uniquely positions this research as the first to de-
velop a successful solution to ISQ generation for CIS. Figure
1B shows the overall inputs and outputs of ISEEQ. ISEEQ
generates ISQs based on a short IS query from the seeker,
by making use of a large text corpus of passages relevant to
the IS query and also relevant knowledge graphs.

Our key contributions of this work are as follows:

1. Problem definition and approach: To the best of our
knowledge, we are the first to formulate the problem of
automatic generation of ISQs for CIS. To solve this, we
introduce a novel approach called ISEEQ that can auto-
matically generate curiosity-driven and conceptual flow-
based ISQs from a short user query.

2. Dynamic knowledge-aware passage retrieval: We in-
fuse IS queries with semantic information from knowl-
edge graphs to improve unsupervised passage retrieval.
Passages serve as meta-information for generating ISQs.

3. Reinforcement learning for ISQs: To improve com-
positional diversity and legibility in QG, we allow
ISEEQ self-guide the generations through reinforcement
learning in generative-adversarial setting that results in
ISEEQ-RL. We introduce entailment constraints bor-
rowed from natural language inference (NLI) guidelines
to expand ISEEQ-RL to ISEEQ-ERL to have smooth top-
ical coherent transitions in the questions, achieving con-
ceptual flow.

4. Evaluation metrics: We introduce two evaluation met-
rics: “semantic relations” and “logical coherence” to
measure conceptual flow in the generated questions.

We evaluated ISEEQ (both ISEEQ-RL & ISEEQ-ERL) us-
ing four conversational discourse datasets with five natu-
ral language generation metrics. In quantitative evaluation,
ISEEQ shows superiority over state-of-the-art approaches
considered for CIS. We show that ISEEQ is transferable
across domains for generating ISQs, as it shows acceptable
performance when trained and tested on different pairs of
domains; this addresses the key challenge of reducing hu-
man effort in training ISQ generation models for new do-
mains. Moreover, 12 human evaluations of 30 IS queries
show that ISEEQ generated ISQs are comparable to ground
truth human generated questions and they outperformed a
competitive baseline generated ones.

Related Work
CIS understands that conversations possess a well-defined
structure that addresses the information needs of the user ini-
tiating the conversation (Li et al. 2021). The datasets to train
models in CIS are designed to facilitate a mixed-initiative
dialogue, where the agent can also ask clarifying or follow-
up questions to gather information concerning the IS query
(Zhang and Bansal 2019). Alongside, datasets like ShARC
help CIS models to improve response generation (Saeidi
et al. 2018). However, in this study, we restrict ourselves
to solving an open sub-problem in CIS that generates ISQs.
At present, passage retrieval and ranking, turn-by-turn ques-
tion generation, search, and answer retrieval have been inde-
pendently explored within CIS (Vakulenko, Kanoulas, and
de Rijke 2021). Dense Passage Retrieval (DPR) retrieves
and ranks passages using maximum inner product search
(MIPS), using a dense representation based task-specific
similarity function. QuAC, HOTPOTQA, WikipassageQA
and Topical Chat were introduced to train IS dialogue for
non-factoid question answering from the retrieved passages
(Choi et al. 2018; Yang et al. 2018; Gopalakrishnan et al.
2019; Cohen, Yang, and Croft 2018). Together with DPR,
fine-tuning of a transformer language model on either of
these datasets can learn better answer retrieval and turn-by-
turn question generation, fulfilling part of the requirements
for CIS (Lewis et al. 2020).
Despite large-scale crowdsourced annotations, difficulty
arises when a CIS agent is required to perform in the pres-
ence of a small size IS query. A search through multiple
documents to generate logically inferential and semantically
related questions for driving mixed-initiative conversations
is required (Cho et al. 2021). Also, the agent needs to uti-
lize explicit knowledge to enrich IS queries and broaden
the retriever’s context to ask questions that would otherwise
miss relevant information (Li et al. 2020). The datasets men-
tioned above lack the characteristics needed in training such
a CIS agent. This motivates creating discourse datasets like
CAsT-19 (Dalton et al. 2020), used in this research for de-
velopment and assessment of ISEEQ. Furthermore, there is
no study close to ISEEQ that combines explicit knowledge,
multi-passage retrieval, and question generation for CIS. In-
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directly, ISEEQ gather specific attributes from retrieval aug-
mented generation (RAG) model and retrieval augmented
language model (REALM) from (Lewis et al. 2020) and
(Guu et al. 2020). However, it significantly improves upon
them by (a) preserving the semantic and syntactic structure
of the query, (b) use knowledge graphs for passage retrieval,
and (c) maintain information flow in question generation. In
our evaluations, we utilize RAG components (T5 and DPR)
to measure accuracy and quality of ISQs.

Approach
Problem Definition: Given a short query (q =
w1, w2, w3, ...., wn) on any topic (e.g., mental health,
sports, politics and policy, location, etc.) automatically gen-
erate ISQs in a conceptual flow (ISQ : Q1, Q2, Q3, ..., Qp)
to understand specificity in information needs of the user.

Our approach to address this problem, ISEEQ, is outlined
in Figure 2. We describe in detail the main components
of ISEEQ: semantic query expander (SQE), knowledge-
aware passage retriever (KPR) and generative-adversarial
Reinforcement Learning-based question generator (ISEEQ-
RL) with Entailment constraints (ISEEQ-ERL). Inputs to
ISEEQ are IS queries described in natural language. For
instance, an IS query can be described with Titles
and Descriptions (T & D) (such as in CAsT-19
dataset), Descriptions only (D only) (such as
in QAMR and QADiscourse datasets), Topics and
Aspects (Tp & Asp) (such as in Facebook Curiosity
discourse dataset), and others.

SQE: We expand the possibly short user input queries
with the help of ConceptNet Commonsense Knowledge
Graph (CNetKG)(Speer, Chin, and Havasi 2017). We first
extract the entity set Ed in a user query description d
using CNetKG. For this, we use the pre-trained self-
attentive encoder-decoder-based constituency parser (Kitaev
and Klein 2018) with BERT as the encoder for consistency
in ISEEQ. The parser is conditioned to extract noun phrases
that capture candidate entities defining an IS query. If the
phrases have mentions in the CNetKG they are termed as
entities 1. Then a multi-hop triple (subject-entity, relation,
object-entity) extraction over CNetKG is performed using
depth first search on entity set Ed. Triples of the form
< ed, Reli, ex > and < ey, Relj , ed > are extracted where
ed ∈ Ed. We keep only those triples where ed (∈ Ed) ap-
pears as the subject-entity. We use this heuristic (1) to min-
imize noise and (2) gather more direct information about
entities in Ed. Finally, we contextualize d by injecting ex-
tracted triples to get kd, a knowledge augmented query.

Take for example D only IS query d (∈ D), “Want to
consider career options from becoming a physician’s assis-
tant vs a nurse”. The extracted entity set Ed for d is {career,
career options, physician, physician assistant, nurse}. Then,
the extracted triples for this entity set are <career options,
isrelatedto, career choice>, <career options, isrelat-
edto, profession>, <physician assistant, is a, PA>, <

1From here onwards we only use the term Entities, presuming
check through exact match is performed using CNetKG

physician, is a, medical doctor>, [...], <nurse, is a, psy-
chiatric nurse>, <nurse, is a, licensed practical nurse>,
<nurse, is a, nurse practitioner>, [...]. The knowl-
edge augmented kd is “Want to consider career
options career options is related to
career choice, profession from becoming
a physician’s assistant physician assistant
is a PA medical doctor, [...] vs a
nurse nurse is a psychiatric nurse,
licensed practical nurse, [...] ”. Next,
we pass this into KPR. The set {kd}, ∀d ∈ D is denoted by
KD used by QG model in ISEEQ

KPR: Given the knowledge augmented query kd, KPR
retrieve passages from a set P and rank to get top-K pas-
sages Ptop-K. For this purpose, we make following specific
improvements in the Dense Passage Retriever (DPR) de-
scribed in (Lewis et al. 2020): (1) Sentence-BERT encoder
for the passages p ∈ P and kd. We create dense encodings
of p ∈ P using Sentence-BERT, which is represented as
Zp (Reimers and Gurevych 2019). Likewise, encoding of kd
is represented as Zkd

. (2) Incorporate SITQ (Simple local-
ity sensitive hashing (Simple-LSH) and Iterative Quantiza-
tion) algorithm to pick top-K passages (Ptop-K) by using a
normalized entity score (NES). SITQ is a fast approximate
search algorithm over MIPS to retrieve and rank passages. It
can be formalized as Score(Ptop-K|kd) where,

Score(Ptop-K|kd) ∝ {WMD(ZT
kd
Zp)}p∈P

Zkd
= S-BERT(kd);Zp = S-BERT(p);

SITQ converts dense encodings into low-rank vectors and
calculates the semantic similarity between the input query
and passage using word mover distance (WMD) (Kusner
et al. 2015). Ptop-K from SITQ is re-ranked by NES, cal-

culated2 for each p ∈ Ptop-K as
∑

ej∈kd
{I(ej=w)}w∈p

|kd| and
arrange in descending order. Ptop-K consists of K passages
with NES >80%. Execution of KPR is iterative and stopped
when each query in the train set has at least one passage for
generating ISQs.

We tested retrieving efficiency of KPR using encoding of
ed denoted by Zed and using the encoding of kd denoted by
Zkd

as inputs to KPR. Measurements were recorded using
Hit Rate (HR) @ 10 and 20 retrieved passages. Mean Aver-
age Precision (MAP) is calculated with respect to ground
truth questions in QAMR. There are two components in
MAP: (a) Relevance of the retrieved passage in generating
questions that have >70% cosine similarity with ground
truth; (b) Normalize Relevance by the number of ground
truth questions per input query. To get MAP, we multiply
(a) and (b) and take mean over all the input queries. We
computed MAP by setting K = 20 retrieved passages due
to the good confidence from hit rate (a hyperparameter).
KPR outperformed the comparable baselines on the QAMR
Wikinews dataset and Table 1 shows that SQE improves the

2an entity occurring multiple times in p is counted once

10674



Figure 2: Overview of our approach. ISEEQ combines a BERT-based constituency parser, Semantic Query Expander (SQE), and Knowledge-
aware Passage Retriever (KPR) to provide relevant context to a QG model for ISQ generations. The QG Model illustrates a structure of ISEEQ
variants: ISEEQ-RL and ISEEQ-ERL. We train ISEEQ in generative-adversarial reinforcement learning setting that maximizes semantic
relations and coherence while generating ISQs.

retrieval process3 A set of Ptop-K for KD is denoted by
{Ptop-K}kd

, kd ∈ KD.
QG Model: ISEEQ leverages KD and {Ptop-K}kd

to
learn QG in generative-adversarial setting guided by a re-
ward function. ISEEQ-RL contains T5-base as generator and
Electra-base as discriminator to learn to generate IS-type
questions. ISEEQ use the reward function to learn to selec-
tively preserve terms from the IS query versus introducing
diversity. Also, reward function prevent ISEEQ from gener-
ating ISQs that are loose in context or redundant.
Reward Function: Let qni be the ith question in the ground
truth questions Q having n tokens and let q̂mi be the ith ques-
tion in the list of generated questions, Q̂ having m tokens.
We create BERT encodings for each of the n and m words
in the question vectors. The reward (Ri) in ISEEQ-RL and
ISEEQ-ERL is defined as:

α

[
LCS(q̂mi , qni )

|q̂mi |

]
+ (1−α)

[ ∑
ŵij∈q̂mi

max
wik∈qni

WMD(ŵij
Twik)

]
(1)

where α[∗] is a normalized longest common subsequence
(LCS) score that capture word order and make ISEEQ-
RL learn to copy in some very complex IS-type queries.
(1 − α)[∗] uses WMD to account for semantic similarity
and compositional diversity. For a qni = “What is the average
starting salary in the UK?”, (1−α)[∗] generates q̂mi =“What
is the average earnings of nurse in UK?”
Loss Function in ISEEQ-RL: We revise cross entropy (CE)
loss for training ISEEQ by scaling with the reward function

3KPR(Zed ) & KPR(Zkd ) is executed for each CAsT-19 query.

because each kd ∈ KD are not only short but they also vary
by context. Corresponding to each kd, there are b ground
truth questions q1:b and thus we normalize the revised CE
loss by a factor of b. Formally, we define our CE loss in
ISEEQ-RL, L(q̂1:b|q1:b, θ) =

−
∑b

i=1 Ri · I(qni = q̂mi ) · logPr(q̂mi |θ)
b

(2)

where I(qni = q̂mi ) is an indicator function counting word in-
dices in qni that match word indices in q̂mi . The CE loss over
KD in a discourse dataset is L(Q̂|Q,Θ)t, recorded after tth

epoch. Formally L(Q̂|Q,Θ)t =

γL(Q̂|Q,Θ)t−1 + (1− γ)L(q̂1:b|q1:b, θ) (3)

Theoretically, ISEEQ-RL addresses RQ1, but weakly man-
dates conceptual flow while generating ISQs. Thus, it does
not address RQ2.
Loss Function in ISEEQ-ERL: For instance, given d2(∈
D): “Bothered by feeling down or depressed” (shown in
Figure 1), ISEEQ-RL generations are: (q̂1): What is the
reason for the depression, hopelessness? and (q̂2) What
is the frequency of you feeling down and depressed?
Whereas, ISEEQ-ERL would re-order placing (q̂2) before
(q̂1) for conceptual flow. To develop ISEEQ-ERL, we rede-
fine the loss function in ISEEQ-RL by introducing princi-
ples of entailment as in NLI (Tarunesh, Aditya, and Choud-
hury 2021)(Gao et al. 2020)4. Consider q̂mi|next to be the

4We use RoBERTa pre-trained on Stanford NLI dataset to mea-
sure semantic relations and coherence between a pair of generated
questions
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next generated question after q̂mi . We condition equation
2 on ymax = argmaxY RoBERTa(q̂mi , q̂mi|next), where
Y ∈ {neutral, contradiction, entailment} and Pr(ymax) =
maxY RoBERTa(q̂mi , q̂mi|next). Formally, L(q̂1:b|q1:b, θ) in
ISEEQ-ERLis:

if ymax == entailment then
CE − Pr(ymax)

else
RCE − (1− Pr(ymax))

end if
RCE= −

∑b
i=1 Ri(1−I(qi=q̂i))Pr(q̂i|θ)

b
Reverse Cross Entropy(RCE) complements CE (Equation 2)
by checking q̂mi|next is semantically related and coherent to
q̂mi . Tuning of the loss after an epoch follows Equation 3.

Datasets
We evaluate ISEEQ-RL and ISEEQ-ERL on a wide range
of open-domain knowledge-intensive datasets. Their statis-
tics are shown in Table 2. The datasets exhibit following
properties: (1) existence of semantic relations between ques-
tions, (2) logical coherence between questions, and (3) di-
verse context, that is, queries cover wider domains, such
as health, sports, history, geography. Fundamentally, these
datasets support the assessment of RQ1, RQ2, and RQ3.

QADiscourse (QAD) (Pyatkin et al. 2020) dataset tests
the ability of ISEEQ to generate questions that have logical
coherence. The sources of queries are Wikinews (WikiN)
and Wikipedia (WikiP) that consist of 8.7 Million pas-
sages. Question Answer Meaning Representation (QAMR)
(Michael et al. 2018) dataset tests the ability of ISEEQ to
generate questions with semantic relations between them.
The source for creating IS queries is Wikinews, which con-
sist of 3.4 Million passages. Both QAD and QAMR con-
sist of D only IS queries. Facebook Curiosity (FBC) (Ro-
driguez et al. 2020) is another dataset that challenges ISEEQ
to have both semantic relations and logical coherence. This
is because queries are described in the form of Tp & Asp.
The source for IS queries is Wikipedia having 3.3 Mil-
lion geographical passages. Even though the questions in
the dataset have logical coherence, they are relatively less
diverse than QAMR and QAD. Conversational Assistance
Track (CAsT-19) (Dalton et al. 2020) is the most challeng-
ing one for ISEEQ because of size, diversity in context, large
number of passages, and IS queries are not annotated with
passages. In CAsT-19, IS queries are provided with T & D.

Retrievers HR@10 HR@20MAP

TF-IDF + ECE (Clark et al. 2019) 0.31 0.45 0.16
BM25 + ECE* 0.38 0.49 0.23
DPR (Karpukhin et al. 2020) 0.44 0.61 0.31

KPR(Zed) 0.47 0.66 0.35
KPR(Zkd) 0.49 0.70 0.38

Table 1: Evaluating retrievers. ECE: Electra Cross Encoder, (*):
variant of (Clark et al. 2019), DPR: Dense Passage Retrieval.

Dataset #Queries(Q/Q) CNetKG

Triples

Source

Train Test

QAD 125 (25) 33 (25) 38.5% WikiP, WikiN

QAMR 395 (63) 39 (68) 35.5% WikiN

FBC 8489 (6) 2729 (8) 50% Geo-WikiP

CAsT-19 30 (9) 50 (10) 57% MS-MARCO

Table 2: Dataset description. Q/Q: Questions per Query, CNetKG
Triples: % of noun/verb phrases identified in CNetKG.

Adapting Datasets: Each dataset, except CAsT-19, has
a query, a set of ISQs, and a relevant passage. For fairness
in evaluation, we exclude the passages in the datasets; in-
stead, we retrieve them from the sources using KPR. We also
perform coreference resolution over ISQs using NeuralCoref
to increase entity mentions (Clark and Manning 2016). For
example, a question in CAsT-19 “What are the educational
requirements required to become one?” is reformulated to
“What are the educational requirements required to become
a physician’s assistant?”.

Evaluation and Results
ISEEQ-RL or ISEEQ-ERL generator uses top-p (nucleus)
sampling 5 with sum probability of generations equaling to
0.92, a hyperparameter that sufficiently removes the possi-
bility of redundant QG (Holtzman et al. 2019). We evalu-
ate ISEEQ generations using Rouge-L (R-L), BERTScore
(BScore) (Zhang et al. 2019), and BLEURT (BRT) (Sellam,
Das, and Parikh 2020) that measure preservation of syntac-
tic context, semantics, and legibility of generated question
to human understanding, respectively. For conceptual flow
in question generation, we define “semantic relations” (SR)
and “logical coherence” (LC) metrics. To calculate SR or
LC, we pair Q̂1:p generated questions with Q. SR in the gen-
erations is computed across all pairs using RoBERTa pre-
trained on semantic similarity tasks6. LC between Q and
Q̂1:p is computed from counting the labels predicted as “en-
tailment” by RoBERTa pre-trained on SNLI dataset7.

Baselines: Since there exists no system to automatically
generate ISQs, we considered transformer language mod-
els fine-tuned (TLMs-FT) on open domain datasets used
for reading comprehension, and complex non-factoid an-
swer retrieval as baselines. Specifically, T5 model fine-
tuned (T5-FT) on WikipassageQA (Cohen, Yang, and Croft
2018), SQUAD (Raffel et al. 2019), and CANARD (Lin
et al. 2020), and ProphetNet(Qi et al. 2020) fine-tuned on
SQUADv2.0 are comparable baselines.

We substantiate our claims in RQ1, RQ2, and RQ3 by
highlighting: (1) Multiple passage-based QG yields better
results over single gold passage QG used in TLMs-FT (Table
3); (2) Knowledge-infusion through SQE significantly ad-
vance the process of QG (Table 3)); (3) Pressing on concep-

5Top-p or Top-K sampling either works in ISEEQ
6https://huggingface.co/textattack/roberta-base-STS-B
7https://paperswithcode.com/lib/allennlp/roberta-snli
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Methods SQE QAD QAMR FBC
R-L BRT BScore SR LC(%) R-L BRT BScore SR LC(%) R-L BRT BScore SR LC(%)

T5-FT WikiPassageQA
- 0.37 0.43 0.16 0.17 10.0 0.19 0.51 0.38 0.36 17.0 0.65 0.78 0.54 0.51 47.3
+Entities 0.39 0.45 0.16 0.17 10.0 0.20 0.53 0.38 0.36 17.5 0.65 0.78 0.54 0.52 47.4
+Triples 0.41 0.46 0.16 0.18 11.0 0.20 0.53 0.39 0.37 17.8 0.65 0.78 0.55 0.52 47.3

T5-FT SQUAD
- 0.44 0.54 0.20 0.19 13.0 0.40 0.66 0.46 0.58 21.0 0.70 0.83 0.62 0.67 65.1
+Entities 0.45 0.56 0.22 0.19 13.5 0.40 0.68 0.47 0.59 22.7 0.71 0.84 0.63 0.69 65.8
+Triples 0.45 0.58 0.22 0.20 13.8 0.43 0.69 0.47 0.59 22.6 0.70 0.84 0.64 0.69 65.8

T5-FT CANARD
- 0.47 0.54 0.23 0.19 17.1 0.41 0.64 0.53 0.58 22.6 0.73 0.84 0.63 0.67 66.2
+Entities 0.48 0.55 0.25 0.20 17.5 0.44 0.67 0.62 0.61 23.5 0.74 0.84 0.65 0.69 66.5
+Triples 0.51 0.57 0.26 0.21 18.3 0.49 0.68 0.66 0.61 24.3 0.74 0.85 0.65 0.70 68.2

ProphetNet-FT SQUAD
- 0.31 0.44 0.14 0.17 12.2 0.35 0.59 0.38 0.36 21.5 0.63 0.78 0.53 0.67 63.2
+Entities 0.31 0.44 0.14 0.17 12.7 0.37 0.60 0.41 0.37 22.1 0.65 0.78 0.54 0.67 63.3
+Triples 0.34 0.45 0.15 0.18 13.0 0.37 0.61 0.43 0.37 22.3 0.65 0.79 0.56 0.69 64.0

ISEEQ-RL
- 0.57 0.72 0.40 0.22 20.0 0.50 0.75 0.67 0.64 29.4 0.71 0.84 0.62 0.69 68.2
+Entities 0.64 0.72 0.41 0.23 22.0 0.52 0.77 0.68 0.64 33.1 0.72 0.85 0.63 0.71 69.8
+Triples 0.65 0.74 0.45 0.25 22.0 0.53 0.78 0.71 0.65 34.7 0.74 0.87 0.63 0.73 71.8

ISEEQ-ERL
- 0.60 0.76 0.44 0.26 24.5 0.55 0.81 0.72 0.68 36.1 0.74 0.85 0.64 0.76 78.2
+Entities 0.65 0.78 0.47 0.27 25.2 0.55 0.82 0.74 0.68 36.3 0.77 0.88 0.66 0.76 78.3
+Triples 0.67 0.79 0.50 0.27 25.7 0.57 0.83 0.77 0.68 37.0 0.79 0.89 0.66 0.78 79.4

Table 3: Scores on test set of datasets. In comparison to T5-FT CANARD, a competitive baseline, ISEEQ-ERL generated better questions
across three datasets (30%↑ in QADiscourse, 7%↑ in QAMR, and 5%↑ in FB Curiosity). For fine-tuning we used SQUADv2.0.

tual flow in ISEEQ-ERL improve SR and LC in generations.
Evidence from 12 human evaluations support our quantita-
tive findings (Table 6); (4) We investigate the potential of
ISEEQ-ERL in minimizing crowd workers for IS dataset cre-
ation through cross-domain experiments (Table 5).

Performance of ISEEQ-RL and ISEEQ-ERL : Datasets
used in this research were designed for a CIS system to ob-
tain the capability of multiple contextual passage retrieval
and diverse ISQ generations. The process of creating such
datasets requires crowd workers to take the role of a CIS
system responsible for creating questions and evaluators
to see whether questions match the information needs of
IS queries. Implicitly, the process embed crowd workers’
curiosity-driven search to read multiple passages for gener-
ating ISQs. Baselines on employed datasets use single pas-
sage QG, with much of the efforts focusing on improving
QG. Whereas ISEEQ generation enjoys the success from
the connection of SQE, KPR, and novel QG model over
baselines in CIS (see Table 3). With SQE, ISEEQ achieved
2-6% across all datasets. The knowledge-infusion in ISEEQ
through SQE has shown to be powerful for baselines as
well. Table 3 records 3-10%, 3-10%, and 1-3% performance
gains of the baselines on QAD, QAMR, and FBC across
five evaluation metrics, respectively. SQE allows baselines
to semantically widen their search over the gold passages
in datasets to generate diverse questions that match bet-
ter with ground truth. Differently, ISEEQ-RL generations
benefit from dynamic meta-information retrieval from mul-
tiple passages yielding hike of 20-35%, 6-13%, 3-10% on
QAD, QAMR, and FBC, respectively, across five evaluation
metrics. Especially, QG in CAsT-19 and FBC datasets ad-
vance because of KPR in ISEEQ-RL and ISEEQ-ERL (see
Figure 3). Most of the CAsT-19 and FBC queries required
multiple passages to construct legible questions. For in-
stance, an IS query : “Enquiry about History, Economy, and
Sports in Hyderabad” ISEEQ retrieved following three pas-

Ret.Pass. DPR KPR(Zed
) KPR(Zkd

)

Train Test Train Test Train Test

5K 71 123 99 278 157 275

10K 96 133 154 301 194 316

25K 139 133 235 329 236 363

50K 173 144 269 358 269 402

Table 4: Performance of KPR on MS-MARCO passages while
retrieving atleast one passage per IS query in CAsT-19. 269 is the
size of CAST-19 train set. KPR covered the train set but left 16%
of the IS queries in test set.

sages: “History Hyderabad”, “Economy Hyderabad”, and
“Sports Hyderabad” which were missing in the set of pas-
sages in FBC. Thus, TLM-FT baselines find it hard to con-
struct legible ISQs using a single passage. Furthermore,
ISEEQ-ERL advances the quality of ISQs over ISEEQ-RL
by 7-19%, 4-7%, and 5-6% in QAD, QAMR, and FBC (see
Table 3) datasets. This is because QAD and FBC questions
require the QG model to emphasize conceptual flow.

Further, we examine the combined performance of KPR
and ISEEQ-ERL on CAsT-19 dataset. KPR retrieved ∼50K
passages sufficient to generate questions for 269 IS queries8.
Table 4 depicts KPR(Zed ) retrieval performance match
KPR(Zkd

), with later supported 72% of queries in train-
ing set compare to 57% by KPR(Zed ). Also, it outperforms
DPR, which supported 30% queries in train set (see Ta-
ble 4). In test time, KPR(Zkd

) supported 84% queries that
were used to generate questions by ISEEQ-ERL and eval-
uated with ground truth for SR and LC (see Figure 3).
Apart from monotonic rise in SR and LC scores shown by
ISEEQ, ISEEQ-ERL generations achieved better coherence
than counterparts with 5K passages ( Figure 3 (c) & (d)).

8one query can have multiple passages
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Figure 3: Performance improvement of ISEEQ-ERL over ISEEQ-
RL and Baseline: T5-FT CANARD concerning SR and LC in gen-
erated ISQs. Performed on CAsT-19 with unannotated passages.

Test → QAD QAMR FBC CAsT-19

Train ↓ R-L/BRT/BScore/SR/LC(%)

QAD 0.67/ 0.79/

0.50/ 0.27/

25.7

0.56/ 0.79/

0.75/ 0.64/

33.1

0.62/ 0.70/

0.55/ 0.71/

73.5

0.76/ 0.48/

0.64/ 0.60/

64.2

QAMR 0.73/ 0.89/

0.62/ 0.28/

27.7

0.57/ 0.83/

0.77/ 0.68/

37.0

0.74/ 0.89/

0.67/ 0.75/

77.8

0.67/ 0.41/

0.57/ 0.57/

58.6

FBC 0.70/ 0.73/

0.56/ 0.31/

33.0

0.61/ 0.85/

0.72/ 0.67/

35.8

0.79/ 0.89/

0.66/ 0.78/

79.4

0.75/ 0.37/

0.76/ 0.67/

66.5

CAsT-19 0.58/ 0.69/

0.51/ 0.23/

25.2

0.52/ 0.73/

0.70/ 0.61/

33.4

0.63/ 0.77/

0.57/ 0.73/

76.5

0.74/ 0.48/

0.68/ 0.61/

65.0

Table 5: Transferability test scores using ISEEQ-ERL to answer
RQ3. gray cell: ISEEQ-ERL trained and tested on same dataset are
along the diagonal. {Train-Test} pairs: {QAD-QAMR}, {CAsT-
19-QAMR}, and {QAMR-FBC} showed acceptable cross-domain
performance, where train size is smaller than test size.

We attribute the addition of entailment check and RCE for
conceptual flow-based QG improvements. Note: Qualita-
tive samples of ISQs generated by ISEEQ-ERL, ISEEQ-RL
and Baseline (T5-FT CANARD) are provided in github9 for
comparison with ground truth ISQs.

Transferability Test for RQ3: We examine the perfor-
mance of ISEEQ-ERL in an environment where the train
and test dataset belong to a different domain. For instance,
QAMR is composed of IS queries from Wikinews, whereas
FBC is composed of IS queries from geography category in
Wikipedia. From experiments in Table 5, we make two de-
ductions: (1) ISEEQ-ERL provided acceptable performance
in generating ISQs for {Train-Test} pairs, where train size is
smaller than test size: {QAD-QAMR} and {QAMR-FBC}.
(2) ISEEQ-ERL trained on a narrow domain dataset (FBC)
generated far better ISQs for IS queries across all datasets.
The transferability test show ISEEQ-ERL’s ability to create
new datasets for training and development of CIS systems.

Human Evaluation: We carried out 12 blind evaluations
of 30 information-seeking queries covering mental health
(7), politics and policy (6), geography (5), general health
(3), legal news (2), and others (4). Each evaluator rated ISQs

9https://github.com/manasgaur/AAAI-22

Response: Mean (SD) F(2, 957)
(p-value)

LSD post-hoc
(p <0.05)S1 S2 S3

G1
3.756
(1.14)

3.759
(1.06)

3.518
(1.08)

5.05
(6.5e-3)

S1>S3,
S2>S3

G2
3.803
(1.10)

3.843
(1.02)

3.503
(1.06)

9.71
(6.63e-5)

S1>S3,
S2>S3

Table 6: Assessment of human evaluation. G1: ISQs are diverse
in context and non-redundant. G2: ISQs are logically coherent and
share semantic relations. >: difference is statistically significant.
SD: Standard Deviation. S1, S2, and S3 are ground truth, ISEEQ-
ERL, and T5-FT CANARD, respectively.

from the ground-truth dataset (S1), ISEEQ-ERL (S2), and
T5-FT CANARD (S3) using Likert score where 1 is the low-
est and 5 is the highest. Such evaluations takes huge amount
of effort; 4 days were invested for high quality evaluations.
A total of 570 ISQs (On average 7 by S1, 7 by S2, and 4
by S3) were evaluated on two guidelines, described in Ta-
ble 6. We measured their statistical significance by first per-
forming one-way ANOVA and then using Least Significant
Difference (LSD) post-hoc analysis (Gunaratna et al. 2017).
Across the 30 queries on both guidelines, both S1 and S2 are
better (statistically significant) than S3 whereas, even though
S2 mean is better than S1, there is no statistical significance
between the two systems (we may say they are comparable).

Implementation and Training Details: We implemented
our method using Pytorch Lightning on top of the Hugging
Face transformer library (Wolf et al. 2019). Hyperparame-
ter tuning in ISEEQ is performed using python library “ray”,
setting α = 0.1971 in equation 1, γ = 0.12 in equation 3, and
learning rate = 1.17e-5. We train ISEEQ for 2 weeks with
cross-validation intervals in each epoch, with epochs rang-
ing 100-120 using 4 NVIDIA Tesla V100 GPUs (16GB).

Conclusion
In this research, we introduced, formalized and developed
a generic pipeline ISEEQ for generating logically coherent
and semantically related ISQs for CIS. ISEEQ outperformed
competitive TLM-based baselines in CIS using common-
sense knowledge, entailment constraints, and self-guiding
through reinforcement learning, trained within a supervised
generative-adversarial setting. We established the compe-
tency of our method through quantitative experiments and
qualitative evaluation on complex discourse datasets. ISEEQ
opens up future research directions in CIS by facilitating
the automatic creation of large-scale datasets to develop and
train improved CIS systems. Crowd-workers can focus on
evaluating and augmenting such datasets rather than creat-
ing them anew, thus improving dataset standards. The per-
formance of ISEEQ in an online setting was considered be-
yond the scope of this resource. Broadly construed, through
reinforcement learning with the reward on conceptual flow
and logical agreement, ISEEQ can be trained to generate
questions that are safety constrained and follow a special-
ized knowledge processing (Sheth et al. 2021).
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