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Abstract

Image captioning has emerged as an interesting research field
in recent years due to its broad application scenarios. The tra-
ditional paradigm of image captioning relies on paired image-
caption datasets to train the model in a supervised manner.
However, creating such paired datasets for every target lan-
guage is prohibitively expensive, which hinders the extensi-
bility of captioning technology and deprives a large part of
the world population of its benefit. In this work, we present a
novel unpaired cross-lingual method to generate image cap-
tions without relying on any caption corpus in the source or
the target language. Specifically, our method consists of two
phases: (i) a cross-lingual auto-encoding process, which uti-
lizing a sentence parallel (bitext) corpus to learn the map-
ping from the source to the target language in the scene graph
encoding space and decode sentences in the target language,
and (ii) a cross-modal unsupervised feature mapping, which
seeks to map the encoded scene graph features from image
modality to language modality. We verify the effectiveness of
our proposed method on the Chinese image caption genera-
tion task. The comparisons against several existing methods
demonstrate the effectiveness of our approach.

1 Introduction
Image captioning has attracted a lot of attention in re-
cent years due to its emerging applications, including im-
age indexing, virtual assistants, etc. Despite the impres-
sive results achieved by the existing captioning techniques,
most of them focus on English because of the availabil-
ity of image-caption paired datasets, which can not gener-
alize for languages where such paired dataset is not avail-
able. In reality, there are more than 7,100 different lan-
guages spoken by billions of people worldwide (source: Eth-
nologue(2019)). Building visual-language technologies only
for English would deprive a significantly large population of
non-English speakers of AI benefits and also leads to ethical
concerns, such as unequal access to resources. Therefore,
similar to other NLP tasks (e.g. parsing, question answer-
ing) (Hu et al. 2020; Conneau et al. 2018; Gu et al. 2020),
visual-language tasks should also be extended to multiple
languages. However, creating paired captioning datasets for
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each target language is infeasible, since the labeling process
is very time consuming and requires excessive human labor.

To alleviate the aforementioned problem, there have been
several attempts in relaxing the requirement of image-
caption paired data in the target language (Gu et al. 2018;
Song et al. 2019), which rely on paired image-caption data
in a pivot language to generate captions in the target lan-
guage via sentence-level translation. However, even for En-
glish, the existing captioning datasets (e.g., MS-COCO (Lin
et al. 2014)) are not sufficiently large and comprise only lim-
ited object categories, making it challenging to generalize
the trained captioners to scenarios in the wild (Tran et al.
2016). In addition, sentence-level translation relies purely
on the text description and can not observe the entire im-
age, which may ignore important contextual semantics and
lead to inaccurate translation. Thus, such pivot-based meth-
ods fail to fully address the problem.

Recently, a few works explore image captioning task in
an unpaired setting (Feng et al. 2019; Gu et al. 2019; Laina,
Rupprecht, and Navab 2019). Nevertheless, these methods
still rely on manually labeled caption corpus. For example,
Gu et al. (2019) train their model based on shuffled image-
caption pairs of MS-COCO; Feng et al. (2019) use an image
descriptions corpus from Shutterstock; Lania et al. (2019)
create training dataset by sampling the images and captions
from different image-caption datasets. Despite they belong
to unpaired methods in spirit, one could still argue that they
depend heavily on the collected caption corpus to get a rea-
sonable cross-modal mapping between vision and language
distributions – a resource that is not always practical to as-
sume. It therefore remains questionable how these methods
would perform when there is no caption data at all. To the
best of our knowledge, there is yet no work that investigates
image captioning without relying on any caption corpus.

Despite the giant gap between images and texts, they
are essentially different mediums to describe the same en-
tities and how they are related in the objective world. Such
internal logic is the most essential information carried by
the medium, which can be leveraged as the bridge to con-
nect data in different modalities. Scene graph(Wang et al.
2018), a structural representation that contains 1) the ob-
jects, 2) their respective attributes and 3) how they are re-
lated as described by the medium (image or text), which
has been developed into a mature technique for visual un-
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derstanding tasks in recent years(Johnson, Gupta, and Fei-
Fei 2018). Previous researches on scene graph generation
have demonstrated its effectiveness in aiding cross-modal
alignment (Yang et al. 2019; Gu et al. 2019). However,
existing scene graph generators are only available in En-
glish, which poses challenges for extending its application
on other languages. One naive approach is to perform cross-
lingual alignment to other target languages by conducting
a superficial word-to-word translation on the scene graphs
nodes, which neglects the contextual information of the sen-
tence or the image. Since a word on a single node can carry
drastically different meanings in various contexts, such an
approach often leads to sub-optimal cross-lingual mapping.
To address this issue, we propose a novel Cross-lingual Hi-
erarchical Graph Mapping (HGM) to effectively conduct
the alignment between languages in the scene graph en-
coding space, which benefits from contextual information
by gathering semantics across different levels of the scene
graph. Notably, the scene graph translation process can be
enhanced by the large-scale parallel corpus (bi-text), which
is easily accessible for many languages (Esplà et al. 2019).

In this paper, we propose UNpaIred crosS-lingual image
captiONing (UNISON), a novel approach to generate im-
age captions in the target language without relying on any
caption corpus. Our UNISON framework consists of two
phases: (i) a cross-lingual auto-encoding process and (ii) a
cross-modal unsupervised feature mapping (Fig. 1). Using
the parallel corpus, the cross-lingual auto-encoding process
aims to train the HGM to map a scene graph derived from the
source language (English) sentence to the space of the tar-
get language (Chinese), and learns to generate a sentence in
the target language based on the mapped scene graph. Then,
a cross-modal feature mapping (CMM) function is learned
in an unsupervised manner, which aligns the image scene
graph features from image modality to language modality.
The features in language modality is subsequently mapped
by HGM, and then fed to the decoder in phase (i) to gener-
ate image captions in the target language. Our experiments
show 1) the effectiveness of the proposed HGM when con-
ducting cross-lingual alignment(§5.2) in the scene graph en-
coding space and 2) the superior performance of our UNI-
SON framework as a whole(§5.1).

2 Related Work
Paired Image Captioning. Previous studies on super-
vised image captioning mostly follow the popular encoder-
decoder framework (Vinyals et al. 2015; Rennie et al. 2017;
Anderson et al. 2018), which mostly focus on generat-
ing captions in English since the neural image captioning
models require large-scale data of annotated image-caption
pairs to achieve good performance. To relax the requirement
of human effort in caption annotation, Lan, Li, and Dong
(2017) propose a fluency-guided learning framework to gen-
erate Chinese captions based on pseudo captions, which
are translated from English captions. Yang et al. (2019)
adopt the scene graph as the structured representation to
connect image-text domains and generate captions. Zhong
et al. (2020) propose a method to select the important sub-
graphs of scene graphs to generate comprehensive caption-

ing. Nguyen et al. (2021) further close the semantic gap be-
tween image and text scene graphs by HOI labels.

Unpaired Image Captioning. The main challenge in un-
paired image captioning is to learn the captioner without any
image-caption pairs. Gu et al. (2018) first propose an ap-
proach based on pivot language. They obviate the require-
ment of paired image-caption data in the target language but
still rely on paired image-caption data in the pivot language.
Feng et al. (2019) use a concept-to-sentence model to gen-
erate pseudo-image-caption pairs, and align image features
and text features in an adversarial manner. Song et al. (2019)
introduce a self-supervised reward to train the pivot-based
captioning model on pseudo image-caption pairs. Gu et al.
(2019) propose a scene graph-based method for unpaired
image captioning on disordered images and captions.

Summary. While several attempts have been made to-
wards unpaired image captioning, they require caption cor-
pus to learn a reasonable cross-modal mapping between vi-
sion and language distributions, e.g. the corpus in (Feng
et al. 2019) is collected from Shutterstock image descrip-
tions, Gu et al. (2019) use the MSCOCO corpus after
shuffling the image-caption pairs. Thus, arguably these ap-
proaches are not entirely “unpaired” as they rely on the la-
belled corpus, limiting their applicability to different lan-
guages. Meanwhile, our method generates captions in target
language without relying on any caption corpus.

3 Methods
3.1 Preliminary and Our Setting
In the conventional paired paradigm, image captioning aims
to learn a captioner which can generate an image caption Ŝ

for a given image I , such that Ŝ is similar to the ground-truth
(GT) caption. Given the image-caption pairs {Ii, Si}NI

i=1 ,
the popular encoder-decoder framework is formulated as:

I → S : I → v → Ŝ (1)

where v denotes the encoded image feature. The training
objective for Eq. 1 is to maximize the probability of words in
the GT caption given the previous GT words and the image.

Compared with paired setting, which relies on paired
image-caption data and can not generalize beyond the lan-
guage used to label the caption, our unpaired setting does
not depend on any image-caption pairs and can be extended
to other target languages. Specifically, we assume that we
have an image dataset {Ii}NI

i=1 and a source-target parallel
corpus dataset {(Sx

i , S
y
i )}

NS
i=1. Our goal is to generate cap-

tion Ŝy in the target language y (Chinese) for an image I
with the help of unpaired images and parallel corpus.

3.2 Overall Framework
As shown in Fig. 1, there are two phases in our framework:
(i) a cross-lingual auto-encoding process and (ii) a cross-
modal unsupervised feature mapping, which can be for-
mulated as the following equations, respectively:

Sx → Sy : Sx → Gx ⇒ Gy → zy → Ŝy (2)

I → Sy : I → Gx,I ⇒ Gy,I → zy,I ⇒ zy → Ŝy (3)
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Figure 1: Overview of our UNISON framework. It has two phases: cross-lingual auto-encoding process and unsupervised
cross-modal feature mapping. The cross-lingual scene graph mapping in the first phase (Top) is designed to map the scene
graph from the source language (e.g. English) to the target language (e.g. Chinese) without relying on a scene graph parser in
the target language. The unsupervised cross-modal feature mapping in the second phase (Bottom) is designed to align the visual
modality to textual modality. We mark the object, relationship, and attribute nodes yellow, blue, and grey in the scene graph.
The English sentences (marked in gray) in parentheses are translated by google translator for better understanding.

where l ∈ {x, y} is the source or target language; Sl is the
sentence in laugnage l; Gl and Gl,I are the scene graphs for
the language l in sentence modality and image modality (I),
respectively; zl and zl,I are the encoded scene graph fea-
tures for Gl and Gl,I , respectively.

The cross-lingual auto-encoding process (shown in top
of Fig. 1) aims to generate a sentence in the target language
given a scene graph in the source language: we first extract
the sentence scene graph Gx from each (English) sentence
Sx using a sentence scene graph parser, and map it to Gy via
our proposed HGM (detail in later section). Then we feed Gy

to the encoder to produce the scene graph features zy , which
the decoder then takes as inputs to generate Ŝy . Note that
the mapping from Gx to Gy is done at the embedding level,
i.e. no symbolic Gy is constructed. This phase addresses the
misalignment among different language domains.

The cross-modal unsupervised feature mapping
(shown in the bottom part of Fig. 1) closes the gap between
image modality and language modality: we first extract the
image scene graph Gx,I from image I , which is in source
language x (English). After that, we map the Gx,I to Gy,I

with the HGM (shared with the first phase). As shown
in Eq. 3, a cross-modal mapping function (zy,I ⇒ zy)
is learned, which maps the encoded image scene graph
features from image modality to language modality. Once
mapped to zy , we can use the sentence decoder to generate
Ŝy . We further elaborate each phase in detail below.

3.3 Cross-Lingual Auto-Encoding Process
Scene Graph. A scene graph G = (V, E) contains three
kinds of nodes: object, relationship and attribute nodes. Let
object oi denote the i-th object. The triplet ⟨oi, ri,j , oj⟩ in
G is composed of two objects: oi (as subject role) and oj
(as object role), along with their relation ri,j . As each ob-
ject may have a set of attributes, we denote aki as the k-th

attribute of object oi. To generate an image scene graph
GI , we build the image scene graph generator based on
Faster-RCNN (Ren et al. 2015) and MOTIFS (Zellers et al.
2018). To generate sentence scene graph Gx, we first con-
vert each sentence into a dependency tree with a syntactic
parser (Anderson et al. 2016), and then apply a rule-based
method (Schuster et al. 2015) to build the graph. The Gy is
mapped from Gx through our HGM module.

Cross-Lingual Hierarchical Graph Mapping (HGM).
Our hierarchical graph mapping contains three levels:
(i) word-level mapping, (ii) sub-graph mapping, and
(iii) full-graph mapping. The semantic information from all
three levels are fused in an self-adaptive manner via a self-
gated mechanism, which effectively takes into account the
structures and relations from the context.

The proposed HGM is illustrated in Fig. 2. Let
⟨eloi , e

l
ri,j , e

l
oj ⟩ ∈ Gl denote the triplet for relation rli,j in

language l, where eloi , e
l
oj and elri,j are the embeddings

representing subject oli, object oli, and relationship rli,j . For-
mally, our hierarchical graph mapping from language x to
language y can be expressed as:

⟨eyoi , e
y
ri,j , e

y
oj ⟩ =⟨fHGM(exoi ,G

x), fWord(e
x
ri,j ),

fHGM(exoj ,G
x)⟩ (4)

fHGM(exoi ,G
x) =αwfWord(e

x
oi) + αsfSub(e

x
oi ,G

x)

+ αffFull(e
x
oi ,G

x) (5)

⟨αw, αs, αf ⟩ =softmax
(
fMLP(fWord(e

x
oi))

)
(6)

where eyoi , eyoj and eyri,j are the mapped embeddings in
target language y; αw, αs, and αf are the level-wise im-
portance weights calculated by Eq. 6; fMLP(·) represents
a multi-layer perception (MLP) composed of three fully-
connected (FC) layers with ReLU activations.
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Word-level Mapping. The word-level mapping relies on a
retrieval function fWord(.): after obtaining an embedding in
language x, fWord(.) retrieves the most similar embedding
in language y from a cross-lingual word embedding space
as illustrated in Fig. 2(a), where cosine similarity is used to
measure the distance. In practice, we adopt the pre-trained
common space trained on Wikipedia following (Joulin et al.
2018). The retrieved embedding is then passed to an FC
layer to obtain a high-dimension embedding in language y.

Graph-level Mapping. Since the relation and struc-
ture of surrounding nodes encode crucial context infor-
mation, we introduce the node mapping with graph-
level information (as illustrated by Fig. 2(b) and 2(c)):
namely sub-graph mapping (fSub) and full-graph mapping
(fFull), which first construct the contextualized embedding in
graph-level and then conduct the cross-lingual mapping on
the produced embedding. More specifically, for sub-graph
mapping, the contextualized embedding is computed by:∑N ′

o

k=1 sconv(e
x
oi , e

x
ok
)/N ′

o, where N ′
o is the total number of

nodes directly connected to node oi, and sconv(·) is the spa-
tial convolution operation (Yang et al. 2019). For full-graph
mapping, the contextualized embedding is calculated by an
attention module:

∑No

k=1 αke
x
ok

, where αk is calculated by
softmax over all the object embeddings exo1:No

. Both fSub

and fFull use a linear mapping to project the resulted con-
textualized (English) embedding to the target (Chinese) em-
bedding space. We consider graph-level mapping only for
the object nodes since relationships only exist between ob-
jects. For relationship and attribute nodes, only word-level
mapping is performed.

Self-gated Adaptive Fusion. To leverage the complemen-
tary advantages of information in different levels, we pro-
pose a self-gate mechanism to adaptively adjust the impor-
tance weights when fusing the embeddings. Specifically, the
importance scores are calculated based on the word-level
embeddings by passing it through a three-class MLP and a
softmax function (Eq. 6). Compared with directly concate-
nating the embeddings from different levels, which assigns
them with equal importance, our fusing mechanism adap-
tively concentrates on important information and suppress
the noises when the context becomes sophisticated.

Scene Graph Encoder. We encode the Gx and
Gy(mapped by the HGM) with two scene graph en-
coders Gx

Enc(·) and Gy
Enc(·), which are implemented by

spatial graph convolutions. The output of each scene graph
encoder can be formulated as:

f l
o
1:Nl

o

,f l
r
1:Nl

r

,f l
a
1:Nl

a

= Gl
Enc(Gl), l ∈ {x, y} (7)

where f l
o
1:Nl

o

, f l
r
1:Nl

r

, and f l
a
1:Nl

a

denote the set of en-
coded object embeddings, relationship embeddings, and
attribute embeddings, respectively. Each object embed-
ding f l

oi is calculated by considering relationship triplets
⟨elsub(oi)

, elrsub(oi),i
, eloi⟩ and ⟨eloj , e

l
rj,obj(oi)

, elobj(oi)
⟩; sub(oi)

represents the subjects where oi acts as an object, and
obj(oi) represents the objects where oi plays the sub-
ject role. f l

ri is calculated based on relationship triplet

(a) Word-level Mapping (b) Sub-Graph Mapping (c) Full-Graph Mapping

Figure 2: Illustration of HGM. Sub-graph mapping only con-
siders those directly connected nodes, while full-graph map-
ping considers all the nodes in the scene graph.

⟨eloi , e
l
ri,j , e

l
oj ⟩. f

l
ai

is the attribute embedding calculated
by object oi and its associated attributes.

Sentence Decoder. As shown in Fig. 1, we have two de-
coders: Gx

Dec(·) and Gy
Dec(·). Each decoder is composed of

three attention modules and an LSTM-based decoder. It
takes the encoded scene graph features as input and gener-
ates the captions. The decoding process is defined as:

ol
t,h

l
t = Gl

Dec

(
fTriplet

(
[zl

o, z
l
r, z

l
a]
)
,hl

t−1, ŝ
l
t−1

)
(8)

ŝlt ∼ softmax(W oo
l
t) (9)

where l ∈ {x, y}, ŝlt is the t-th decoded word drawn from
the dictionary according to the softmax probability, W o is
a learnable weight matrix, ol

t is the cell output of the de-
coder, hl

t is the hidden state. fTriplet(·) is a non-linear map-
ping function that takes the concatenated features as input
and outputs the triplet level feature. zl

oi is calculated by the

attention module defined as:
∑N l

o
i αl

oif
l
oi , where αl

oi is the
attention weight calculated by the softmax operation over
f l
o
1:Nl

o

. zl
ri and zl

ai
are calculated in a similar way.

Joint-training Mechanism. Inspired by the fact that com-
mon structures exist in the encoded scene graph space that
are language-agnostic, which may be leveraged to benefit
the encoding process, we propose joint training mechanism
to enhance the features in target language with the help of
features in the source language. In practice, we train a sepa-
rate scene graph encoder for each language in parallel, then
align the encoded scene graph features by enforcing them to
be semantically close.

Specifically, we train the scene graph encoders (Gx
Enc and

Gy
Enc), sentence decoders (Gx

Dec and Gy
Dec), and the cross-

lingual HGM module (Gx ⇒ Gy), supervised by a parallel
corpus. The two graph encoders encode Gx and Gy into fea-
ture representations and predict sentences (Ŝx and Ŝy) with
the decoders. We minimize the following loss:

LXE =−
∑
t

logPθGx→Sx (s
x
t |sx0:t−1,Gx)

−
∑
t

logPθGy→Sy (s
y
t |s

y
0:t−1,Gy)

(10)

where the sxt and syt are the ground truth words, Gx and Gy

are the sentence scene graphs in different languages with
Gy being derived from Gx using our HGM, θGx→Sx and
θGy→Sy are the parameters of two encoder-decoder models.
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To close the semantic gap between the encoded scene
graph features {zx

o , z
x
a, z

x
r} and {zy

o , z
y
a, z

y
r}, we introduce

a Kullback–Leibler (KL) divergence loss:

LKL =exp
(
KL(p(zx

o)||p(zy
o)
)
+ exp

(
KL(p(zx

a)||p(zy
a)
)

+ exp
(
KL(p(zx

r )||p(zy
r)
)

(11)

where p(·) is composed of a linear layer that maps the input
features to a low-dimension dc, followed by a softmax to get
a probability distribution. The overall objective of our joint
training mechanism is as follows: LPhase 1 = LXE + LKL.

3.4 Unsupervised Cross-Modal Feature Mapping
To adapt the learned model from sentence modality to im-
age modality, we drew inspiration from (Gu et al. 2019) and
adopt CycleGAN (Zhu et al. 2017) to align the features. For
each type p ∈ {o, r, a} of triplet embedding in Eq. 8, we
have two mapping functions: gpI→y(·) and gpy→I(·), where
gpI→y(·) maps the features from image modality to the sen-
tence modality, and gpy→I(·) maps from sentence modality
to the image modality. Note that we freeze the cross-lingual
mapping module trained in the first phase. The training ob-
jective for cross-modal feature mapping is defined as:

Lp
CycleGAN = LI→y

GAN + Ly→I
GAN + λLI↔y

cyc (12)

where LI↔y
cyc is a cycle consistency loss, LI→y

GAN and Ly→I
GAN are

the adversarial losses for the mapping functions with respect
to the discriminators.

Specifically, the objective of the mapping function
gpI→y(·) is to fool the discriminator Dp

y through adversar-
ial learning. We formulate the objective function for cross-
modal mapping as:

LI→y
GAN = ES [logD

p
y(z

y
p)] + EI [log(1−Dp

y(g
p
I→y(z

I
p))] (13)

where zy
p and zI

p are the encoded embeddings for sentence
scene graph Gy and image scene graph Gy,I , respectively.
The adversarial loss for sentence to image mapping Ly→I

GAN

is similarly defined. The cycle consistency loss LI↔y
cyc is de-

signed to regularize the training and make the mapping func-
tions cycle-consistent:

LI↔y
cyc =EI [∥gpS→I

(
gpI→S(z

I
p)
)
− zI

p∥1]
+ Ey[∥gpI→y

(
gpy→I(z

y
p)
)
− zy

p∥1] (14)

The overall training objective for phase 2 becomes:
LPhase 2 = Lo

CycleGAN + La
CycleGAN + Lr

CycleGAN.

3.5 Inference of the UNISON Framework
During inference, given an image I , we first extract the im-
age scene graph Gx,I with a pre-trained image scene graph
generator and then map the Gx,I in x (English) to Gy,I in y
(Chinese) with our HGM module. After that, we encode Gy,I

with Gy
Enc(·) and map the encoded features to the language

domain through gpI→y(·). The mapped features are then fed
to the LSTM-based sentence decoder Gy

Dec(·) to generate the
image caption Ŝy in target language y.

4 Experiments
4.1 Datasets and Setting
Datasets. For cross-lingual auto-encoding, we collect a
paired English-Chinese corpus from existing MT datasets,
including WMT19 (Barrault et al. 2019), AIC MT (Wu et al.
2017), UM (Tian et al. 2014), and Trans-zh (Brightmart
2019)1. We filter the sentences in MT datasets according to
an existing caption-style dictionary containing 7,096 words
in Li et al. (2019). For the first phase, we use 151,613 sen-
tence pairs for training, 5,000 sentence pairs for validation,
and 5,000 pairs for testing. For the second phase, following
Li et al. (2019), we use 18,341 training images from MS-
COCO and randomly select 18,341 Chinese sentences from
the training split of the MT corpus. During evaluation, we
use the validation and testing splits in COCO-CN.

Corpus 0 Obj/G 1 Obj/G 2 Obj/G ⩾3 Obj/G
Raw 17.7% 42.6% 24.4% 15.4%
Back-Trans. 12.3% 13.3% 15.1% 59.3%

Table 1: Statistics of the English sentence scene graphs,
where n Obj/G denotes the number of object in a scene
graph, ⩾ means greater than or equal to 3.

Preprocessing. We extract the image scene graph with
MOTIFS (Zellers et al. 2018) pretrained on VG (Krishna
et al. 2017). We tokenize and lowercase the English sen-
tences, then replace the tokens appeared less than five times
with UNK, resulting in a vocabulary size of 13,194. We
segment the Chinese sentences with Jieba2, resulting in
a vocabulary size of 11,731. The English sentence scene
graphs are extracted with the parser proposed by (Ander-
son et al. 2016). We augment the English sentences with
the pre-trained back-translators (Ng et al. 2019), resulting in
808,065 English sentences in total, which helps enrich the
English sentence scene graphs. Specifically, the statistics in
Table 1 shows that the percentage of scene graphs contain-
ing more than 3 objects is increased from 15.4% to 59.3%.

4.2 Implementation Details
During cross-lingual auto-encoding phase, we set the dimen-
sion of scene graph embeddings to 1,000 and dc to 100.
LSTM with 2 layers is adopted to construct the decoder,
whose hidden size is 1000. We start by initializing the
graph mapping from a pre-trained common space (Joulin
et al. 2018) to stabilize training. The cross-lingual encoder-
decoder is firstly trained with the LXE for 80 epochs, then
with joint loss LPhase 1 for 20 epochs.

During unsupervised cross-modal mapping phase, we
learn the cross-modal feature mapping on the unpaired MS-
COCO images and translation corpus. Specifically, we in-
herit and freeze the parameters of the Chinese scene graph
encoder, HGM, and Chinese sentence decoder from cross-
lingual auto-encoding process. The cross-modal mapping

1https://doi.org/10.5281/zenodo.3402023
2https://github.com/fxsjy/jieba
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Method B@1 B@2 B@3 B@4 METEOR ROUGH CIDEr
Setting w/o caption corpus

U
n. Graph-Aligh(En)(Gu et al. 2019) +GoogleTrans. 39.2 16.7 6.5 2.3 13.2 26.5 9.3

UNISON 44.9 19.9 8.6 3.3 16.5 29.6 12.7
Setting w/ caption corpus

Pa
ir FC-2k (En)(Rennie et al. 2017)+GoogleTrans. 58.9 38.0 23.5 14.3 23.5 40.2 47.3

FC-2k (Cn, Pseudo COCO)(Rennie et al. 2017) 60.4 40.7 26.8 17.3 24.0 43.6 52.7

U
n. UNISON 63.4 43.2 29.5 17.9 24.5 45.1 53.5

Table 2: Performance comparisons on the test split of COCO-CN. ‘Un.’ is short for Unpaired. B@n is short for BLEU-n. ‘En’
and ‘Cn’ in the parentheses represent English and Chinese, respectively. ‘GoogleTrans’ stands for google translator.

functions and discriminators are learned with LPhase 2. We
optimize the model with Adam, batch size of 50, and learn-
ing rate of 5 × 10−5. The discriminators are implemented
with a linear layer of dimension 1,000 and a LeakyReLU
activation. We set λ to 10. During inference, we use beam
search with a beam size of 5. We use the popular BLEU (Pa-
pineni et al. 2002), CIDEr (Vedantam, Lawrence Zitnick,
and Parikh 2015), METEOR (Denkowski and Lavie 2014)
and ROUGE (Lin 2004) for evaluation.

4.3 Model Statement
To gain insights into the effectiveness of our HGM, we con-
struct ablative models by progressively introducing cross-
lingual graph-mappings in different levels:
GMBASE is our baseline model, which adopts Google’s MT
system (Wu et al. 2016) to symbolically map the scene graph
from English to Chinese in a node-to-node manner.
GMWORD maps the English scene graph to Chinese through
word-level mapping in the scene graph encoding space.
GMWORD+SUB. considers both word-level and subgraph-level
mappings by directly concatenating them.
HGMBASE considers mappings across all levels, which are
directly concatenated and passed through an FC layer.
HGM is similar to HGM-base, except that it adopts a self-
gated fusion to adaptively fuse the three features, as illus-
trated by Eq. 5 and Eq. 6.

5 Results and Analysis
5.1 Overall Results
We demonstrate the superior performance of the proposed
UNISON framework on Chinese image captions generation
task. We first compare UNISON with the SOTA unpaired
method Graph-Align(Gu et al. 2019) under the setting with-
out using any caption corpus. More specifically, we run the
Graph-Align3 and translate the generated English captions
to Chinese by google translator for comparison. From the
result in Table 2, we can find that our method significantly
surpasses Graph-Align with translation, demonstrating that
translation in graph level is superior to translation in sen-
tence level. This is reasonable since the graph level align-
ment is able to consider structural and relational informa-
tion of the whole image, while sentence level translation

3Code is acquired from the first author of (Gu et al. 2019).

suffers from information loss as it can only observe the pre-
dicted sentences, and can be severely affected if the transla-
tion tools perform poorly. We do not compare with the other
unpaired method (Song et al. 2019) here, as the dataset and
codes are not publicly available.

To further verify the effectiveness of our framework, we
compare UNISON with the supervised pipeline methods:
(i) FC-2k(En)+Trans. We train the FC-2k model on image-
caption pairs(En) of MS-COCO and translate the gener-
ated captions(En) to caption(Cn) using Google translator;
(ii) FC-2k(Pseudo). We train the FC-2k model on pseudo
Chinese image-caption pairs of MS-COCO, where the cap-
tions(Cn) are translated by Google translator from cap-
tions(En). For such comparisons, we fine-tune our cross-
lingual mapping on the unpaired captions. The results show
that our method significantly and consistently outperforms
the FC-2k(En)+Trans. and FC-2k(Pseudo) models in all
metrics, despite our unpaired setting is much weaker.

Method SG-m S-gate B@1 B@4 M R
GEN ✗ ✗ 25.0 5.2 14.4 27.3
GMBASE ✓ ✗ 26.6 7.3 15.1 28.1
GMWORD ✓ ✗ 28.1 8.0 15.4 28.2
GMWORD+SUB. ✓ ✗ 29.2 9.9 16.3 30.2
HGMBASE ✓ ✗ 29.6 9.9 16.5 30.4
HGM ✓ ✓ 30.4 11.1 17.0 31.9

Table 3: Performance comparison between variants of HGM
on Chinese sentence generation task. Test split of MT corpus
is used for evaluation. ‘SG-m’ is cross-lingual scene graphs
mapping. ‘S-gate’ is self-gate fusion mechanism.

5.2 Effectiveness of Cross-Lingual Alignment
Analyzing the superior performance of HGM. We con-
duct experiments on MT task to demonstrate our HGM’s ef-
fectiveness in cross-lingual alignment, which is shown in Ta-
ble 3. The advantage of HGM lies in four aspects: (1) The
cross-lingual graph translation is effective. Our HGM and its
variants achieve considerably higher performance compared
with GEN, which directly generates Chinese sentences based
on English scene graphs. (2) The cross-lingual alignment in
the encoding space is superior than direct symbolic trans-
lation. GMWORD achieve considerably higher performance
compared with GMBASE, which proves that the scene graph
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encoding contains richer information and is more suitable
for cross-lingual alignment. (3) Performing node mapping
considering features across different graph levels boosts the
performance. When we consider full-graph and sub-graph
level features, the cross-lingual alignment starts achieving
significant performance improvement, which verifies the
importance of structural and relational information in the
context. E.g., HGM outperforms GMWORD in B@1, B@4,
METEOR, and ROUGE metrics by 8.2%, 38.8%, 10.4%,
13.1%, respectively. (4) The adaptive self-gate fusion mech-
anism is beneficial. We can observe that HGMBASE is sur-
passed by HGM by a large margin. As shown in Table 5, the
role of self-gate fusion becomes more essential when HGM
is applied to image scene graphs.

Joint training benefits the enconding process. We train
our models using the joint loss LPhase 1, where LKL enforces
the distributions of latent scene graph embeddings between
different languages to be close. Table 4 shows that the mod-
els trained with joint loss consistently outperforms their
counterparts with only LXE for all metrics, which indicates
that the encoding process of the target language can benefit
from the source language.

Method LKL B@1 B@2 B@4 M R
GMWORD ✓ 28.1 16.2 8.0 15.4 28.2

w/o joint ✗ -0.4 -0.4 -0.3 -0.1 -0.2
GMWORD+SUB. ✓ 29.2 17.9 9.9 16.3 30.2

w/o joint ✗ -0.3 -0.3 -0.4 -0.2 -0.1
HGM ✓ 30.4 19.1 11.1 17.0 31.9

w/o joint ✗ -0.5 -0.3 -0.3 -0.2 -0.4

Table 4: Effectiveness of joint training. Results are report on
Chinese sentence generation task (test set).

5.3 Effectiveness of Cross-Modal Mapping
Table 5 shows the performance of Chinese image captioners
with and without CMM. We can see that adversarial training
can consistently improve the model’s performance. Specif-
ically, CMM can boost the performance of our HGM by
3.8%(B@1), 0.7%(B@4), 1.2%(ROUGE), 3.0%(CIDER),
respectively. Notably, GMWORD+SUB. and HGMBASE perform
even worse than GMBASE, which is because the generated
image scene graphs are noisy with repeated relation triples
(as explained in §5.5), leading to degradation on contex-
tualized cross-lingual graph mapping (sub-graph and full-
graph), whereas self-gated fusion can tackle this problem by
decreasing the importance of noisy graph-level mapping.

5.4 Human Evaluation
Table 6 shows human evaluation results. The caption qual-
ity is measured by fluency and relevancy metrics. The flu-
ency measures whether the generated caption is fluent. The
relevancy measures whether the caption correctly describes
relevant information of the image. Metrics are graded by:
1-Very poor, 2-Poor, 3-Adequate, 4-Good, 5-Excellent. We
invite 10 Chinese native speakers from diverse professional
backgrounds to participate in the evaluation. Table 6 reports

Method B@1 B@4 M R C
GMWORD 40.1 2.2 15.6 28.4 9.5
GMWORD+CMM 43.1 3.0 16.5 29.4 12.6
GMWORD+SUB. 37.3 2.5 14.3 27.0 7.9
GMWORD+SUB.+CMM 40.6 2.8 15.2 28.3 10.8
HGMBASE 38.0 2.4 14.4 27.3 8.0
HGMBASE+CMM 39.8 2.6 14.8 27.7 10.2
HGM 41.1 2.6 15.7 28.4 9.7
HGM+CMM 44.9 3.3 16.5 29.6 12.7

Table 5: Effectiveness of CMM. Results are reported on test
set of COCO-CN. C is short for CIDEr.
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Figure 3: Qualitative results of different unsupervised cross-
lingual caption generation models.

the mean scores, which illustrate that our method can gener-
ate relevant and human-like captions.

Metric GMWORD GMWORD+SUB. HGM HGM⋆ GT
Rel. 2.78 2.96 3.22 3.96 4.86
Flu. 2.49 2.76 3.05 4.06 4.91

Table 6: Human evaluation on COCO-CN test split. HGM⋆

represents fine-tuned HGM. Models are trained with CMM.
Rel. and Flu. is short for relevancy and fluency, respectively.

5.5 Qualitative Results
We provide some Chinese captioning examples for MS-
COCO images in Fig. 3. We can see that our method can
generate reasonable image descriptions without using any
paired image-caption data. Also, we observe that the image
scene graphs are quite noisy, which potentially explains the
performance degradation when introducing graph-mappings
without self-fusion mechanism (see Table 5).

6 Conclusion
In this paper, we propose a novel framework to learn a cross-
lingual image captioning model without any image-caption
pairs. Extensive experiments demonstrate the effectiveness
of our proposed methods. We hope our work can provide
inspiration for unpaired image captioning in the future.
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