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Abstract

We consider language modelling (LM) as a multi-label struc-
tured prediction task by re-framing training from solely pre-
dicting a single ground-truth word to ranking a set of words
which could continue a given context. To avoid annotating
top-k ranks, we generate them using pre-trained LMs: GPT-
2, BERT, and Born-Again models. This leads to a rank-
based form of knowledge distillation (KD). We also develop a
method using N -grams to create a non-probabilistic teacher
which generates the ranks without the need of a pre-trained
LM.
We confirm the hypotheses that we can treat LMing as a rank-
ing task and that we can do so without the use of a pre-trained
LM. We show that rank-based KD generally improves per-
plexity (PPL) — often with statistical significance — when
compared to Kullback–Leibler-based KD. Surprisingly, given
the simplicity of the method, the N -grams act as competi-
tive teachers and achieve similar performance as using either
BERT or a Born-Again model as teachers. GPT-2 always acts
as the best teacher, though, and using it and a Transformer-XL
student on Wiki-02, rank-based KD reduces a cross-entropy
baseline from 65.27 to 55.94 and against a KL-based KD of
56.70.

1 Introduction and Motivation
More often than not, there are many ways to say the same
thing. For example, ‘the cat sat on the mat’ is semanti-
cally equivalent to ‘the cat sat on the rug’, in most contexts.
This basic fact about language is ignored when training lan-
guage models, where we try to maximize the probability
of predicting a single ground-truth word for a given con-
text and penalize all other words regardless of any potential
semantic equivalence. In particular, a word-level language
model (LM) defines a distribution over T discrete tokens,
x1, . . . , xT , as
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where we use the softmax function to model a multinomial
distribution over a set vocabulary V , wt ∈ R|V | are the log-
its produced by the model at step t, j indexes the score for
the jth word-type, and gt is the ground-truth (GT) index at
time t. Such models are trained by minimizing the per-word
cross-entropy (CE or H(y, p)) against the ground-truth text,
y = y1, . . . , yT ∈ R|V | which are one-hot representations
of x1, . . . , xT ,
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During training, we assume that y is a one-hot distribu-
tion since we do not have access to the true data distribution.
This assumption is obviously incorrect, considering that hu-
mans are able to form a valid continuation of most contexts
with multiple potential words. Call these potential words the
branching set of a given context. Instead, we may want to
give partial credit for predicting words in the branching set,
like ‘rug’ in instances when the GT is ‘mat’ (and vice versa)
based on the semantic similarity between the words and con-
texts. One method for achieving this is via label smoothing.

1.1 Label Smoothing and Knowledge Distillation
Label smoothing (LS) is a method which modifies each yt
to be soft-targets, instead of one-hot, by redistributing proba-
bility from the GT label to other labels (Szegedy et al. 2016).
It is commonly implemented using a hand-crafted function,
such as setting the GT probability to 0.9 and spreading the
remaining 0.1 uniformly across the other labels (Pereyra
et al. 2017). LS is a simple method which has different mo-
tivations depending on the problem it is meant to solve. One
problem is noisy labels (Lukasik et al. 2020a). Here one
views the GTs as truly one-hot but possibly incorrect due to
errors in annotation. A second problem is to regularize over-
confident models in situations where we desire that model’s
probabilities should not spike to a single prediction (Pereyra
et al. 2017; Müller, Kornblith, and Hinton 2019). Here, one
again views the GTs as truly one-hot but they do not want
the model to make predictions too close to the one-hot dis-
tribution due to how the model is to be used. However, in our
case, we use label smoothing to make the single-target GTs
multi-target, under the view that the true GTs are actually
multi-target but that we lack access to this information.
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Given that the multiple-targets should change given the
context, we desire the smoothing values to depend on the
context. One can have a data-dependent or semantically-
aware LS by using an auxiliary pre-trained model to form
label scores, such as using cosine scores from FastText (El-
bayad, Besacier, and Verbeek 2018; Li et al. 2019). This can
be seen as a form of knowledge distillation (KD), which is
when a pre-trained teacher model is used to train a student
model by minimizing the cross entropy,H(pKD, p), between
the teacher’s distribution, pKD and the student’s, p (Hinton,
Vinyals, and Dean 2015; Wang and Yoon 2021). Here, the
smoothing scores are derived from the teacher’s distribution
and thus can be viewed as parametric form of semantic LS
(Yuan et al. 2020; Tang et al. 2020).

One can perform KD either from a weaker language rep-
resentation model such as FastText or a strong language
model such as GPT-2. However, this raises the question –
who teaches the teacher? That is, in order to train our LM
we need to assume the existence of an already established
model, which seems to defeat the purpose. Instead, we set
our own desideratum that we do not want to use a pre-trained
neural LM as a teacher.

We hypothesize thatN -gram statistics are a rich source of
semantic information which can be exploited to train neu-
ral LMs, i.e., introducing global N -gram statistics to our
otherwise local training procedure (Neubig and Dyer 2016;
Zhao et al. 2017; Yang, Wang, and Downey 2019). The naı̈ve
approach would be to pre-train an N -gram LM to use as
our teacher; however, this will not work because the N -
gram model will be a weak teacher. N -gram LMs perform
worse than neural language models (Mikolov 2012; Joze-
fowicz et al. 2016). Because of this, if we just try to match
the teacher’s distribution, as is done in KD, we will end up
with a higher perplexity model than had we forgone the KD
from the N -gram model. To overcome this issue, we need to
examine how label smoothing and N -gram LMs work.

1.2 Ranking in Lieu of Label Smoothing
We can break semantic label smoothing into two problems:
a) how to choose which words should get partial credit
in a given context, and b) how much partial credit they
should receive. To solve the first problem, we could use the
common ‘distributional hypothesis’ from linguistics to give
partial credit to words which share similar contexts (Har-
ris 1954; Mikolov et al. 2013). That is, words which have
some shared context should get some partial credit. The dis-
tributional hypothesis underlies N -gram language models
as well, which employ smoothing algorithms and back-off
methods to weigh higher-order N -grams more than lower
order ones (Goodman 2001). To solve the problem of quan-
tifying credit assignment, it seems we need a probabilistic
(even if un-normalized) model to specify the smoothing val-
ues. However, as reasoned above, if we naı̈vely use N -gram
LMs for this, we will wind up trying to match the distribu-
tion of a weaker teacher model. One solution to this would
be to modify the N -gram LM teacher itself.
N -gram LM algorithms were developed with the goal of

the model being a valid LM for use in applications. One cri-
terion of such a model is that it produces a non-zero prob-

ability. This is achieved by including the unigram distribu-
tion. Another criterion is that the N -gram LM generalizes
well to unseen contexts. This is achieved by well-developed
smoothing algorithms. If we only intend to use the N -gram
model as a teacher, we may ease or remove these criteria.
For example, we might posit the converse of the distribu-
tional hypothesis and say that we will restrict credit from
words which do not share contexts. To achieve this, we could
forego backing-off to the unigram distribution and smooth-
ing into unseen contexts. One of the main motivations of
neural LMs over N -grams is their ability to generalize due
their distributed representations (Bengio et al. 2003). This
implies that we could forego applying any kind of smooth-
ing algorithm to the N -gram teacher and let the neural stu-
dent learn to generalize to unseen contexts. If we follow this
approach, then we would need to make modifications to ex-
isting N -gram LM algorithms to determine how to combine
the various N -gram probabilities into a (sparse) probabilis-
tic model. Instead, we propose a more radical approach in
order to avoid this.

If we decompose the problem of specifying label weights,
we are specifying not only how to weight each cost term but
also, implicitly, an ordering of the weighted terms. Thus,
given label weights, we can convert the problem of LS to
a ranking problem by specifying that the most probable la-
bel is the most relevant rank and the second most probable
is the second most relevant rank, etc. The main contribu-
tion of this paper is therefore the idea that we may not
need to specify specific label weights, so long as we can
specify an order to the labels. In particular, we hypothesize
that the ordering of labels contains sufficient semantic infor-
mation to be used for our desired partial credit. To specify
the ordering, we again employ the distributional hypothesis
and consider that increasing the shared context between a
word and the ground-truth word increases the relevance of
that word in the ordering. Note that the original GT word
will always retain the most relevant rank, as it will always
share the most context with itself. Since ordinal information
is less strict than interval information, we may overcome the
issue of having a weak teacher since we are no longer trying
to directly match a weaker distribution.

This approach obviates the need for a modified probabilis-
tic N -gram LM since we just need to consider the size of
a shared N -gram context to determine how much credit to
give to a set of words which can follow. We describe how
to construct artificial ranking GTs from N -gram statistics in
Section 2.1 and how to use these in training the neural LM
in Section 2.2.

2 Methods
2.1 N -gram Branching Set Construction
Let a branching set (BS), bt, be a set of words which can
continue a given context ct = (x1, . . . , xt−1) at step t. Let
ct(n) be a slice of the context which only includes the previ-
ous n− 1 words (assuming t ≥ n). Intuitively, the construc-
tion of the BS is simple. We are going to consider a series of
past N -gram contexts, starting with the largest context until
the smallest, and any word that we find in the training set
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Adams River is a tributary to the Thompson and Fraser
Moro passes Lumber the , Jim sub Sam
Shebelle Lake <unk> located of Harry <unk>
Colorado to thought the Kansas
Missouri run north in Platte
Payette flows 298 valleys Missouri
<unk> begins took Yellowstone
Back ( by Mickey
Red valley paymen- Mississippi
Yellowst- Provincial is Cheyenne
Grand sockeye Columbia
Mississ- area Ohio

, Osage
and Kissimmee

Figure 1: Branching sets created for the ground-truth ‘Adams River is a tributary to the Thompson and Fraser Rivers ...’ using
the ground-truths (Ogt) and four orders (O5, O4, O3, O2) from the Wiki02 training partition. The branching sets for ‘tributary’
and ‘Thompson’ are only the ground-truths since all other orders have been pruned.

that continues those contexts will be in the BS. Then, in or-
der to derive artificial rank GTs from the BS, we can give
a weak ordering to the words in the BS by specifying that
words in the BS with a larger context should have a higher
rank relevance than those with a smaller context. If, for ex-
ample, we consider bigrams and trigrams then any word that
continues the trigram context will also continue the bigram
context but words which only continue the bigram context
but not the trigram context will be less relevant. Unigrams
are excluded since they use no context.

More formally, we construct a tuple of sets referred to as
orders, O = (Ogt, OM , . . . , O2) which will be merged to
form the BS. Ogt = {xt}, only contains the original GT.
The other orders are made up of all words which continue
a specific context length, such that we construct each of the
orders asOm = {x|x ∈ V \O>m, C(ct(m), x) ≥ 1}, where
m ∈ {M, . . . , 2} and C(ct(m), x) is the count for how
many times x appears in the context ct(m). Note, we ex-
clude words already included in previous orders. We also use
a cut-off, q, so that we only consider sufficiently small order-
ings |Om| < q, since large BSs will not be informative; e.g.,
all words which follow ‘the’ or ‘is a’. The BS is constructed
as an ordered tuple where bt = (x |x ∈ Oi, Oi ∈ O). The
artificial GT ranks are then specified as the weak rank order-
ing of the BS, which is weak since each Om may contain
multiple unordered words.

We can further resolve the rank within each order by us-
ing future context in addition to past context. This assumes
that, had we access to longer past contexts, the ranks would
have resolved the same way as using future information.
Note that we can introduce future information here because
the teacher model does not need to form a valid proba-
bility distribution since it only defines targets for the stu-
dent model. Let ct(np, nf ) be the context defined by us-
ing np − 1 words in the past and nf − 1 words in the fu-

ture. We prioritize past context over future context, since
that is what the student model will be able to observe as
input. This is done by specifying the orders by a reverse or-
thographical sorting of past and future context lengths, i.e.,
ct(3, 4) � ct(3, 3) � ct(2, 4). This does not completely re-
solve the weak ordering, though, since two words may share
both the same past and future contexts. Figure 1 shows an
example BS and Figure 2 shows how it was constructed us-
ing future information.

2.2 Plackett-Luce Rank Loss
Let us assume that the BS, bt, is strongly ordered by some
preferred (partial) rank over k ≤ |V | words in V for step t
and that the GT word has the first rank. Let yt be the set of
words in V and say that bt(m) indexes the element of rank
m according to bt, i.e, bt defines a rank permutation. If we
assume that yt and wt are sorted by rank, we can drop the
indexing in the following section.

Given strongly ordered top-k ground-truths, we train our
LM by learning to rank with the top-k Plackett-Luce (PL)
rank loss (Plackett 1975; Cao et al. 2007; Xia, Liu, and Li
2009). The PL loss models the data as a Plackett-Luce dis-
tribution, where for any time step t,

pt(y
1
t � · · · � ykt ) =

k∏
i=1

pt(y
i
t | y1t , . . . , yi−1t )

=
k∏

i=1

ew
i
t∑|V |

j=i e
wj

t

.

(3)

The PL distribution represents a generative process of sam-
pling a softmax distribution without replacement, were we
re-normalize the distribution by excluding previous samples
at every ranking step. The loss is then defined as the negative
log-likelihood of equation 3,
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Adams River is a tributary to the Thompson and Fraser Rivers
a tributary , the Thompson and Sam
a tributary of the and <unk> Rivers

tributary the and Kansas Rivers
tributary in and Platte Rivers
tributary valleys and Missouri Rivers
tributary took and Yellowstone Rivers

Figure 2: BS construction for the example in Figure 1 using four orders, 2p-1f, 2p, 1p-1f, 1p and the GTs. Where ‘2p-1f’
indicates an order which matches two past words and one future word. We show the branching sets for ‘to’ and ‘Fraser’, centred
in dash lines, and the context that selected those words in solid lines. The table has been truncated.
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While there are many surrogate ranking losses, we choose
PL since, in the case when k = 1, the PL distribution col-
lapses to the softmax distribution and the loss to the corre-
sponding CE loss. That is, we revert back to traditional lan-
guage modelling. This is a beneficial property since a) we
might encounter contexts during training without available
ranking data, i.e., only the original GT word is in the branch-
ing set, b) we only consider the probability of the original
GT during evaluation, and c) we do not wish to radically
change the distribution being modelled so that PPL is com-
parable to previous work. The PL loss can also be efficiently
implemented for GPUs and does not add significant compu-
tation over a regular softmax (see Appendix C).

When combined with a method for constructing artificial
ranking ground-truths, we can view the PL loss as a form of
self-supervision where the first ranking term is our original
loss and all higher ranking terms are auxiliary losses. How-
ever, unlike most auxiliary losses used in self-supervised
learning, the extra PL terms are a natural extension or gen-
eralization of the original loss.

The PL loss can fail to capture the inductive bias that it
is more important to get the more-preferred ranks correct
over the lesser-preferred ranks (Lan et al. 2014). This is rel-
evant since the original GT is the first rank and we will have
less confidence as we descend the ranks, since the amount
of semantic information in a bigram is generally less than in
a trigram, and so on. Lan et al. (2014) introduced discount
weights on the PL terms which decreased exponentially, but,
since their exact method did not work for our task, we use
a stepped function where a static η < 1 weight is given to
the top rank and the remaining 1− η is partitioned such that
there is an equal difference between the weights for con-
secutive ranks. In practice, η acts similar to the temperature
smoothing hyper-parameter used in KD.

The PL loss does not allow for weak orderings. This is
a problem since the words within each individual order,
Oi, have no ordering; i.e., if Oi = {o1, . . . , oS}, then the
S items are of an unknown ordering. This creates a par-
titioned preference where all the partitions define a rank-
ing, Oi � Oi+1, but the ranking within each ordering is

unknown. One way of handling this would be to consider
the marginal distribution across all permutations for each
ordering. However, the likelihood would require calculating
a factorial number of terms (Ma et al. 2021). Instead, we
consider a lack of known preference as an inductive bias
that words in the weak orders are equally preferred. We
enforce this by modifying the PL loss such that we revert
back to regular softmax-cross entropy within the weak or-
der for rankings i, . . . , i + S as

∑i+S
s=i logZt,i − ws

t , where
Zt,i = Zt −

∑
j<i e

wj
t , which will optimize to a uniform

distribution within the ordering. This is a novel modification
to our knowledge.

3 Related Work
Previous work combined N -gram information with neural
LMs. Neubig and Dyer (2016); Bakhtin et al. (2018) used
dynamic mixtures of N -grams and neural LMs. Neubig
and Dyer (2016) found that their models performed worse
than regularly trained neural LMs except on low-frequency
words. Noraset, Demeter, and Downey (2018) used soft
constraints for text generation with an LSTM LM. They
tried two sets of constraints: those to reduce repeated words
during generation and those to match Kneser-Ney bigram
probabilities during generation. Their method estimates the
marginal probability of the LSTM LM given some condi-
tioning constraint and regularizes it using a KL-divergence
against the constraint distribution. These marginal probabili-
ties are based on a pool of generated text that is periodically
updated during training. This can be seen as a form of LS
against the actual generative distribution instead of the GT
distribution. They showed they could better match the dis-
tribution of repeated tokens and bigram statistics against a
baseline on PTB. Yang, Wang, and Downey (2019) built on
this by making computation of the marginals more tractable.
They regularized the LM’s whole vocabulary against tri-
gram statistics, which makes their methods very similar to
KD against a trigram N -gram model. They also proposed a
method for selecting useful N -grams based on an informa-
tion criterion. This is important, as they need to do a single
forward pass for every N -gram context they regularize. So
selecting which contexts they use significantly decreases the
computational cost. They trained an LSTM LM and a tri-
gram N -gram LM. On Wiki02, their method achieved 69
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PPL given a baseline of 76.
Various works implemented semantic label smoothing

using pre-trained probabilistic models (Elbayad, Besacier,
and Verbeek 2018; Hahn and Choi 2019; Li et al. 2019;
Ghoshal et al. 2020; Liu, Shen, and Lapata 2021; Lukasik
et al. 2020b). These can use various pre-trained models
such as embedding models like Fasttext (Joulin et al. 2017),
language representation models like BERT (Devlin et al.
2019) or language models like GPT2 (Radford et al. 2019).
Lukasik et al. (2020b) smoothed over related sequences
which were found using a pre-trained model and then re-
fined using BLEU as a selection criterion. Wang et al. (2020)
introduced graduated label smoothing which uses a set of
binned label-smoothing values and the confidence of a pre-
trained model to determine the bin to which each token be-
longs, improving BLEU and calibration for NMT.

Li et al. (2019) used an auxiliary KL-divergence based
loss on a semantically-aware or data-dependent Gaussian
prior which is parameterized using cosine similarity from
Fasttext embeddings. They applied this over a range of con-
ditional language modelling tasks including NMT, text sum-
marization, and story telling. For story telling, their method
lowered test PPL by ≈ 2-3 points. In general, LS can be
framed as an entropy regularizer and many prior distribu-
tions can be used (Pereyra et al. 2017; Meister, Salesky, and
Cotterell 2020).

Ghoshal et al. (2020) proposed a method which jointly
trains a model with a set of learned smoothing parameters.
GivenC classes, one could implement semantic LS by learn-
ing a similarity C × C matrix where each row provides
smoothing scores for a given target class. Instead, the au-
thors approximated this with a C × k matrix with k ≪ C.
While this is a form of semantic label smoothing, it is lim-
ited in that it is based only on the target class and not the full
context. They applied it to semantic parsing and question
answering.

Welleck et al. (2019) introduced an unlikelihood loss
which penalizes words which should have low probability.
We make use of the concept of a branching set which is the
words that can follow a given context. The complementary
set of the branching set could be used to select negative sam-
ples for the unlikelihood loss.

Born-again distillation or self-distillation is where the stu-
dent and teacher have the same specification (Furlanello
et al. 2018; Hahn and Choi 2019; Yuan et al. 2020).
Furlanello et al. (2018) applied born-again KD to LMs and
showed that a student LSTM LM on PTB could outperform
the same teacher model. Yang et al. (2019) used a top-k aux-
iliary loss and trained image classification models with a se-
ries of self-distillations. Tang et al. (2020) developed a top-k
KD using the teacher’s probability for the top-k ranks and
distributing the remaining probability uniformly.

Reddi et al. (2021) recently introduced the use of top-k
rank loss functions for rank-based KD using PL and pairwise
hinge losses, outperforming traditional KD on a variety of
traditional ranking tasks. Other forms of structured KD can
also be applied to other NLP sequence tasks (Wang et al.
2021).

4 Experiments
We use the word-level Penn Treebank (PTB) and WikiText-
02 (Wiki02) datasets and use ADW-LSTM (LSTM) and
Transformer-XL (T-XL) students (Taylor, Marcus, and San-
torini 2003; Merity et al. 2017; Merity, Keskar, and Socher
2018; Dai et al. 2019). Our LSTM uses 24.2M parameters on
PTB and 33.5M on Wiki02, and our Transformer-XL uses
35.8M on Wiki02.

We propose two hypotheses: that we can re-frame the
problem of label-smoothing as a form of rank-based knowl-
edge distillation from a teacher which only provides rank
ground-truths and that we can derive the ranks directly from
a non-probabilistic N -gram teacher. In order to decouple
these two hypotheses, we first use three different types of
pre-trained LMs to evaluate the PL loss when used for KD
then, provided that works, we apply the PL loss with an N -
gram teacher model.

We choose GPT-2, BERT, and Born Again (BA) mod-
els as teachers for different reasons. GPT-2 and BERT were
chosen under the assumption that these large LMs will pro-
duce better ranks than the N -grams. We tried both since the
former is an auto-regressive LM which only conditions on
past context and thus matches our student models, while the
latter is an auto-encoding language representation model us-
ing both past and future contexts, allowing us to test if we
can distil future information. BA models are also consid-
ered as they will not present data-leakage problems, unlike
BERT and GPT-2 which were pre-trained on a large amount
of auxiliary data. The BA models are selected as the highest
performing CE baseline models.

GPT-2 and BERT use sub-word vocabularies instead of
the standard word-level ones for PTB and Wiki02. We con-
vert them by summing the sub-word hidden states to get
whole-words and fine-tune them using CE.

Table 1 shows the validation performance of the teacher
models. The performance of these models is better than the
baseline CE models, which warrants their use as teacher
models. BERT out-performs GPT-2 due to using surround-
ing context when predicting a word where GPT-2 is lim-
ited to only past context1. We provide two other sanity
checks; first, we provide examples of the top-k predictions
for BERT, GPT-2 and the N -grams in Appendix E and, sec-
ond, we plot frequency statistics for BERT and GPT-2 in
Appendix D.

The N -grams used a set of contexts from 5 to 1 past to-
kens concurrently with 4 to 0 future tokens and a pruning
cut-off of 10, i.e. 5p-4f, 5p-3f, . . . , 1p-1f, 1p.

We compare a CE baseline to four other losses. The first
is a top-k KL-based KD. This has been modified in three
ways from traditional KD. First, we only use the top-k ranks,
as did Tang et al. (2020), although we forgo placing a uni-
form distribution over all words not in the top-k. They re-
ported a test PPL of 60.85 using top-k KD on PTB with
AWD-LSTM using a smaller student with 9.1M parameters.
Second, we post-process the predicted ranks by floating the

1These PPL results are not directly comparable as BERT does
not form a valid distribution over sequences, hence using P-PPL.
Also, they use different auxiliary training data.
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Data Model (P-)PPL A ⊆ 1 A ⊆ 2 A ⊆ 3 A ⊆ 5 A ⊆ 10

PTB
BERT 24-layer *1.205 0.975 0.986 0.989 0.991 0.993
GTP-2 774M 22.810 0.437 0.525 0.573 0.630 0.701
BA-LSTM 60.724 0.302 0.394 0.446 0.511 0.593

Wiki02

BERT 24-layer *1.423 0.930 0.979 0.983 0.985 0.987
GTP-2 774M 25.277 0.419 0.521 0.575 0.635 0.706
BA-LSTM 68.437 0.296 0.394 0.448 0.512 0.592
BA-T-XL 67.468 0.301 0.398 0.452 0.517 0.598

Table 1: Perplexity (PPL) and accuracy in the top-k (A ⊆ k ) for word-level fined-tuned probabilistic teacher models BERT,
GPT-2, Born-Again (BA) on the PTB and Wiki02 validation sets. *We report a pseudo-PPL for BERT.

original GTs to the top rank while keeping the top-k proba-
bilities the same order i.e. make the GTs the most probable.
Initial experimentation did not show a significant change for
KL-based KD and we believed this was an important mod-
ification for rank-based KD. Third, we cycle the interpola-
tion value between the CE and KD terms, similar to Clark
et al. (2019); Jafari et al. (2021). For PL, we can forego dis-
counting (PL), use the teacher’s probabilities (PL-t), or use
the stepped function (PL-s). Note that the KL also uses the
teacher’s probabilities. See Appendix A for further experi-
mental details.

5 Discussion
The results in Table 2 show we can treat language modelling
as a structured prediction task using a rank-based KD and
that this can be done without the need of a probabilistic
teacher. We discuss four main results.

First, given the proper form of discounting, either form of
KD improves PPL over the CE baseline.

Second, some form of rank-based KD often significantly
outperforms KL-based KD. This is true of 6/9 test-set
groups, with only a single experiment showing the reverse
(this is a slight conceit, since we are making post-hoc com-
parisons against a set of PL experiments instead of se-
lecting the best form of discounting during the validation
phase). Since, KL-based KD contains both the label order
and weight information, it acts as a strong baseline. We be-
lieve that the reason the rank-based KD often does better is
because matching the teacher’s ranks is a less strict crite-
rion than matching its probabilities. It may also be a better
criterion when evaluating PPL, since PL may allow for the
top ranks to all increase their probability together, so as long
as the GT is in the top ranks, then PPL will decrease. Im-
portantly, these results also indicate that performance of the
N -grams will be due to their inherent value as a teacher and
will not be hindered by the loss function. The results of the
PL and PL-s experiments support the claim that the ordering
of the labels provides sufficient semantic information to per-
form KD and that we can forego label weights (with a caveat
addressed later).

Third, theN -grams act as a competitive teacher, with only
GPT-2 consistently outperforming them. It seems plausible
that the N -grams would surpass the BA models, since both
types of KD will restrict how much the BA students can de-

viate from the baseline CE teacher. With BA and BERT, and
LSTM students, the raw PL loss often does worse than the
CE baseline. This is indicative of the PL loss failing when it
is easier to optimize the lesser-preference ranks over the GT.

That the N -grams outperform BERT speaks more to
BERT failing to act as a good teacher rather than the qual-
ity of the N -gram models. For BERT, it was important to
use the teacher probabilities (see the KL and PL-t vs PL and
PL-s experiments). We believe that reliance on the teacher’s
probabilities is indicative of poor ranks where the teacher’s
sharp probability discounts the lower ranks. A qualitative
analysis of the produced ranks shows that the future infor-
mation can produce ranks that do not generalize well to a
student evaluated on a past-context-only task. For example,
BERT can see when a sentence ends and so produces ranks
which do not try to continue the sentence where GPT-2 and
the N -grams will. Thus, the major caveat mentioned above
is that label ordering is sufficient, provided those ranks are
informative for the student’s task. The N -grams are inher-
ently sparse, since they only derive ranks when supported
by the context. In the future, we would like to consider ways
of dynamically selecting the top-k which may fix this dis-
counting issue. This also continues the desire to model the
branching set, which are differently sized for each context.

The fourth result is how well GPT-2 does when paired
with the T-XL student, where we see a reduction of almost
10 PPL points. Compare this with the LSTM student which
only sees a reduction of 4 points. Tang et al. (2020) sug-
gested that certain failure cases in KD could be explained by
a capacity gap, where the teacher’s distribution is too com-
plex to properly be distilled to the student model. We believe
that the GPT-2 results are the inverse of this phenomenon,
where the student falls into a good regime to match the
teacher instead of out of the regime. This makes sense
since, outside of the BA models, which may have limited
value as teachers, GPT-2 and T-XL are the closest student-
teacher pair in terms of specification. However, since the
T-XL model only has 7% more parameters than the LSTM
model, we believe this should be considered as a capability
gap where the change in performance between the LSTM
and T-XL is more likely due to actual model differences in-
stead of raw capacity. Additionally, the T-XL model using
PL and no discounting was competitive to the discounted
forms for BERT and BA and was the best performing model
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PTB Wiki02
LSTM Student LSTM Student T-XL Student

Validation Test Validation Test Validation Test
Tchr Loss PPL SEM PPL SEM PPL SEM PPL SEM PPL SEM PPL SEM

CE 61.44 0.014 59.11 0.015 69.59 0.018 66.43 0.015 68.66 0.021 65.27 0.020

G
PT

-2

KL 57.43 0.012 55.46 0.010 65.41 0.008 62.79 0.007 59.43 0.009 56.70 0.008
PL-t 57.28 0.014 55.17 0.013 65.47 0.015 62.69 0.014 59.32 0.007 56.58 0.007
PL 58.16 0.012 56.25 0.012 65.45 0.011 62.74 0.011 58.61 0.007 55.94 0.007
PL-s 57.63 0.008 55.67 0.007 65.34 0.008 62.59 0.008 59.48 0.008 56.76 0.007

B
E

R
T

KL 59.86 0.018 57.73 0.017 68.63 0.010 65.51 0.009 67.79 0.010 64.16 0.009
PL-t 59.38 0.009 57.20 0.009 68.04 0.010 64.99 0.009 67.66 0.012 64.18 0.012
PL 62.23 0.011 60.32 0.011 71.98 0.009 68.68 0.008 67.78 0.009 64.28 0.010
PL-s 61.13 0.010 59.11 0.010 68.55 0.007 65.53 0.008 67.72 0.008 64.26 0.008

B
A

KL 60.14 0.011 57.63 0.010 68.90 0.014 65.75 0.012 67.46 0.014 64.19 0.012
PL-t 60.80 0.014 58.15 0.014 69.14 0.009 65.74 0.009 66.96 0.012 63.46 0.011
PL 63.36 0.017 60.54 0.013 69.63 0.007 66.16 0.008 66.93 0.017 63.58 0.014
PL-s 60.91 0.010 58.22 0.012 67.96 0.007 64.76 0.006 67.10 0.012 63.64 0.011

N PL-s 59.66 0.008 57.16 0.009 67.25 0.006 64.44 0.006 66.59 0.015 63.54 0.013

Table 2: Average PPL (↓) with standard error (SEM) (n = 30) using an LSTM and T-XL student models and GPT-2, BERT,
Born again (BA) and Ngram (N) teachers (Tchr). Bolded PL experiments exceed the in-group KL baseline with p < .001 using
a two-tailed t-test. Bolded KL experiments exceed the best in-group PL experiment with significance. Underlined experiments
are those which perform better than the N -gram model with significance.

for GPT-2. This is in contrast to the non-discounted PL us-
ing the LSTM student which often did worse than the CE
baseline. This again speaks to a difference in capability be-
tween the two types of student models. We wish to explore
this in the future.

Our results are limited to English and might not general-
ize to other languages. We believe that training a LM via
ranking is language agnostic; however, our N-gram algo-
rithm may not be as it assumes strong word-order informa-
tion. Rank-based KD is a general idea which allows one to
integrate rule-based systems into a student model. We could
improve or generalize the N -grams by incorporating syn-
tactic rules or enforcing co-references. Other uses may be to
use rank-based KD to integrate an LM into a NMT system
by generating target-side ranks without modifying the NMT
model. It may be useful for black-box KD, where one only
has access to the teacher’s hard predictions (Wang 2021) or
to augment small-data environments.

In this work, we offer a novel perspective on language
modelling by considering it as a multi-label task and develop
the methods necessary to train such a model. We connect
the idea of LS to ranking via KD by showing that we can
incorporate semantic similarity information from an ordered
set of words into a LM without requiring associated proba-
bilities. In our desire to forego using a pre-trained LM, we
re-examined how N -gram statistics should be incorporated
into a neural LM. We find that this can be done using a sim-
ple method which just considers N -gram contexts, and that
this surpasses the CE baseline and is comparable to using
BA and BERT as teachers. We also find that, for language

modelling, a rank-based KD is often a superior method for
KD.
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