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Abstract
We investigate the use of multimodal information contained
in images as an effective method for enhancing the common-
sense of Transformer models for text generation. We perform
experiments using BART and T5 on concept-to-text genera-
tion, specifically the task of generative commonsense reason-
ing, or CommonGen. We call our approach VisCTG: Visually
Grounded Concept-to-Text Generation. VisCTG involves cap-
tioning images representing appropriate everyday scenarios,
and using these captions to enrich and steer the generation pro-
cess. Comprehensive evaluation and analysis demonstrate that
VisCTG noticeably improves model performance while suc-
cessfully addressing several issues of the baseline generations,
including poor commonsense, fluency, and specificity.

1 Introduction
Transformer-based models have seen increasing popularity
for NLP tasks and applications. This includes SOTA text
generation models such as BART (Lewis et al. 2020) and
T5 (Raffel et al. 2020). Larger corpora and better pretrain-
ing losses are major reasons driving these gains. However,
despite increasing attention on the commonsense of models
through works like COMET (Bosselut et al. 2019), studies
have shown that even large pretrained models still struggle
with commonsense tasks that humans can reason through
very easily (Talmor et al. 2020). We believe that there is
commonsense information in other modalities like vision,
beyond what is reported (Gordon and Van Durme 2013) in
text, which can possibly augment commonsense and enhance
decision-making processes of text generation models.

In this paper, we show this is true by improving the per-
formance of Transformer-based text generation models on
concept-to-text generation using visual grounding, which we
call VisCTG: Visually Grounded Concept-to-Text Genera-
tion. Concept-to-text generation is a high-level formulation
of several constrained text generation and data-to-text natu-
ral language generation (NLG) tasks. These are challenging
tasks that have seen increasing interest, and involve gener-
ating natural language outputs given certain pre-conditions,
e.g. specific words in the outputs, and structured or semi-
structured inputs. They typically involve converting a set of
inputs into natural language text. These inputs can normally
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{stand, hold, umbrella, street} {food, eat, hand, bird}

baseline: A holds an umbrella while standing on the street baseline: hand of a bird eating food
capt: a woman walking down a street holding an umbrella capt: a person holding a small bird in their hand
VisCTG: A woman stands on a street holding an umbrella. VisCTG: A bird eats food from a hand.

{cat, bed, pet, lay} {fence, jump, horse, rider}

baseline: A cat is laying on a bed and petting it. baseline: A rider jumps over a fence.
capt: a cat laying on a bed with a stuffed animal capt: a horse is jumping over a wooden fence

VisCTG: A cat laying on a bed being petted. VisCTG: A rider jumps a fence on a horse.

Table 1: Examples of retrieved images, captions, baseline and
VisCTG (our model’s) generations. The images and captions
are used as an intermediary to guide the final generation and
it need not be faithful to them. E.g. nobody is petting the cat
in the image, but since the VisCTG output is conditioned on
both the concept set and caption, it includes being petted.

be thought of as concepts, or high-level words or structures,
that play an important role in the generated text. Multimodal
work has seen increasing popularity, but its exploration for
constrained and data-to-text NLG has been limited (Baltru-
saitis, Ahuja, and Morency 2019; Gao et al. 2020).1

We investigate the task of generative commonsense rea-
soning, or CommonGen (Lin et al. 2020), which involves
generating sentences that effectively describe everyday sce-
narios from concepts sets, which are words that must appear
in the output. CommonGen is challenging as effective rela-
tional reasoning ability using commonsense knowledge is
required. Models must also possess the compositional gen-
eralization capabilities to piece together different concepts.
CommonGen is an effective benchmark for constrained text
generation and commonsense as its task formulation and
evaluation methodology are rather broadly applicable.

We experiment on CommonGen using BART and T5. An

1Code: https://github.com/styfeng/VisCTG
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Dataset Stats TrainCG DevO TestO DevCG TestCG

# concept sets 32,651 993 1,497 240 360
size = 3 25,020 493 - 120 -
size = 4 4,240 250 747 60 180
size = 5 3,391 250 750 60 180

Table 2: Statistics of CommonGen dataset splits.

initial analysis (§3.1) of baseline generations shows several is-
sues related to commonsense, specificity, and fluency. We hy-
pothesize that these can be addressed through image captions
(§3.2). Images representing everyday scenarios are common-
place, and typically logical and grounded in commonsense.
Captioning models can also normally produce decent cap-
tions for everyday images, which can be used to guide and
enhance the generation process. See Table 1 for examples.

Expounding on this, we use a pretrained image captioning
model on MSCOCO captions (Lin et al. 2014) to caption the
top retrieved images for each concept set (§4.1,4.2). We use
these captions as additional information to augment inputs
to our generation models (§4.3). Extensive evaluation (§6)
demonstrates that VisCTG improves model performance and
commonsense while addressing the baseline inadequacies.

2 Dataset, Models, and Metrics
2.1 CommonGen Dataset
The original CommonGen dataset is made up of 35,141 con-
cept sets (consisting of 3 to 5 keywords each) and 79,051
sentences, split into train, dev, and test splits. Since the orig-
inal test set is hidden, we partition the original dev set into
new dev and test splits for the majority of our experiments.
We do, however, ask the CommonGen authors to evaluate our
best VisCTG models on the original test set (more in §6). The
training set remains the same. We refer to the original dev and
test sets as devO and testO, and these new splits as trainCG,
devCG, and testCG. Table 2 contains information about these
splits. Their relative sizes and distribution of concept set sizes
within each are kept similar to the originals.

2.2 Models: T5 and BART
We use pretrained text generation models T5 and BART, both
the base and large versions. Both are seq2seq Transformer
models. T5 has strong multitask pretraining. BART is pre-
trained as a denoising autoencoder to reproduce original from
noised text. We use their HuggingFace implementations.

We train two seeded versions of each model on trainCG

and evaluate their performance on devO. These serve as the
baselines for our experiments. Using the numbers in Lin et al.
(2020) as comparison, we validate our implementations. We
use the hyperparameters from Lin et al. (2020), beam search
for decoding, and select the final epoch as the one reaching
maximum ROUGE-2 (Lin and Hovy 2003) on the dev split.
From Table 3, we observe that our re-implementations reach
or exceed reported results in Lin et al. (2020) on most metrics.

2.3 Evaluation Metrics
We use several evaluation metrics, including those in Lin et al.
(2020) such as BLEU (Papineni et al. 2002), CIDEr (Vedan-

Model\Metrics BLEU-4 CIDEr SPICE
Reported BART-large 27.50 14.12 30.00

Reported T5-base 18.00 9.73 23.40
Reported T5-Large 30.60 15.84 31.80

Our BART-base 28.30 15.07 30.35
Our BART-large 30.20 15.72 31.20

Our T5-base 31.00 16.37 32.05
Our T5-large 33.60 17.02 33.45

Table 3: Comparing devO performance of our re-
implemented models to those in Lin et al. (2020). Bold rep-
resents where we reach/exceed reported numbers. Results
averaged over two seeds for our models. Lin et al. (2020) did
not report BART-base. See Appendix A for all metrics.

tam, Lawrence Zitnick, and Parikh 2015), SPICE (Anderson
et al. 2016), and coverage (cov). These (other than cov) as-
sess similarity between human references and generations.
In particular, CIDEr captures a combination of sentence sim-
ilarity, grammaticality, saliency, importance, and accuracy.
SPICE maps texts to semantic scene graphs and calculates an
F-score over these graphs’ tuples. Lin et al. (2020) note that
SPICE correlates highest with human judgment for Common-
Gen. Cov measures the average percentage of input concepts
covered by the output text in any form.

We also use BERTScore (Zhang et al. 2019) and Perplex-
ity (PPL). BERTScore measures BERT (Devlin et al. 2019)
embeddings similarity between individual tokens, serving as
a more semantic rather than surface-level similarity measure.
We multiply by 100 when reporting BERTScore. PPL serves
as a measure of fluency, with lower values representing higher
fluency. We use GPT-2 (Radford et al. 2019) for PPL. For all
metrics other than PPL, higher means better performance.

3 Initial Analysis and Motivation
3.1 Baseline Model Generations
We conduct an initial analysis of the baseline model outputs,
and observe that several lack fluency. Some are more like
phrases than full coherent sentences, e.g. “body of water on
a raft”. Others miss important words, e.g. “A listening music
and dancing in a dark room” misses a noun before listening.
A large portion of generations are generic and bland, e.g.

“Someone sits and listens to someone talk”. This may be an
instance of the dull response problem faced by generation
models (Du and Black 2019; Li et al. 2016), where they prefer
safe and frequent responses independent of the input.

Many generations also lack commonsense. For example,
“body of water on a raft” is illogical as the phrases “body of
water” and “a raft” are pieced together incorrectly. A similar
issue occurs with the {horse, carriage, draw} example in
Table 4. At times the models also cannot understand what
certain nouns can do, e.g. “A dog checking his phone on a
pier.” Several other examples of this can be found in Table 4.

3.2 Images and Captions
Images that represent everyday scenarios are quite prevalent
for almost any reasonable concept set. Further, the images are
typically grounded in commonsense. For example, searching
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Concept Set Baseline Generation Human Reference
{horse, carriage, draw} horse drawn in a carriage The carriage is drawn by the horse.

{dog, house, eat} A dog eats hay in a house The dog eats food inside the house.
{cow, horse, lasso} A cow is lassoing a horse. A group of men riding horses lassoing a cow.

Table 4: Example generations from our baseline models versus human references.

Figure 1: Graph displaying the average coverage (out of 100)
by the top NTC captions in aggregate per concept set.

{cow, horse, lasso} will result in many images of cowboys
riding horses and lassoing cows, rather than the illogical
situation of “A cow is lassoing a horse.” described by the
baseline generation in Table 4. Many everyday images are
relatively similar to those in image captioning datasets such
as MSCOCO, so pretrained captioning models should work
quite effectively. We thus hypothesize that using images and
their captions to visually ground concept-to-text generation
can potentially deal with issues mentioned in 3.1. Retrieved
images with corresponding captions generated by a pretrained
image captioning model (see §4.2) and final baseline and
VisCTG generations for select concept sets are in Table 1.

Textual corpora also suffer from reporting bias (Gordon
and Van Durme 2013), where everyday, commonsense albeit
“uninteresting” actions (walking), objects (bench) and facts
(bananas are yellow) are underrepresented compared to real-
world frequency, while “newsworthy” actions (murdering),
objects (spaceships) and facts (blue GMO bananas) are exag-
gerated. This seeps into large pretrained text models (Shwartz
and Choi 2020). Using visual data and models dampens this
bias, likely improving the commonsense of generations.

4 Methodology
4.1 Image Retrieval
We first obtain images for each concept set in our three splits.
Image captioning datasets such as MSCOCO and Flickr are
typically too small and focused to be effective for our pur-
poses since we must cover numerous different concept sets.
Further, a search engine is more generalizable.

We decide to use Google Images. On a sample of concept
sets, the retrieved images using other search engines were in-
appropriate; they did not incorporate most input keywords nor
handle homonyms well. For example, “sports+fan+watch”

yields images of fans watching a sports game on Google im-
ages, but images of hand watches on Bing and DuckDuckGo.

We queried input concept sets by concatenating keywords
with plus signs (+), and used simple-image-scraper2 to obtain
URLs of the top 30 results. The image was scraped only if
the URL ended in .png, .jpeg, .jpg, or .gif. The received con-
tent was verified to be valid images using pillow3, otherwise
skipped. Retrieved images were typically of high quality and
corresponded well to the concepts. See Table 1 for examples.

4.2 Image Captioning
After retrieving images, we use a PyTorch-based implemen-
tation4 of the FC image captioning model (Luo et al. 2018;
Rennie et al. 2017), which generates a caption via an LSTM
initialized with a pseudo token obtained by feeding the image
into a deep CNN followed by a linear projection. We use a
pretrained FC model trained on the MSCOCO dataset with
pretrained Resnet-101 image features.5 As most of our re-
trieved images represent everyday scenarios and are relatively
similar to those in MSCOCO, the pretrained model performs
quite well. See example captions in Table 1.

4.3 Caption Selection and Input Augmentation
After we have captions Sc = {c1, c2, ..., cn} for each concept
set in all three splits, we reorder them by descending coverage
to the concept set to obtain Sc′ = {c′1, c′2, ..., c′n}. If two
captions are tied for coverage, we keep them in their original
search result order. This allows us to select the captions that
have highest coverage and are most relevant.

Since most retrieved images and corresponding captions
cover only a fraction of the entire concept set, and the quality
of each varies, we hypothesize that using multiple captions
for generation may lead to more robust and higher-quality
outputs with more coverage. The models may learn to piece
together information from caption(s) while generating final
texts. Hence, we try experiments using different numbers of
top captions within Sc′ , a parameter we call NTC (Number
of Top Captions). We try NTC = 1, 2, 3, 5, 7, 10, and do
not go above NTC = 10 as Figure 1 shows that coverage
gains from 10 → 30 are minor. Figure 1 also illustrates that
captions have relatively low individual coverage, especially
compared with outputs from models trained on CommonGen,
which is why we do not use them as a baseline.

The captions are concatenated together and onto the con-
cept set using <s> separator tokens. These serve as aug-
mented inputs to BART and T5. They learn to convert these

2https://pypi.org/project/simple-image-download/
3https://pypi.org/project/Pillow/
4https://github.com/ruotianluo/self-critical.pytorch
5See Appendix B for further captioning model details.
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Augmented Input → Final Generation
wave fall board surfer <s> a surfer riding a wave on a surfboard → A surfer is falling off his board into the waves.
dance stage front crowd <s> a crowd of people watching a man on a stage <s> a man is holding a microphone in front of a
crowd → A man dances in front of a crowd on stage.
stand hold umbrella street <s> a woman walking down a street holding an umbrella <s> a woman walking down a street holding
an umbrella <s> a girl holding a pink umbrella in a city <s> a man holding an umbrella in a city <s> a group of people standing
under a umbrella → A group of people standing on a street holding umbrellas.

Table 5: Examples of augmented inputs and final generations for varying values of NTC.

augmented inputs to human references during training, and
are fed the augmented inputs (corresponding to the value
of NTC) during validation and testing. Some examples of
augmented inputs and generations can be found in Table 5.

5 Experiments
5.1 Model Training and Selection
For training VisCTG models, we mainly follow baseline
hyperparameters, barring learning rate (LR) which is tuned
per NTC value, and the maximum encoder length which
is chosen depending on the tokenizer and value of NTC to
ensure the entire input sequence can fit onto the encoder. We
train two seeds per model. See Appendix C for more details.

For each model, we choose the epoch corresponding to
highest ROUGE-2 on devCG, and use beam search for de-
coding. NTC itself is a hyperparameter, so while we train
separate versions of each model corresponding to different
NTC values, the final chosen models correspond to the NTC
values that performed best on devCG when averaged over
both seeds. We then use the final chosen models to generate
on both testCG and testO, and report the results in §6.

5.2 Human Evaluation
We conduct two human evaluations: one using Amazon Me-
chanical Turk (AMT), and one using an expert linguist.6 For
the AMT study, we ask annotators to evaluate 86 testCG

examples per model. Our evaluation is based on pairwise
comparison of VisCTG and baseline model outputs. We ask
human annotators to choose which amongst the two outputs
(presented in a random order per example) has better Overall
Quality. There are 3 choices - O1: VisCTG is better, O2:
baseline is better, O3: both are indistinguishable. To aggre-
gate multiple annotations per example, we find the fraction
of responses towards each outcome value as the per-example
distribution. We then find the sample mean of this outcome
distribution over all examples. For sample mean and signifi-
cance testing, we are interested in the values for O1 vs. O2.

For the expert linguist study, our expert is a native English
speaker with a graduate degree in linguistics from a North
American university. The expert is asked to annotate three
aspects for 50 BART-large7 testCG examples - Overall Qual-
ity (Overall), Commonsense Plausibility (Commonsense),
and Fluency (Fluency). For all aspects, we have a pairwise-
comparison evaluation setup similar to that for AMT.

6See Appendix D for further human evaluation details.
7Since this is the best performing VisCTG model - see §6.

6 Results and Analysis
Automatic evaluation results on testCG are in Tables 6 and 7,
and results on testO in Table 8.8 Graphs displaying BLEU-4,
CIDEr, and SPICE (the metrics on the CommonGen leader-
board9) on testCG over different NTC values are in Figure 2.
Human evaluation results on testCG are in Tables 9 and 10.
Optimal NTC values for BART-base, BART-large, T5-base,
and T5-large are 5, 2, 2, and 1, respectively. These are the
VisCTG results reported in the aforementioned tables. Table
11 contains qualitative examples, with more in Appendix E.

6.1 Analysis of Automatic Evaluation Results
We see from Tables 6 and 7 that VisCTG outperforms the
baselines on all metrics across the models on testCG. Perfor-
mance gains are strong and statistically significant for BART-
base, BART-large, and T5-base. VisCTG appears relatively
less effective for T5-large which is the strongest baseline,
and hence improving its performance may be more difficult.

From Table 8, we see that VisCTG models substantially
outperform corresponding baselines reported in Lin et al.
(2020) on testO. T5-base VisCTG outperforms the reported
T5-base and large baselines across metrics, and BART-base
VisCTG performs similarly to the reported BART-large base-
line. BART-large VisCTG outperforms the reported baseline,
EKI-BART (Fan et al. 2020), and KG-BART (Liu et al. 2021).
These are SOTA published CommonGen BART models that
use external knowledge from corpora and KGs. We show that
visual grounding is more effective, and BART-large VisCTG
places high on the leaderboard.9 T5-large VisCTG outper-
forms the reported baseline, but lags behind SAPPHIRE
(Feng et al. 2021b) and RE-T5 (Wang et al. 2021).

Figure 2 shows that as NTC increases, metrics increase to
a peak and taper off after. As we saw in Figure 1, the rate
of increase of coverage declines with larger NTC. The latter
images and captions are thus of diminishing quality, and
hence using too many negatively affects model performance.

We also computed ROUGE between captions and outputs
over testCG. ROUGE1/2/L = 36.2/12.3/33.5 are mod-
estly valued. Our models do not simply copy caption content.

6.2 Analysis of Human Evaluation Results
Table 9 shows that VisCTG outperforms the baseline on all
four models based on human annotators (with high IAA).
Annotators, on average, prefer VisCTG outputs over baseline
outputs on overall quality, especially for BART-large. Table

8Evaluated by the CommonGen authors on their hidden test set.
9https://inklab.usc.edu/CommonGen/leaderboard.html
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BART-base (NTC = 5) BART-large (NTC = 2)
Metrics Baseline VisCTG p-value Baseline VisCTG p-value

ROUGE-1 43.96±0.03 45.44±0.08 1.58E-05 45.67±0.25 46.91±0.31 1.58E-05
ROUGE-2 17.31±0.02 19.15±0.21 1.58E-05 18.77±0.04 20.36±0.05 1.58E-05
ROUGE-L 36.65±0.00 38.43±0.07 1.58E-05 37.83±0.29 39.23±0.01 1.58E-05
BLEU-1 73.20±0.28 75.65±0.78 6.94E-05 74.45±0.21 78.80±0.28 6.94E-05
BLEU-2 54.50±0.14 59.05±0.07 6.94E-05 56.25±0.78 61.60±0.85 6.94E-05
BLEU-3 40.40±0.14 44.90±0.42 6.94E-05 42.15±0.49 47.00±0.71 6.94E-05
BLEU-4 30.10±0.14 34.10±0.57 3.82E-03 32.10±0.42 36.25±0.78 2.08E-04

METEOR 30.35±0.35 31.95±0.07 6.94E-05 31.70±0.14 34.00±0.14 6.94E-05
CIDEr 15.56±0.10 16.84±0.05 6.94E-05 16.42±0.09 18.35±0.13 6.94E-05
SPICE 30.05±0.07 31.80±0.28 6.94E-05 31.85±0.21 34.60±0.28 6.94E-05

BERTScore 59.19±0.32 61.44±0.02 1.58E-05 59.95±0.29 62.85±0.30 1.58E-05
Coverage 90.43±0.17 90.66±1.39 0.33* 94.49±0.53 96.49±0.24 1.58E-05

PPL 80.39±3.65 72.45±0.79 1.58E-05 80.37±4.51 68.46±5.90 1.58E-05

Table 6: Auto eval results for BART on testCG over two seeds. Bold corresponds to best performance. We include p-values (from
Pitman’s permutation test (Pitman 1937)) for VisCTG compared to the baseline. Insignificant ones (α = 0.1) marked with *.

T5-base (NTC = 2) T5-large (NTC = 1)
Metrics Baseline VisCTG p-values Baseline VisCTG p-values

ROUGE-1 44.63±0.13 46.26±0.07 1.58E-05 46.32±0.26 46.93±0.22 7.26E-04
ROUGE-2 18.40±0.14 19.78±0.30 1.58E-05 19.59±0.12 20.01±0.23 0.02
ROUGE-L 37.60±0.16 38.91±0.27 1.58E-05 39.20±0.21 39.52±0.43 0.06
BLEU-1 73.60±0.85 76.80±0.28 6.94E-05 77.55±0.35 78.65±0.21 4.65E-03
BLEU-2 57.00±0.71 60.30±0.28 6.94E-05 60.80±0.28 61.55±0.35 0.07
BLEU-3 42.75±0.49 46.25±0.64 6.94E-05 46.50±0.00 47.10±0.57 0.11*
BLEU-4 32.70±0.42 36.10±0.85 6.94E-05 36.20±0.14 36.40±0.28 0.21*

METEOR 31.05±0.49 32.70±0.00 6.94E-05 33.20±0.00 33.65±0.49 0.49*
CIDEr 16.26±0.25 17.65±0.02 6.94E-05 17.79±0.01 17.94±0.25 0.23*
SPICE 31.95±0.07 33.40±0.28 6.94E-05 33.90±0.42 34.55±0.21 0.03

BERTScore 61.40±0.34 62.42±0.17 1.58E-05 62.67±0.09 62.72±0.03 0.34*
Coverage 90.96±1.77 94.48±1.39 1.58E-05 94.40±0.02 95.95±0.45 1.58E-05

PPL 83.04±1.62 77.50±3.86 3.16E-05 81.78±4.63 73.41±4.32 1.58E-05

Table 7: Auto eval results for T5 on testCG over two seeds. Bold corresponds to best performance. We include p-values (from
Pitman’s permutation test (Pitman 1937)) for VisCTG compared to the baseline. Insignificant ones (α = 0.1) marked with *.

10 illustrates that VisCTG outperforms the baseline model
for BART-large based on an expert linguist’s perspective.
VisCTG outputs are highly preferred, on average, over the
baseline on all three aspects of overall quality, commonsense,
and fluency. This aligns with our automatic results in §6.1.

6.3 Qualitative Analysis
Table 11 shows several baseline outputs that contain issues
from §3.1, e.g. incomplete and/or illogical sentences. Human
references are all fluent and logical. VisCTG can usually
generate much higher-quality text than the baselines.

The baseline outputs for ex. 1-2 are phrases lacking argu-
ments, and all illogical for ex. 1-3. Using captions, VisCTG
successfully adjusts semantic roles of entities, replaces in-
correct subjects, fixes dependency structure, and grounds
generations in commonsense. For ex. 1, captions are of the
form “{X} sitting on a chair with {Y}”, where {X} is a sub-
ject and {Y} an object. VisCTG output has similar structure,
being fluent and logical with higher coverage. The baseline
output also has an incorrect subject of “hands”. Our VisCTG
output contains an additional entity (not present in the input
set) of “boy” as subject, likely since it is a subject in the

captions. This highlights the usefulness of visual grounding,
as the image space can provide additional commonsense in-
formation not present in the text (e.g. toys are associated with
children/boys). For ex. 2, the baseline output treats “hand of a
bird” as a single entity, the subject. Captions separate “bird”
and “hand” into two, likely guiding the VisCTG output to do
so. For ex. 3, the baseline misplaces “bus” as subject. Cap-
tions are of form “{X} sitting on a bench {Y}”, where {X} is
a logical subject and {Y} is an expression. The VisCTG out-
put has this structure, with correct subject and commonsense,
and higher coverage. Overall, we see that visual grounding
guides the model to learn which nouns/subjects can perform
which actions (e.g. “hands” cannot sit on a chair but a “boy”
can), which is a major baseline deficiency discussed in §3.1.

For ex. 4, the baseline output lacks a subject that the cap-
tions contain, likely guiding the VisCTG output to contain
one: “a man”. For ex. 5, the baseline output is generic due
to uses of “someone”. VisCTG’s output is more specific and
refers to “man”, likely because the caption (though not very
fitting) includes a “man” subject. Even for captions that fit
the concepts less, structure and fluency can still be exploited.

Overall, we see that the baselines simply try to piece to-
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Models\Metrics ROUGE-2/L BLEU-3/4 METEOR CIDEr SPICE Coverage
T5-base (reported baseline) 14.63 34.56 28.76 18.54 23.94 9.40 19.87 76.67
T5-large (reported baseline) 21.74 42.75 43.01 31.96 31.12 15.13 28.86 95.29

BART-large (reported baseline) 22.02 41.78 39.52 29.01 31.83 13.98 28.00 97.35
EKI-BART (Fan et al. 2020) - - - 35.945 - 16.999 29.583 -
KG-BART (Liu et al. 2021) - - - 33.867 - 16.927 29.634 -

SAPPHIRE (T5-large) (Feng et al. 2021b) - - - 37.119 - 16.901 29.751 -
RE-T5 (Wang et al. 2021) - - - 40.863 - 17.663 31.079 -

T5-base VisCTG 22.83 44.98 45.749 34.722 31.809 16.173 28.808 92.92
T5-large VisCTG 23.83 45.76 47.376 36.409 33.012 16.815 29.629 95.54

BART-base VisCTG 21.73 43.43 43.235 32.291 30.86 15.187 27.403 88.98
BART-large VisCTG 23.68 45.07 48.031 36.939 33.215 17.199 29.973 94.86

Table 8: Auto eval results of VisCTG on testO, evaluated by CommonGen authors. We compare to reported baseline numbers in
Lin et al. (2020) (they did not evaluate BART-base), and models on their leaderboard9 with publications at time of writing. Their
leaderboard reports BLEU-4, CIDEr, and SPICE. Bold corresponds to best performance (for those three) per model type+size.

Figure 2: BLEU-4, CIDEr, and SPICE on testCG over different values of NTC for BART-base and T5-base.

Model O1 O2 O3 IAA
BART-base 0.45 0.33 0.22 0.72
BART-large 0.62 0.18 0.20 0.55

T5-base 0.46 0.33 0.21 0.72
T5-large 0.46 0.34 0.20 0.74

Table 9: Avg. AMT eval results on testCG for overall quality.
O1: VisCTG wins, O2: baseline wins, O3: indistinguishable.
All results are stat sig based on paired two-tailed t-tests and
α = 0.1. Inter-annotator agreement (IAA) is the avg. direct
fractional agreement (both annotators choose O1 or O2) over
all examples. See §5.2 and Appendix D for further details.

Model Aspect O1 O2 O3

BART-large
Overall 0.44 0.24 0.32

Commonsense 0.32 0 0.68
Fluency 0.56 0.12 0.32

Table 10: Avg. expert linguist eval results on testCG for
BART-large. O1: VisCTG wins, O2: baseline wins, O3: in-
distinguishable. See §5.2 and Appendix D for further details.

gether the input concepts into a form of English syntax, often
failing to do so effectively. VisCTG models can produce
more grammatical, fluent, and logical text by exploiting the
syntactic and dependency structures of the captions. Further,

the visual grounding improves the commonsense of the gen-
erations. The images inherently capture commonsense by
representing everyday scenarios, and this commonsense info
is rarely explicitly included in text. Hence, large text-based
models such as our baselines tend to not know this info,
whereas VisCTG models learn it through the grounding.

VisCTG is, however, imperfect. For ex. 6, its output is less
logical and lower coverage than the baseline’s. The captions
are all simplistic and low coverage; the first is illogical, and
some others are of the form “a bunch of apples {...} on a
tree”, likely negatively impacting the generation. Ex. 4’s hu-
man reference is creative, which is an area where VisCTG
still lacks in comparison. For ex. 5, while VisCTG edits

“someone” to “man”, it is unable to merge the two instances
of “man” or adjust the sentence to be more coherent. These
weaknesses are likely because captions tend to be simplis-
tic (due to the captioning model’s training data), limiting
VisCTG’s ability to make heavier edits. VisCTG, unsurpris-
ingly, appears to depend quite heavily on the captions, and
hence the quality of the images and captioning model.

7 Related Work
Constrained Text Generation: There have been several
works on constrained text generation. Miao et al. (2019)
use Metropolis-Hastings sampling to determine Levenshtein
edits per generation step. Feng, Li, and Hoey (2019) pro-
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Method Text
Concept set {sit, chair, toy, hand} (example 1)
Captions a little girl sitting on a chair with a teddy bear <s> a small child sitting on a chair with a teddy bear <s> a

young boy sitting on a chair with a skateboard <s> a man sitting on a chair with a remote
BART-base-BL hands sitting on a chair
BART-base-VisCTG A boy sitting on a chair with a toy in his hand.
Human reference A baby sits on a chair with a toy in one of its hands.
Concept set {food, eat, hand, bird} (example 2)
Captions a bird is perched on a branch with a hand <s> a person holding a small bird in their hand
BART-large-BL hand of a bird eating food
BART-large-VisCTG A bird eats food from a hand.
Human reference A small bird eats food from someone’s hand.
Concept set {bench, bus, wait, sit} (example 3)
Captions a man sitting on a bench with a book <s> a person sitting on a bench with a laptop
T5-base-BL A bus sits on a bench.
T5-base-VisCTG A man sits on a bench waiting for a bus.
Human reference The man sat on the bench waiting for the bus.
Concept set {jacket, wear, snow, walk} (example 4)
Captions a young boy in a red jacket is standing in the snow <s> a man in a red jacket is standing in the snow
BART-large-BL walking in the snow wearing a furry jacket
BART-large-VisCTG A man is walking in the snow wearing a jacket.
Human reference Jamie took a walk out into the snow with only a T shirt on and instantly went back inside to wear his jacket.
Concept set {hold, hand, stand, front} (example 5)
Captions a man holding a pair of scissors in front of a wall
T5-large-BL Someone stands in front of someone holding a hand.
T5-large-VisCTG A man stands in front of a man holding a hand.
Human reference A man stands and holds his hands out in front of him.
Concept set {bag, put, apple, tree, pick} (example 6)
Captions a person holding a apple in a tree <s> a bunch of apples are growing on a tree <s> a close up of a green apple

with a tree <s> a bunch of apples are growing on a tree
BART-base-BL A man is putting apples in a bag and picking them up from the tree.
BART-base-VisCTG A man puts a bag of apples on a tree.
Human reference I picked an apple from the tree and put it in my bag.

Table 11: Qualitative examples for testCG. BL stands for baseline. Concept set refers to the input keywords and Captions refers
to the captions (separated by <s>) used by the VisCTG model for that particular example to produce its final generation.

pose Semantic Text Exchange to adjust topic-level text se-
mantics. Gangal et al. (2021) introduce narrative reordering
(NAREOR) to edit the temporality of narratives.

Data-to-text NLG: E2E-NLG (Dušek, Novikova, and
Rieser 2018) and WebNLG (Gardent et al. 2017) are two
popular NLG benchmarks with structured inputs - meaning
representation (MR) and triple sequences, respectively.

Commonsense Injection and Incorporation: One com-
monsense knowledge graph (KG) is COMET, trained on KG
edges. EKI-BART (Fan et al. 2020) and KG-BART (Liu
et al. 2021) use external knowledge to improve CommonGen
performance. Distinctly, VisCTG uses visual grounding and
shows higher performance (see §6). Visual Commonsense
Reasoning (VCR) (Zellers et al. 2019) involves answering
commonsense-related MC questions about images. Our work
focuses on injecting commonsense into text generators.

Multimodal Machine Learning and NLP: There has been
more work on multimodality, in areas like representation and
video captioning, but little for constrained and data-to-text
NLG (Baltrusaitis, Ahuja, and Morency 2019; Gao et al.
2020). There is work on pretrained multimodal models like

ViLBERT (Lu et al. 2019): mainly encoders that jointly rep-
resent images and text rather than seq2seq models. Further,
unlike these models which are pretrained, VisCTG exploits
per-example visual info to fix specific issues per concept set.

8 Conclusion and Future Work
In conclusion, we motivated and explored the use of vi-
sual grounding for improving the commonsense of Trans-
former models for text generation. We investigated this for
concept-to-text generation, calling our method VisCTG: Visu-
ally Grounded Concept-to-Text Generation. Extensive exper-
iments on BART and T5 showed its efficacy on the Common-
Gen task. Comprehensive evaluation and analysis showed
that VisCTG boosts model performance and commonsense
while addressing baseline deficiencies. Potential future work
includes using a stronger captioning model, e.g. one based
on CLIP (Radford et al. 2021). Video captioning and image
generation can also be explored. Further, VisCTG can be
investigated for other data-to-text NLG tasks, e.g. WebNLG,
and applications like data augmentation for text generation
(Feng et al. 2020, 2021a), and enhancing the commonsense
reasoning of personalized dialogue agents (Li et al. 2020).
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