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Abstract

Many implicit inferences exist in text depending on how it is
structured that can critically impact the text’s interpretation
and meaning. One such structural aspect present in text with
chronology is the order of its presentation. For narratives or
stories, this is known as the narrative order. Reordering a
narrative can impact the temporal, causal, event-based, and
other inferences readers draw from it, which in turn can have
strong effects both on its interpretation and interestingness.
In this paper, we propose and investigate the task of Narra-
tive Reordering (NAREOR) which involves rewriting a given
story in a different narrative order while preserving its plot.
We present a dataset, NAREORC, with human rewritings of
stories within ROCStories in non-linear orders, and conduct a
detailed analysis of it. Further, we propose novel task-specific
training methods with suitable evaluation metrics. We perform
experiments on NAREORC using state-of-the-art models such
as BART and T5 and conduct extensive automatic and human
evaluations. We demonstrate that although our models can per-
form decently, NAREOR is a challenging task with potential
for further exploration. We also investigate two applications
of NAREOR: generation of more interesting variations of sto-
ries and serving as adversarial sets for temporal/event-related
tasks, besides discussing other prospective ones, such as for
pedagogical setups related to language skills like essay writing
and applications to medicine involving clinical narratives.

1 Introduction
From the onset of language, storytelling has been crucial
to the transmission of knowledge (Ramanujan 1991). It has
been well-established that readers remember only an abstract
representation of stories (Schank 1972). Before the print-
ing press, classes engaged with oral teaching of scriptures,
such as rabbis, underwent extensive training to reproduce
them with no distortion (Bos 1995). Formally analyzing story
structure commenced with the ancients, through works like
Aristotle’s Poetics (Halliwell et al. 1998). These studies led
to the concept of a narrative, distinct from story events.

For a story, there are two orders: the chronological order
of events as they happened and their order as presented in
text. These have been analyzed under different names (Propp
2010). We refer to them as story order and narrative order,
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Figure 1: Example of our task and dataset, with original
input story S on the left, target narrative order πi′ on the top,
and human rewritten story S′ on the right.

or story and narrative, respectively. Genette (1983) enlists
typical orders observed in writing. A linear order narrates
events in same sequence as story order. The in medias res
order starts with events in the middle, goes back to the start,
then proceeds to the end. Changing from near-linear to more
“interesting” orders is prevalent in cinema, e.g. The Imitation
Game starts with Turing’s post-WWII 1951 interrogation.
Memento and Naked Lunch are known for their esoteric narra-
tive orders - loosely described as retrogade (reverse of linear)
and syllepsis (lacking chronological logic), respectively.

Morgan (2017) explains how narratives surpass “mere
chronicle”. Narrative orders of presenting materials in scien-
tific explanations directly affects how researchers interpret
and understand them since the order implies not only tempo-
ral but other inferences about causality, processes of change,
etc. Narrative order can thus influence model explainability,
especially for explanation generation (Rajani et al. 2019), a
recent area-of-interest (Wiegreffe and Marasovic 2021).

In this work, we do not delve into the complex and some-
what subjective question of which narrative order is most suit-
able or “interesting”. We focus on how a given story in linear
narrative order can be rendered in a specified, non-linear,
target order while preserving plot. We call this Narrative
Reordering, or NAREOR. To the best of our knowledge, we
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are the first to propose and investigate this task.
Our work is not entirely adrift from past research in this

vein. Montfort (2007) tries generating fiction narratives from
basic existent-event info with a special focus on narrative
order, using a rule and planning approach. Unlike our work,
their rule-based system does not involve learning. Moreover,
being generation in a given narrative order from unstructured
story elements rather than reordering an existing story, their
setting does not require solving challenges such as disentan-
gling events from stories which are inherent in NAREOR.

Formally, NAREOR involves reordering a story S with
sentences s1, s2, ..., sn to a reordered story S′ with sen-
tences s′1, s

′
2, ..., s

′
n according to a given target narrative or-

der πi′ . πi′ is a permutation {πi′ |πi′ : i
′ → f(i′); 1 ≤ i′ ≤

n; f(i′) = i} mapping from target sentence1 indices i′ to
original sentence indices i, where f is a one-to-one and onto
function from {1, 2 . . . n} to itself. In practice, we write πi′

as the sequence {i = f(i′)}i′=n
i′=1 (f and i′ become implied).

NAREOR’s challenges are evident from the example in
Figure 1. Simply reordering sentences is far from sufficient,
as rewritten text must be adjusted to handle coreference,
tense, and other discourse dependencies. For example, nar-
rative order affects tense since it can change the first 2 of 3
Reichenbach times (Reichenbach 1947) that together deter-
mine tense - speech, reference, and event time. NAREOR
involves pinpointed and critical edits; a single missed or in-
correct edit can result in an entirely different or invalid plot.
Since πi′ can be seen as a control, NAREOR is a controllable
generation task (see Appendix A for discussion)

NAREOR is also a novel form of story-level paraphrasing
and can be used to generate more interesting variations of
stories (§5.1). Outputs can also serve as challenge sets for
temporal or event-based tasks such as sentence ordering to
assess the temporal reasoning capabilities of models (§6).
NAREOR can also be potentially useful for pedagogical
setups related to language skills such as essay writing, and
applications to medicine involving clinical narratives (§6).

To complement NAREOR, we present a dataset, NARE-
ORC, with human rewritings of stories from ROCStories
(Mostafazadeh et al. 2016a) in non-linear orders. We conduct
a thorough analysis, examining various ways humans mod-
ify the text when reordering (§2). We perform experiments
with BART, T5, and GPT-2 on NAREORC using novel, task-
motivated training methods we propose (§3). We evaluate
our models with both an automatic and human evaluation
along with qualitative analysis (§5). We demonstrate that our
proposed training methods are effective but have room for
further improvement. We illustrate that NAREOR is indeed a
challenging task with potential for further exploration.2

2 Dataset: NAREORC
2.1 Dataset Construction
Source Corpus: ROCStories has ≈ 98.5K five-sentence
English stories. For the dev and test splits, each example

1For simplicity, we assume narrative to break up into sentence
units. Our task is still very challenging as shown through this paper.

2Code+data at github.com/vgtomahawk/NAREORCamReady.

contains a four-sentence story prefix with a one-sentence co-
herent and incoherent ending. We treat the coherent endings
as the fifth sentences for NAREORC’s dev and test stories.

Assigning Target Narrative Orders: The target narrative
order πi′ is not part of the ROCStories input. We devise a
randomized procedure to assign a reasonable πi′ for each
example. We sample 3 permutations from the set of non-
identity n!-1 permutations.3 We find Kendall τ correlations
(Kendall 1938) between identity permutation In, {1,2,3,4,5},
and each of the three permutations, retaining the lowest as
πi′ . We prefer this to sampling at random because we want
our examples to be sufficiently non-trivial w.r.t. the task.

Supervised & Unsupervised Splits: We set aside 600,
200, 200 stories from train, dev, and test splits of ROCStories.
These act as NAREORC’s trainSup, devSup, and testSup
splits, for which we collect human references. Remaining
stories in each ROCStories split are retained as trainUnsup,
devUnsup, and testUnsup of size 95161, 1671, 1671.

Human Annotation: For trainSup and devSup, we anno-
tate one reference per example. For testSup, we collect two
each to help reference-based metrics. We conduct our study
on AMT. To understand task difficulty, we ask a “Hardness”
question with options VeryEasy, Easy, Moderate, Hard, Very-
Hard. On average, annotators found ≈70% of rewritings to
be Moderate or Hard, demonstrating that NAREOR is quite
difficult even for humans. More details in Appendix B.

2.2 Dataset Analysis
Overall Statistics
We find human-rewritten stories S′ are ≈1.2x as long as input
stories S on avg in words and characters. We expect this given
the narrative reordered story favors resolution of sentence-
order dependent elements like ellipses (s4 and s′4 in Figure
1) and pronouns (s3 and s′2 in Figure 1) to explicit forms. It
also requires insertion of time expressions (e.g Before that,
3rd row, Table 1) to clarify the now disrupted flow.

Unique n-gram ratio URn(S) is the fraction of unique
n-grams of length n in S. We observe all three mean URs
(n = 1, 2, 3) to decrease from input to reference story. UR1:
0.692→0.669, UR2: 0.940→0.931, UR3: 0.989→0.984. In-
creased n-gram repetition could have reasons similar to length
increase, causing cross-sentence repetition. Figure 1 demon-
strates this: S only has one instance of money. Conversion
of inherit any of it (s3) → inherit any of the money (s′2) and
enough to take time (s4) → enough money to take some time
(s′4), among other changes, results in four in S’.

How Verb Forms Change
We note changes in occurrence distribution across verb-
related pos tags from S to S′ using NLTK’s pos tagger.
Gerund fraction (pos=VBG) (e.g. I like playing) increases
7.7%→9.5%. Past participle fraction (pos=VBN) (e.g. He
had broken it) ≈ doubles, 6.5%→12.4%. Past tense frac-
tion (pos=VBD) (e.g. He broke it) decreases 60.9%→54.6%.

3In our case, n = 5 as we experiment with ROCStories.
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Other verb-related pos fractions remain fairly constant. In-
crease in past participle can be explained by frequent con-
version to past perfect tense during reordering (e.g. parents
passed away→parents had passed away in Figure 1).

How Narrative Reordering Alters Sentences
We look at corresponding sentence pairs {si, s′i′} in each
story, specifically 4 linguistic change types - ellipsis, tense,
time expressions (timexes), coreference. We tried detecting
these using off-the-shelf tools, and did not find any for ellipsis.
Timex detectors like SUTime (Chang and Manning 2012)
only mark strict timexes (e.g. last Sunday) but not others (e.g.
before midsems). We hence hand-annotate these four for each
{si, s′i′} per testSup example. These are further described in
Table 1. We find over half (51.5%) the examples show ≥3 of
4 change types at once, and 89.5% show ≥2. This shows that
NAREOR requires performing different changes in tandem.

3 Methodology
3.1 Training Methods
We introduce two task-specific training methods.

NAR-denoise (NAR-d)
This is partially inspired by how humans rewrite; a com-

mon approach is to first reorder sentences naively (simply
swap positions), then make other changes. NAR-d attempts
to mimic this, learning to convert from naive orderings to
high-quality text. It involves two stages of model training.
1. Denoise-1S: Stage 1 is unsupervised training through
story-level denoising. We use trainUnsup without human-
written reorderings, and simulate them using the original
human-written ROCStories (the outputs during training).
Deletion and swapping of tokens are used to create inputs
from these stories that simulate naive reorderings. This nois-
ing aims to emulate the reverse of the content editing that
occurs during NAREOR. Specifically, we randomly delete
12.5% of tokens and swap another 12.5%. We found human-
rewritten stories were, on average, in combination of token
length (longer) and swappings, ≈25% different from the
originals. We split this between deletion and swapping to
approximate naively-reordered stories. Story sentences S are
first reordered as per πi′ to produce S′

naive, then each is
edited to fit the new narrative. We swap tokens as humans
often swap words like coreferent mentions based on how the
narrative order changes. Hence, this stage learns to denoise
text by converting noised versions to human-written text.
2. Denoise-2S: The second stage is supervised training atop
the model above. The inputs are the 600 original stories
in trainSup, with sentences naively reordered as per target
narrative order πi′ to S′

naive, and the outputs are the human
rewritings of these. The model learns to further translate from
naively-reordered text to fluent human-written text.

NAR-reorder (NAR-r)
Unlike NAR-d, NAR-r models themselves handle reordering
given the target order rather than naive reordering beforehand.
• Input Encoding Scheme: We describe how the task input
{S,πi′} is encoded as a token sequence for both Stage-1
and 2 training. To enable the model to distinguish different

sentences, we prefix each s ∈ S with a tag from <a> to
<e>. We specify πi′ as a sequence of these, separated from
S by <sep>. NAREOR involves rearranging mention types
among coreference chains (see §2.2), so we use NeuralCoref
(HuggingFace 2020) to detect these chains. For each, we
assign a unique uppercase tag (<X>) to replace its mentions.
At the end of the input, we list each tag and the head mention
of its coreference chain in order. We then append <st> to
mark the end of the input. An illustration of the scheme
follows: <a> Since I had front seat tickets, I was able to directly
see <X1>. <b> <X1> tried to reach out with <X1> <X2>.
<c> I grabbed <X2> and <X1> pulled me on stage. <d><X1>
began to sing. <e> The concert had started. <sep> <e> <d>
<a> <b> <c> <X1> The music artist <X2> her hand <st>
• Reorder-1S: We use examples from trainUnsup for stage 1.
It is problematic to train for the forward direction of our task
S, πi′ → S′ since S′ is not known. Approximating S′ using
S′
naive would hurt output fluency. We instead train in the

inverse direction S′
naive, π

−1
i′ → S, where π−1

i′ ;π−1
i′ (πi′) =

In is the inverse permutation of πi′ . To reduce train-test
mismatch, we use the inverse formulation half the time, and
an autoencoding one, i.e. S, In → S the other half.
• Reorder-2S: trainSup examples are used to further finetune
on reorder-1S. We train in the task direction S, πi′ → S′.

3.2 Chosen Models
We choose several pretrained generation models: GPT-2,
BART, and T5. We finetune all using both our training meth-
ods to produce denoise-1S (d-1S), denoise-2S (d-2S), reorder-
1S (r-1S), and reorder-2S (r-2S) versions. GPT-2 (Radford
et al. 2019) is a Transformer-based language model trained
on WebText. BART (Lewis et al. 2020) and T5 (Raffel et al.
2020) are Transformer seq2seq models. BART is trained as
a denoising autoencoder to reconstruct original from noised
text. T5 is designed to be effective for transfer learning. We
use HuggingFace’s implementations of their base versions.4

3.3 Automatic Evaluation Metrics
Reference-Based Metrics assess the similarity between
generated text and human-written references. We use BLEU
(Papineni et al. 2002), METEOR (Banerjee and Lavie 2005),
and BERTScore (Zhang et al. 2019). We compare generated
text with the two references per testSup example.5

Target Order Fidelity (TOF) is defined as how closely
the reordered text matches the given target narrative order.
E.g. given S = {s1, s2, s3}, πi′ = {3, 2, 1}, and S′ =
{s′1, s′2, s′3}, we wish to see if s1 has correctly been translated
to s′3. We introduce TOF-METEOR and TOF-BERTScore.
These assess the average METEOR and BERTScore values
for each aligned pair {si, s′i′} ∀i (where i′ refers to the tar-
get index for si). Higher values correspond to more content
preservation, where each output sentence is more likely in the
correct position. Some drop is expected in modulating for πi′ ,
but the overall content should be faithful. These metrics serve
more as validation, where reasonable values (e.g. > 50)6 are

4See §4 for further training/finetuning details.
5Correlates well with human evaluation as shown in §5.
6Assuming the values are multiplied by 100.
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Change Type Story Examples with Changes Highlighted

Ellipsis
(Sent: 5.7%)
(Stor: 27.5%)

S: 1. All of the Ross family has red hair, except Henry. 2. Henry has blonde hair that is very curly. 3. Henry’s father often
teases Henry’s mother about the mailman. 4. The mailman has blonde, curly hair, but he is very ugly. 5. His dad’s teasing
makes Henry feel bad. ; πi′ : {1, 5, 4, 2, 3}
S’: 1. All of the Ross family has red hair, except Henry. 2. His dad’s teasing about the mailman makes Henry feel very
bad. 3. This is because the mailman has blonde, curly hair, but he is very ugly. 4. Henry also has blonde hair that is very
curly. 5. Henry’s father often teases Henry’s mother about the mailman.

Tense
(Sent: 19.1%)
(Stor: 64.0%)

S: 1. Sam bought a new SUV. 2. It was all wheel drive. 3. He figured he would take it off road. 4. He hit a few hard bumps
and broke his suspension. 5. Sheepishly, he brought it to the dealership for repair. ; πi′ : {2, 3, 5, 1, 4}
S’: 1. Sam’s SUV was an all wheel drive. 2. He thought he could take it for a spin off road. 3. Embarrassed by the outcome
of his drive, Sam took the car to the dealership for repair. 4. He had just bought the SUV. 5. The car had hit a few hard
bumps and the suspension broke when Sam took it off road.

Timexes
(Sent: 34.0%)
(Stor: 85.5%)

S: 1. There was once a kitten that did not have a home. 2. The poor kitten walked around cold and hungry. 3. One day, a
nice lady let the kitten into her home. 4. The woman gave the kitten food and a bed. 5. The kitten was happy to be adopted.
; πi′ : {4, 2, 5, 1, 3}
S’: 1. A woman gave a home to a cat. 2. Before that it was cold and hungry. 3. It made the cat happy to have a home. 4.
The little cat originally was homeless. 5. But in the end, it met the nice woman and she let it in.

Coreference
(Sent: 20.7%)
(Stor: 71.5%)

S: 1. Jimmy wandered around the city looking for a place for a soda. 2. Before he knew it, he was in an unfamiliar area. 3.
He was scared of strangers and didn’t want to ask anyone. 4. Soon a policeman came by and asked if he was lost. 5. He
told him that he was lost. ; πi′ : {5, 4, 2, 1, 3}
S’: 1. Jimmy told a police officer that he was lost. 2. He was lucky the police showed up in the first place. 3. He had no
idea where he was. 4. He had wandered off when trying to find somewhere to buy a soda. 5. It was pretty terrifying being
all alone in a mysterious area with strangers.

Table 1: Sentence pairs in testSup stories are annotated for 4 linguistic change types common in NAREORC. Sent denotes % of
sentence pairs showing that change type. Stor denotes story pairs (S, S′) where ≥ one sentence pair shows that change type.

sufficient. Lower values indicate more changing of the text
which may be necessary for certain narrative reorderings.

4 Experiments
Model Finetuning and Generation
For finetuning our models, we try different combinations
of learning rates (LR) for both stages. We look at either
the loss (for BART and T5) or perplexity (for GPT-2) on
the respective validation splits (devUnsup for 1st stage and
devSup for 2nd), and choose the epoch with the lowest.

We evaluate each model on testSup, where we can directly
compare results to NAREORC’s human rewritings. We gen-
erate a single output per test example. The inputs are the
original examples to NAR-r models and the S′

naive of the
examples to NAR-d models. See §3.1 for more details.

We only keep the first five sentences of each output. For
BART and T5, we use beam search with a width of 5.7 For
GPT-2, we use a nucleus sampling budget (Holtzman et al.
2019) of 0.9 and output length limit of 500. We try various
softmax temperatures and find 0.9 performs best. For GPT-2,
during finetuning, it is given the concatenation of the input
plus output. During generation, it is only fed the input for
which it generates a continuation (the output). We noticed
that many GPT-2 generations included trailing exclamation
marks, and strip these if more than four occur in a row.8

Human Evaluation
Annotators evaluate 100 testSup examples each from the orig-
inal stories, human rewritings, outputs from our two-stage

7Nucleus sampling did not work as well for BART and T5.
8See Appendix C for more finetuning/generation details.

models, and a subset of one-stage models. Each example is
evaluated by two annotators. See Appendix D for more.

They evaluate fluency, coherence, logic, and plot preserva-
tion (plot-pres) on 1-5 scales. Fluency is a measure of how
fluent and readable a text is. Coherence is how well individ-
ual sentences fit together (Barzilay and Lapata 2008). Logic
is the plausibility of described events. Plot-pres is how well
reordered text preserves the plot of the original. This includes
details about characters, events, and interactions between
them, encompassing its semantic and temporal aspects.

We also conduct an interestingness (interest) study on
human rewritings and outputs from our BART-2S and T5-2S
models. Each reordered story’s interestingness w.r.t. suspense
and time flow compared to the original are evaluated from
1-5 by two annotators. We ask the following: “On a scale
of 1-5, with 1 being most decrease in interestingness and 3
being same level of interestingness and 5 being most increase
in interestingness, how interesting is the suspense and flow
of time in the story S, compared to the original story O? How
exciting did you find the story as you read through it?”

5 Results and Analysis
We present evaluation results of our 2S and subset of 1S
models on testSup compared to human rewritings and original
stories. Tables 2 and 3 contain human evaluation results, and
Table 4 automatic evaluation results. Correlations between
automatic and human metrics are in Table 5. Table 6 contains
qualitative examples, with more in Appendix E.

5.1 Analysis of Human Evaluation Results
We begin by analyzing human evaluation performance
through results in Tables 2 and 3.
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Method\Metric Fluency Coherence Logic Plot-pres
Original stories 4.209 4.0 3.851 N/A

Human rewritings 3.797 3.723 3.784 3.972
GPT2-d-2S 3.635 3.399 3.399 3.708
GPT2-r-2S 3.595 3.378 3.291 3.375
BART-d-1S 3.628 3.412 3.318 3.847
BART-d-2S 3.818 3.507 3.493 3.722
BART-r-2S 3.757 3.439 3.493 3.861

T5-d-2S 3.764 3.419 3.5 3.889
T5-r-1S 3.655 3.378 3.486 3.847
T5-r-2S 3.784 3.595 3.520 3.861

Table 2: Average human evaluation results on testSup (excl.
interestingness), rated from 1-5. Bold corresponds to best
model performance per metric, and underline 2nd-best.

Method: Human BART-d BART-r T5-d T5-r
Interest 3.75 3.367 3.483 3.533 3.3

Table 3: Average interestingness results on testSup, rated
from 1-5 (3 represents equal to original story). Models are 2S
versions. Bold/underline denote 1st/2nd-best performance.

Fluency, Coherence, Logic: Original stories are the high-
est for all three metrics9 with human rewritings second for co-
herence and logic, beating the models by a noticeable degree.
BART-d-2S and T5-r-2S are generally the best-performing
models here. BART-d-2S slightly outperforms human rewrit-
ings on fluency, with T5-r-2S closely behind, demonstrating
that these models are quite fluent. These models also outdo
their 1S variants. GPT-2 models perform worst on all metrics.

Plot-pres: We see that human rewritings best preserve the
plot of the original stories. T5-d-2S is the best performing
model on plot-pres, followed by BART-r-2S and T5-r-2S.
GPT-2 models perform the worst at preserving the plot of the
original stories (which we show qualitatively in §5.3).

Interestingness: Human rewritings score highest on inter-
est. Humans rewrite the text in more creative ways, whereas
BART and T5 models are more conservative (see §5.2 TOF
and §5.3). Narrative reorderings for all methods are more
interesting, on average, than original stories. NAREOR can
indeed be used to generate more interesting story variations.

5.2 Analysis of Automatic Evaluation Results
We now analyze the automatic evaluation performance of the
different methods in Table 4.

BERTScore, BLEU, METEOR: We see from Table 5 that
these reference-based metrics correlate quite well with human
eval metrics, particularly plot-pres. T5-d-2S performs best
followed by BART-d-2S. Similar to the human evaluation,
2S models outperform their 1S variants, and GPT-2 models
perform worst overall. Denoise outperforms reorder variants
and generate more similar text, on avg, to human references.

9Although these metrics slightly decrease for reordered sto-
ries, we note that NAREOR’s main purpose is for more interesting
tellings of the same story which we do achieve (see Table 3).

Target Order Fidelity (TOF): It appears all approaches
are reasonable (e.g. > 50 for TOF metrics), and outputs are
likely in the correct target orders. Human rewritings have the
lowest TOF; humans are less conservative while rewriting
(shown in §5.3). GPT-2 models modify text second heaviest,
but perform worst overall. They introduce more errors, e.g.
repeating or hallucinating to degrade text quality and plot-
pres (§5.3). BART and T5 models are more conservative. It
appears they have learned to perform minimal but effective
edits (§5.3). They lag behind humans and heavier editing may
be required to further improve. Lastly, it appears the reorder
models modify text more heavily than their denoise variants.

5.3 Qualitative Analysis
From Table 6, we see that humans modify text heavily to suit
the reorderings and are sometimes quite creative, e.g. phras-
ing Fred as having grown accustomed to the bird being his
alarm clock (ex. 2). Humans successfully handle necessary
coreferences, tenses, time expressions (timexes), etc.

GPT-2 modifies text quite heavily but suffers from incor-
rect coreference while introducing spurious tokens, repetition,
or hallucations. For ex. 2, GPT2-r changes the plot greatly,
stating Fred woke him up for work and This was because he
liked Fred (likely due to poor coreference), and hallucinating
This bird, however, did not like Fred. For ex. 4, it repeats
Joey’s excitement many times, while hallucinating a roller
coaster that was absent in the original story.

BART and T5 models are more conservative, but their edits
are important and effective. They handle coreference, tense,
and timexes quite well. These pinpointed and critical edits
are required to maintain plot. For ex. 1, they modify He told
him that he was lost to Jimmy told a/the policeman that he
was lost given that sentence is now at the beginning. BART-d
impressively modifies tense by converting Soon a policeman
came by and asked if he was lost to The policeman had come
by and asked if he had been lost. For ex. 2, T5-d converts
enjoyed to had enjoyed since the bird no longer singing is
now prior information, and adds the timex After a while to the
beginning of the last output sentence. BART-r successfully
changes Fred began to like the bird to He had begun to
like the bird. For ex. 3, BART-d inserts the timex Earlier at
the beginning of the second output sentence, correctly and
unambiguously conveying its underlying temporality w.r.t.
the first. BART-d correctly changes saw a turtle to had seen
a turtle, while BART-r does so for stepped to had stepped.
For ex. 4, BART and T5 models all resolve the Disneyland
ellipsis by converting Joey had a great time to Joey had a
great time at Disneyland, while GPT2-d cannot.

However, the BART and T5 models are imperfect. For ex.
1, BART-r hallucatines lost his wallet (original story does
not involve a wallet), T5-d inserts an incorrect timex of Soon
after at the beginning of the second output sentence, and
T5-r hallucinates asked if he had a soda (this is not asked
in the original story). For ex. 2, BART-r incorrectly converts
the bird no langer sang to Fred no longer sang, likely due
to coreference difficulties. For ex. 3, T5-r does not convert
Suddenly to Earlier like BART-d, giving a false interpretation
that Eric slipped after his rescuer’s arrival. BART-r does not
mislead with Suddenly, but is ambiguous and has no timex.
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Method\Metric BERTScore BLEU METEOR TOF-BERTScore TOF-METEOR
Human rewritings N/A N/A N/A 66.85 56.79

GPT2-d-2S 60.75 37.01 45.20 79.23 74.23
GPT2-r-2S 58.03 32.57 40.85 73.04 63.00
BART-d-1S 67.14 44.73 49.88 95.61 93.43
BART-d-2S 67.93 46.03 50.54 93.55 90.81
BART-r-2S 67.16 44.63 49.16 91.32 86.43

T5-d-2S 67.99 46.95 51.12 94.20 91.83
T5-r-1S 66.24 43.40 48.20 89.85 84.26
T5-r-2S 66.62 44.30 49.00 91.61 86.16

Table 4: Average automatic evaluation results on testSup (values multiplied by 100). Bold corresponds to best performance per
metric, and underline second-best (excluding the TOF metrics which are mainly for validation).

Metric Correlation Fluency Coherence Logic Plot-pres Interest
BERTScore Pearson 0.130 (4e-04) 0.139 (1e-04) 0.125 (0.001) 0.255 (1e-06) 0.111 (0.226)

Spearman 0.106 (0.004) 0.124 (0.001) 0.127 (0.001) 0.211 (5e-05) 0.117 (0.201)

BLEU Pearson 0.144 (9e-05) 0.140 (1e-04) 0.113 (0.002) 0.219 (3e-05) 0.174 (0.047)
Spearman 0.130 (4e-04) 0.129 (4e-04) 0.123 (0.001) 0.179 (0.001) 0.171 (0.049)

METEOR Pearson 0.107 (0.003) 0.125 (0.001) 0.108 (0.003) 0.203 (1e-04) 0.120 (0.191)
Spearman 0.098 (0.008) 0.114 (0.002) 0.122 (0.001) 0.164 (0.002) 0.121 (0.187)

Table 5: Pearson and Spearman correlations between automatic and human evaluation metrics, with p-values in brackets. TOF
metrics excluded as they are mainly for validation. Bold corresponds to highest correlation per human evaluation metric.

5.4 Overall Takeaways
Humans modify text greatly while successfully performing
NAREOR. BART and T5 models perform decently with min-
imal but effective edits. GPT-2 models tend to repeat, halluci-
nate, and reduce text quality and plot preservation. Based on
human (§5.1) and automatic (§5.2) evaluation, BART-d-2S
and T5-d-2S are the best models overall. BART-d-2S out-
does its reorder variant, possibly due to BART’s pretraining
as a denoising autoencoder, closer to our denoise training
method. For T5, both methods perform quite well and show
potential. However, T5-d outperforms on plot-pres (Table
2), interest (Table 3), and automatic metrics (Table 4). The
denoise training method appears to be slightly more effec-
tive, possibly because it is partially inspired by how humans
perform NAREOR (see §3.1). These are the first two task-
specific training methods for NAREOR which we propose
ourselves, each approaching the task differently (see §3.1).
2S models also mostly outperform 1S ones, demonstrating
that second stage finetuning improves upon the first.

BART and T5 models are quite effective, excelling at flu-
ency, but have further room for improvement in coherence,
logic, plot-pres, and interest. §5.3 shows they still suffer from
several issues. Their conservative tendency may limit their
NAREOR ability compared to humans. Overall, these models
serve as strong initial baselines for NAREOR while under-
scoring the task’s difficulty and potential for exploration.

6 Applications of NAREOR
Sentence ordering involves reconstructing original sentence
order of an unordered sentence set (Barzilay and Lapata
2008). NAREORC’s reordered stories could serve as a chal-
lenge set for sentence reordering models due to their non-
linear narrative structure underrepresented in corpora. We
use the implementation of (Prabhumoye, Salakhutdinov, and
Black 2020) to train i) Mext, an external model on the SIS

corpus (Huang et al. 2016), ii) Miid, an in-domain model
on first 20% of ROCStories’ train split. We test each on i)
Control set {si}i=n

i=1 , input stories from testSup, ii) Challenge
set {s′i}i=n

i=1 , reordered stories from testSup. Table 7 shows
drastic drops across metrics (higher is better - see Prabhu-
moye, Salakhutdinov, and Black (2020)) for both Mext and
Miid from control to challenge set, confirming our hypothe-
sis. Systems with ability to manipulate narrative variables like
order could be important for automating pedagogical setups,
especially for fine-grained language skills such as argumen-
tation in essay writing. As Wingate (2012) explains, tutor
understanding is found deficient and methods of feedback for
students are inconsistent or vague. Language in school texts
follows a characteristic register, which often differs from
registers students handle in everyday conversation (Schleppe-
grell 2001). Models (e.g. NAREOR ones) which can control
elements of register, e.g narrative order, can be used to tailor
such content to intended settings and bridge this gap. Sys-
tems that can generate event timelines for clinical narratives,
e.g. admission notes and physical reports, are important for
applications like medical document summarization (Bramsen
et al. 2006; Reichert et al. 2010) and clinical decision making
(Demner-Fushman, Chapman, and McDonald 2009). Ragha-
van et al. (2014) demonstrate that cross-narrative temporal
ordering of medical events is vital to generating a compre-
hensive timeline over a patient’s history. Aligning multiple
medical event sequences using coreference information and
temporal relations has a large impact on their presentation
and effectiveness. Our NAREOR models may be effective
here and improve upon existing systems.

7 Related Work
There exists work on the sentence ordering task discussed
in §6 — e.g., Chen, Qiu, and Huang (2016) learn pairwise
orderings of sentences using a ranking model. Unlike sen-
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Method Text
Original
(ex. 1)

Jimmy wandered around town looking for a soda. Before he knew it, he was in a strange area. He was scared of strangers and
didn’t want to ask anyone. Soon a policeman came by and asked if he was lost. He told him that he was lost. {5,4,2,1,3}

BART-d Jimmy told a policeman that he was lost. The policeman had come by and asked if he had been lost. Before he knew it, he was in
a strange area. Jimmy had wandered around town looking for a soda. He was scared of strangers and didn’t want to ask anyone.

BART-r Jimmy told the policeman that he was lost. The policeman came by and asked if he had lost his wallet. Before Jimmy knew it, he
was in a strange area. He had wandered around town looking for a soda. He was scared of strangers and didn’t want to ask anyone.

T5-d Jimmy told a policeman that he was lost. Soon after, a policeman came by and asked if he was lost. Before he knew it, he was in
a strange area. He had wandered around town looking for a soda. He was scared of strangers and didn’t want to ask anyone.

T5-r Jimmy told a policeman that he was lost. A policeman came by and asked if he had a soda. Before he knew it, he was in a strange
area. He had wandered around town looking for a soda. He was scared of strangers and didn’t want to ask anyone.

Original
(ex. 2)

Every morning, a bird woke Fred up for work at 6 AM. Fred began to like the bird. And he enjoyed the sound of its singing. One
day, the bird no longer sang. He hoped nothing bad had happened to the bird. {4,1,3,5,2}

Human Fred didn’t hear the bird singing this morning which is unusual. The bird had been waking him up every single day at 6 AM for
quite some time. He had grown accustomed to the bird being his alarm clock. Now he’s worried that something might have
happened to the poor bird. He almost considers the bird a friend at this point.

GPT2-r One day, Fred’s bird began to sing. Every morning, Fred woke him up for work at 6 AM. This was because he liked Fred. He
hoped nothing bad had happened to Fred. This bird, however, did not like Fred.

BART-r Fred no longer sang. Every morning, he woke Fred up for work at 6 AM. He enjoyed the sound of his singing. He hoped nothing
bad had happened to him. He had begun to like the bird.

T5-d One day, the bird no longer sang. Every morning, a bird woke Fred up for work at 6 AM. He had enjoyed the sound of its singing.
He had hoped nothing bad had happened to the bird. After a while, Fred began to like the bird.

Original
(ex. 3)

Eric was walking around a pond at a local park. He saw a turtle on a rock few feet offshore. He stepped into the water to try to
catch the turtle. Suddenly, he sank knee deep into the mud and got stuck. Someone walking on the shore ran over to rescue Eric.
{5,4,1,3,2}

Human Someone who had been walking on the shore ultimately ran over and rescued Eric from the mud. Eric’s knee had sunk deep into
the mud, rendering him stuck. Earlier, Eric had been walking around a pond while at a local park. Trying to catch a turtle in the
pond, Eric stepped into the water. Eric did so because he had seen a turtle poached on a rock few feet offshore.

BART-d Someone walking on the shore ran over to rescue Eric. Earlier, he had sunk knee deep into the mud and got stuck. Eric was walking
around a pond at a local park. He stepped into the water to try to catch the turtle. He had seen a turtle on a rock few feet offshore.

BART-r Someone walking on the shore ran over to rescue Eric. Eric sank knee deep into the mud and got stuck. He was walking around a
pond at a local park. He had stepped into the water to try to catch the turtle. He saw the turtle few feet offshore.

T5-r Someone walking on the shore ran over to rescue Eric. Suddenly, Eric sank knee deep into the mud and got stuck. He was walking
around a pond at a local park. He stepped into the water to try to catch the turtle. He saw the turtle few feet offshore.

Original
(ex. 4)

Joey went to Disneyland with his family. He was so excited to meet Mickey Mouse. When he met Mickey Mouse he was so excited
he couldn’t speak! Joey finally said hi to Mickey and it was great! Joey had a great time. {5,2,4,1,3}

GPT2-d Joey had a great time. He was so excited to meet Mickey Mouse. He had finally said hi to Mickey and it was great! He had gone to
Disneyland with his family. When he met Mickey Mouse he was so excited he couldn’t speak

GPT2-r Joey had a great time on the roller coaster at Disneyland. He was so excited to meet Mickey Mouse he couldn’t speak! (...) He
was so excited that he went to the park with his family. He was so excited when he met Mickey Mouse and he was so excited.

BART-r Joey had a great time at Disneyland. He was so excited to meet Mickey Mouse. He finally said hi to Mickey and it was great! He
had gone to Disneyland with his family. When he met Mickey he was excited he couldn’t speak!

T5-d Joey had a great time at Disneyland. He was so excited to meet Mickey Mouse. He had finally said hi to Mickey and it was great!
He had gone to Disneyland with his family. When he met Mickey Mouse he was so excited he couldn’t speak!

Table 6: Qualitative testSup examples. Target perms in brackets along original stories. d & r refer to denoise & reorder.

Model TestSet SentAcc Rouge-S LCS Kendall τ

Mext
Control 76.35 48 59.1 0.57

Challenge 52.4 24.7 29.7 0.12

Miid
Control 66.4 85.3 84.8 0.75

Challenge 21.9 49.6 58 0.03

Table 7: Sentence ordering on control vs. challenge sets.

tence ordering, NAREOR involves reordering and rewriting
a sequence of sentences to fit a new narrative order.

TALESPIN (Meehan 1975) was an early goal-based story
generator. There has since been work on related tasks like
story cloze test (Mostafazadeh et al. 2016b, 2017) and gen-
eration from prompts (Fan, Lewis, and Dauphin 2018; See
et al. 2019). Some works explore controllable variants, e.g.
keywords as control (Peng et al. 2018). NAREOR is distinct
as it aims to preserve underlying plot while controlling a
story-level aspect for an already-complete story. There is also

narrative order visualization work. For example, Kim et al.
(2017) visualize narrative order as a function of story order.

8 Conclusion and Future Work
We proposed the NAREOR task and introduced a dataset,
NAREORC, with task-specific training methods and evalua-
tion metrics, and experimented with T5, BART, and GPT-2.
Extensive evaluation and analysis showed that our models
are effective but can be further improved, and that NAREOR
is challenging with further exploration potential. We showed
that NAREOR can create interesting story variations and
challenge sets for tasks like sentence ordering.

Future directions include exploring training ideas better
emulating human rewrites. NAREOR can be explored as
document-level paraphrasing for data augmentation , adver-
sarial sets for more temporal tasks, and applications for educa-
tion/medicine (see §6). We also hope our work drives inquiry
into harder task variations of NAREOR (e.g. sub-sentential).
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