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Abstract

Despite the super-human accuracy of recent deep models in
NLP tasks, their robustness is reportedly limited due to their
reliance on spurious patterns. We thus aim to leverage con-
trastive learning and counterfactual augmentation for robust-
ness. For augmentation, existing work either requires humans
to add counterfactuals to the dataset or machines to automati-
cally matches near-counterfactuals already in the dataset. Un-
like existing augmentation is affected by spurious correlations,
ours, by synthesizing “a set” of counterfactuals, and making
a collective decision on the distribution of predictions on this
set, can robustly supervise the causality of each term. Our em-
pirical results show that our approach, by collective decisions,
is less sensitive to task model bias of attribution-based syn-
thesis, and thus achieves significant improvements, in diverse
dimensions: 1) counterfactual robustness, 2) cross-domain
generalization, and 3) generalization from scarce data.

Introduction

Deep learning models have been successful in natural lan-
guage tasks, aiming to learn how to correlate input features
to desired outputs. However, these models are reported to
often rely on “spurious” features, hindering the robustness—
An illustrative example from (Wang and Culotta 2020a) is,
classifying the sentiment of “This Spielberg film was won-
derful”, to positive. Though the term Spielberg itself does
not have a causal effect to predicting the review as positive,
if the given dataset contains many positive reviews for his
movies, it can correlate to positive. In contrast, another term
wonderful has a causal effect. While both features have high
predictive power in this particular dataset, using Spielberg
for prediction does not generalize well to another set where
his movie is not as favored.

In this paper, we aim to reduce spurious correlations, to
rely more on robust features, with more “causal” effects to
predicting class labels and generalizing better to new data.
For finding causal features in language tasks, existing efforts
look for human annotations, namely counterfactual data aug-
mentations (Kaushik, Hovy, and Lipton 2019), collecting the
minimally-dissimilar yet differently labeled examples. By
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highlighting the different parts between original and counter-
factual texts, the model could identify the causal correlations
of the given task. In our example, the term wonderful is con-
sidered causal, as editing the term with bad generates its
counterfactual pair of negative sentiment.

However, collecting such counterfactual pairs from hu-
man annotators is expensive and thus hard to scale up. Al-
ternatively, there have been efforts to collect such counter-
factual pairs automatically, to avoid high human-annotation
costs: First, matching-based approaches (Wang and Culotta
2020b) find the most similar samples of opposite labels within
the dataset. These will be effective when the given dataset
contains counterfactual pairs, which may not be always prac-
tical. Second, attribution-based approaches (Moon et al.
2020; Liang et al. 2020; Han et al. 2021) no longer rely on
the dataset coverage, but use attributions from the task model
instead, such as attention or gradients, to decide “candidate”
causal term as high-attributed features. This approach can
be viewed as distilling causality from the task model itself,
to reduce the dependence on the dataset coverage, though it
may propagate the bias within the task model, e.g., Spielberg
is highly-attributed.

Our work is of combining the strength of the two ap-
proaches, by reducing the bias, from both dataset and task
model. Specifically, we propose a novel pipeline for the unbi-
ased causality identification, which consists of the following
two steps: 1) candidate proposal and 2) candidate validation.
The first step identifies “candidate” causal terms, by using
attention or gradient as in (Moon et al. 2020; Liang et al.
2020). Then, the second step validates the causality of can-
didate terms, by estimating a causal “treatment” effect of
the word, for classifying the given text into its class label,
i.e., “outcome”, known as Individualized Treatment Effect
(ITE) in causality literature (Shpitser and Pearl 2006; Shalit,
Johansson, and Sontag 2017).

Our distinction is “robustifying” the second step, for which
we contrast ITE validation of existing and our approaches as
in Figure 1. Existing efforts (Wang and Culotta 2020b; Klein
and Nabi 2020) first generate a single counterfactual example,
then observe if the predicted label differs from the original
label, which may be incorrect if the task is biased or noisy for
the generated sentence as shown in Figure la. In contrast, we
make a collective decision over multiple generations, as in
Figure 1b, and consider decision “distributions” for making
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Figure 1: Comparative illustration of (a) single and (b) multiple decisions for causality estimation. If we make a single decision,
an incorrectly labeled counterfactual review, such as “this movie is noisy” with positive sentiment, would negatively affect
the subsequent training process. On the other hand, making a collective decision from multiple counterfactual reviews is less

sensitive to a few noisy assignments.

a validation. Though the task model still makes a mistake for
“noisy”, the overall decision checks if the predicted labels are
diverse (or, close to uniform), which is much less sensitive to
a few noisy/biased predictions.

Finally, in order for models to better understand the iden-
tified causal features, we propose a Causally Contrastive
Learning (C?L), which contrasts the original text with its
causally related pairs. Specifically, we synthesize a counter-
factual pair and factual pair, by masking the identified causal
term and non-causal terms respectively. To illustrate, the ex-
ample review with the term “boring” can be augmented into
a counterfactual sentence, where the causal term is masked,
e.g., “the movie was [MASK]”, such that its label cannot be
determined. Similarly, a factual sentence is built by masking
a non-causal term, such as “the” and “movie”, still preserv-
ing the original semantics. That is, the model can learn that
the term “boring” is causal to its label, by contrasting the
original text with its counterfactual pair, as the masked token
incurs label flips, while contrasting with the factual pair helps
the model to learn being invariant to the non-causal features.
With this causality-aware contrastive training, the robust-
ness of the text classification model can be largely improved.
Experimental results show that our method improves the ro-
bustness in various dimensions: 1) counterfactual examples,
2) cross-domain, and 3) data scarcity.

Methodology

This section discusses the overall framework of our proposed
method, illustrated in Figure 2, which consists of three parts:
(1) a base classification model, (2) a counterfactual sample
synthesizing module, and (3) a contrastive learning (CL)
objective.

Base Classification Model

The text classifier fp : * — y maps an input z to the
corresponding class among the N classes y € {1,...,N}.
The input sequence z is a sequence of words w; € V, i.e.,
x = [wy, ..., wr|, where V is the vocabulary set and 7T is the
length of the input. Here, the full corpus D = {(z,y)} isa
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collection of all inputs. The model parameters 6 are trained to
minimize the cross-entropy loss L, sx between the predicted
label ¢ and the ground-truth label y:

N
Liask(wi,y50) = = >yl log ], ()
j=1

where j is the class index.

Unbiased Causality Identification

For more robust text classification, it is important to distin-
guish causal correlations from spurious correlations. Specif-
ically, a causal feature is, in the context of text classifica-
tion (Wang and Culotta 2020a,b), defined as follows: a word
w is a causal feature in the input text z if, all else being
equal, one would expect w to be a determining factor in
assigning a label to .

In this work, we present a novel pipeline, built on the exist-
ing label-indicative word identification methods, to efficiently
narrow down the number of candidate words, followed by
our unbiased causal word identification methods.

Step 1: Candidate Proposal The first step is selecting can-
didate tokens based on attribution scores. There are several
ways to identify the causal features of the given text in our
pipeline. For instance, (Moon et al. 2020) find causal tokens
by collecting highly attended words of the trained classi-
fier. However, the limitations of attention as explanation (i.e.,
an indicator of causal relationship) have been recently ad-
dressed (Jain and Wallace 2019; Grimsley, Mayfield, and
Bursten 2020). As a more straightforward solution for captur-
ing the attribution of each token, we can explore the tokens
with the large gradients toward the gold label.

Formally, given an input = and its task label y, we compute
the gradient magnitude g; of i-th token w; (specifically, the
positional embedding w? of token w;) as follows:

9 = | Var Leasi (2,5 )%, @

where the magnitude is computed from the classifier f4. Note
that the parameter ¢ is optimized only for the classification
loss (Eq. 1).
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Figure 2: The overall framework of C2L. With the causal
triplets (z,z ", 27 ), we aim to map the representation of
original text x close to factual pair ™ but far apart from the
counterfactual pair x~.

The gradient-based score of token w is aggregated over all
the training texts having the token w by:
Yo ¥

sgrad(w) —
(z,y)€D ie{l,....T}

[(w; = w) - gi;, (3)

N,z

where I is an indicator function, and n,, , is the number of
word w in the input x.

Note that, as it is non-trivial to determine an absolute
threshold for selecting the label-indicative tokens, we adopt
an iterative process of validating the causality by testing the
high-attributed tokens first. We terminate this process when
we find a causal feature using the following validation step.

Step 2: Candidate Validation The second step is thus val-
idating the candidate tokens (i.e., highly ranked according to
59724 (1)) based on its individualized treatment effect (ITE),
which enables measuring how much the high-attributed to-
kens contribute to its label y. More specifically, one can test
whether perturbing the high-attributed word leads to change
its predicted label. For simplicity, here we denote the high-
attributed word as w.

For this purpose, we leverage a pre-trained masked lan-
guage model (LM), i.e., BERT (Devlin et al. 2019), that is
not fine-tuned to the dataset. Imagine that the LM provides
unobserved counterfactual examples (or, words) in the train
dataset, but possibly observed in the pre-training corpus. As
the unobserved counterfactual examples are inherently un-
constrained to dataset biases, there are more chances of being
debiased from observed biases.

Our distinct intuition is that, if the masked text can be
reconstructed into multiple examples and they are labeled as
different classes, we can decide the masked term has a causal
effect. As we make a collective decision on the distribution
of multiple predictions, this decision is less sensitive to a
few biased/noisy individual decisions. It thus provides more
stable evidence to identify the masked word w as causal to
the task label y.
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Specifically, we feed the masked sentence x,,—, [nasx] into
BERT, to generate counterfactual words w likely to occur
at the position of w. However, as BERT is reportedly bad
at finding the substitutes of the masked word, we adopt the
dropout-based masking approach (Zhou et al. 2019), which
partially masks the target word via dropout mechanism (Sri-
vastava et al. 2014) to take the balanced consideration of the
target word’s semantics and contexts. Namely, we feed the
original sentence x, where the token embedding of [MASK]
token is added to the target word w as follows:

W = XgW + (1 — Aa)W mask) » 4)
where W .5k is the embedding of [MASK] token, and A\
denotes a balancing coefficient for embedding dropout.

Then, the masked language model, i.e., BERT, takes the
partially-masked sentence as input, and samples top-k sub-
stitution candidates {1, Ws, ..., Wy } of target word w, from
the likelihood distribution Py, (0|2 y— (mask] )- For the top-
k substitution candidates, we construct the k£ counterfactual
Sentences { Loy s, Lw—sigs -++» Lw—saiy, ;- We then collect the
predicted labels of the sentences {1, g, ..., Y } from the
classifier fy. By testing whether the £ labels are evenly dis-
tributed into the classes, we can decide the high-attributed
token w as causal to its task label y. For example, if the gen-
erated k£ = 4 sentences are distributed in different classes,
specifically two sentences at each class, we decide the to-
ken is causal'. If the token w cannot satisfy the condition,
we move to the next mostly attributed token and repeat this
second step until we find a causal feature’>. We denote this
method as multiple reconstruction (MR).

Contrastive Learning Objective

In this work, we leverage contrastive learning (Oord, Li, and
Vinyals 2018; Hjelm et al. 2018) to better learn the causal
structure of the classification task. For this purpose, we build
the causal triplets (z, z ", ™) by utilizing the causal features
obtained from above, as presented in Figure 2. First, the
counterfactual pair ™ is built by masking out causal words,
i.e., replacing with a special token [MASK], such that its
label cannot be determined even with a similar syntactic
structure. On the other hand, we mask one of the remaining
words to generate a factual pair T that is still recognized as
the original label y, which helps to learn a model invariant to
these features.

Formally, the contrastive objective aims to map the rep-
resentation of z close to the representation of positive sam-
ples {a:j' }‘]:1 , while the representation of negative samples
{xj_ ,jJ:1 far apart from x. To achieve this, we adopt the fol-
lowing margin-based ranking loss by (Zhang et al. 2020) for

'As explained here, we test k = 4 sentences for this purpose,
which is empirically tuned. In our preliminary experiments, when
we generate less than 4 sentences, this process suffers from incorrect
predictions.

YIn our experiments, augmentation increases BERT call to
x15~20 without back-propagation, translating to 5 additional hours
in SST2 training, which is not significant as training is done offline.



model training:

where J is the number of positive/negative pairs, A,, is a
margin value which we set to 1 in this work, and sg(-,-)
denotes the distance between the BERT representations.

For each causal triplets, minimizing the contrastive objec-
tive enables the model to learn the relationship between them
and predict the right class from a more causal aspect. Finally,
the parameters of the text classification network are trained
to minimize the both loss terms together as follows:

L= Etask + )\Lca (6)

where ) is a balancing coefficient for the contrastive objective.
Training the contrastive objective with our causal triplets
(z,2", 27 ), we name these models as Causally Contrastive

Learning (C°L) in the later experiments.

On Paired-input Task

Many important tasks such as Natural Language Inference
(NLI) require to classify a pair of texts according to their
logical relationship. Though the convention of BERT for
such task is treating the input texts as one single segment,
ie.,, “[CLS] textl [SEP] text2 [SEP]”, we observe that
there can be interference between the texts during validation:
For example, consider a masked hypothesis sentence “some
men are [MASK] a sport”, paired with a premise sentence
“a soccer game with multiple males playing”. If we feed the
masked hypothesis together with the premise into BERT, the
[MASK] token would be most likely replaced by the word
“playing”, which already appears in the premise sentence.
The problem is that, it can deteriorate the quality of causal-
ity estimation, due to its low diversity (or, coverage) of the
generated tokens.

To avoid such interference, we adopt separated-validation,
which reconstructs each masked text independently by drop-
ping the other text. Note that, such separation is only con-
ducted when constructing k& counterfactual sentences, while
we collect the predictions on the concatenated texts.

One may ask similar interference can be observed across
segments in long texts, i.e., document-level input. We em-
pirically compared with separated-validation to reduce in-
terference, but differences were not statistically significant
(A < 0.8), despite computation overheads.

Experiment Setup
Datasets

We first evaluate our method on the counterfactually-revised
dataset (Kaushik, Hovy, and Lipton 2019), which was re-
cently released to tackle the over-reliance problem of deep
learning systems on spurious patterns in training data. To ad-
ditionally validate the effectiveness of C2L in cross-domain
scenario, we use the following text classification datasets,
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which are widely used (Wang et al. 2018; Jain and Wal-
lace 2019; Choi et al. 2020; Moon et al. 2020) and sta-
tistically diverse as well: Sentiment analysis experiments
on IMDb (Maas et al. 2011), FineFood (McAuley and
Leskovec 2013), and SST-2 (Socher et al. 2013) datasets.
And, natural language inference experiments are conducted
on MultiNLI (Williams, Nangia, and Bowman 2017) dataset.

Following the settings in (Kaushik, Hovy, and Lipton 2019;
Moon et al. 2020), we use the official train and test splits if
they exist, or we randomly divide the dataset with a 70:30
ratio, using them for train and test splits, respectively. To con-
firm convergence, we use 10% of the train set for validation
purposes. The learning parameters were chosen by the best
performance on the validation set. All the reported results are
averaged over three trials.

Implementation Details

For experiments, we chose all the hyperparameters by the best
performance on the validation set. For the BERT classifier,
we train bert-base—uncased with a batch size of 16
for SST2, and 8 for IMDb/FOOD over 3 epochs, ensuring
convergence. We used AdamW with a learning rate of be — 5
and the Linear scheduler with 50 warm-up steps.

For contrastive objective (Eq. 5), the balancing coefficient
A is tuned between [0.1, 1.0], and we observe giving larger
) is effective when fewer causal features are identified, such
that setting the \ as 0.1, 0.7, and 1.0 performs well for SST-
2, IMDb, and FineFood respectively. The number of posi-
tive/negative pairs J is set to 1 for the memory issue. The
embedding dropout coefficient )\ is tuned to 0.5.

Note that, for NLI tasks, we do not use the identified causal
features (i.e., A = 0) for the “neutral” class samples, as
the neutral class in itself means not belonging to any other
classes, which is similar with our counterfactual pairs.

Comparison Methods

To closely observe how our proposed causal understand-
ing contributes to the text classification task, we compare
C2L with the following baselines and ablations built on the
standard BERT classifier.

SSMBA (Ng, Cho, and Ghassemi 2020): As a masking-based
generative baseline, we implement SSMBA, a corrupt-and-
reconstruct approach, that masks an arbitrary number of
word positions and unmasks them using BERT. Following
the original paper, we augment 5 samples for each sample
with RoBERTa (Liu et al. 2019), and train the BERT-Base
classifier on the augmented dataset with soft-label.

MASKER (Moon et al. 2020): Similar, but contrary to our
approach, MASKER enforces BERT to make a prediction
based solely on the surrounding contexts by masking out key-
words. Following the training details written in the original
paper, we reproduce the experiments with a validation set.

CL (pos/neg): As a basic implementation of contrastive
learning, we collect positive (or, negative) contrastive pairs
from a pool of the same (or, different) class samples, and give
the contrastive objective (Eq. 5) with the pairs like C?L. All
the hyperparameters are the same with C2L approaches.



Model CF-IMDb CF-NLI
Original Revised Original RP RH RP & RH
BERT-Base 90.6+2.1  89.3+20 774+17 409438 64.5+08 52.7+23
SSMBA 90.5+06 90.0+14 75.8+15 42.5+09 65.0+03 53.8+05
CL (pos/neg) 91.3+04 90.4+05 75.8424 403420 64.1+06 52.2+07
MCL (attn) 91.04£09 90.5+28 752430 39.6+22 62.1+22  50.9+17
MCL (grad) 90.9+12  91.9+02 75.3+18 41.1+19 65.3+20 53.2+19
MCL (grad+HL) 89.0+03 90.9+07 76.7+16 415420 64.6+17 53.0+18
MCL (grad+SL)  90.6+14 92.0+22 78.3+11  40.0+13 64.5+13 52.2+13
C2L (-MR) 89.6+08 91.1+05 75.0422 394436 61.4+26 50.4+13
c2L 91.3+14 92.6+13 76.2+17 43.1+25 65.8+17 54.5+21

Table 1: Accuracy (%) on the counterfactually augmented IMDb and SNLI dataset (Kaushik, Hovy, and Lipton 2019). For
CF-IMDb, all models are trained with the original 1.7k IMDD reviews, and evaluated on both original and counterfactually
revised samples, which is the most difficult setting reported in the previous literature. For CF-NLI, we train all the models
with the original 1.67k NLI samples, and report the following 3 types of counterfactual samples: revised premise (RP), revised

hypothesis (RH), and combination of them (RP & RH).

MCL (grad): To confirm the effect of our candidate vali-
dation, we select the word w that has the highest candidate
proposal score s97%4(w) and mask the word. To distinguish
it from the proposed causally contrastive learning, we call it
masked contrastive learning (MCL).

MCL (attn): In MASKER (Moon et al. 2020), the atten-
tion values of the model are used for choosing the keywords,
which are defined as the words with the highest attention val-
ues. For direct comparison with our gradient-based scoring,
we leverage attention value as candidate proposal score with-
out candidate validation step. Formally, leta = [a1, ..., ar]
be attention values of the input embeddings, where a; cor-
responds to the input word w;. Then, the attention score of
word w is aggregated over all the input texts having the word
w by:

gHtn (w) — Z 1 Z

n
(xy)eD T ie{l,..,T}

I(w; = w) (7

a;
a
where n,,  is the number of word w in the input z, and || - ||

is lo-norm. We mask the word w with the largest attention
score s*87 (w).

MCL (grad+HL): As a counterpart of our approach, we
generate “single” counterfactual sentence for a word, and
consider hard label-flip (HL) to decide the causality: When
the label of the masked input is different from its original
label, i.e., argmax y #* arg max 4, we mask the word w.
As discussed, the task model is biased to the given dataset,
we categorize this as MCL.

MCL (grad+SL): Unlike MCL (grad+HL), erasing one may
not necessarily flip the decision, but it can change the predic-
tion significantly. Following that, we adopt Total Variance
Distance (Jain and Wallace 2019) between two predictions:
If the score TVD(§, o) = 5 37— [# — 91, is larger than
a threshold ¢, we mask the word w, where the threshold is

empirically tuned with the minimum value to flip a label in
MCL (grad+HL).

C2L (-MR): This is an ablation of our proposed C2L regard-
ing the multiple reconstruction method. While we “generate”
multiple reconstructions using MLM for candidate validation,
inspired by anchoring a factual observation as in (Wang and
Culotta 2020b), this “selects” such observations from training
dataset, whose BERT similarity with the masked sample is
over a threshold. We empirically set the threshold to 0.95.
When such a pair is found for w, we mask the word w.

Results and Discussion

We now proceed to empirically validate the effectiveness
of C?L. Based on the benchmark datasets, we address the
following three key questions:

RQ1: Is C%L robust for counterfactually-revised texts?
RQ2: Does C2L adapt better to the new domain?
RQ3: Is C2L robust for data-scarce cases?

RQ1: Robustness for Counterfactual Data

We first evaluate how C2L contributes to the robustness of
deep models on counterfactually revised datasets. The mod-
els are trained with the original datasets (1.7k IMDD reviews
for sentiment analysis and 1.67k SNLI samples for natural
language inference), and evaluated on both original and coun-
terfactually revised samples. The results are presented in
Table 1. In the table, we can observe the proposed approach,
C2L, outperforms all the baselines in the revised datasets,
on which biases from the original training data cannot be
relied. Specifically, C°L improves the performance 3.3 points
in revised IMDB and 1.8 points in revised NLI (RP & RH)
from the BERT-Base. It demonstrates that, when the network

3Note that these results are different from those reported in the
original paper, due to dataset settings.
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Model Sentiment NLI
I—»F JEEN F—I F—S S—I S—F T—L T—F
BERT-Base 87.9+22 86.9+02 82.8+18 744415 88.1+08 81.3+32 80.8+0.7  79.4+0.1
SSMBA 88.6+0.1 87.1+07 83.7+07 74.7+10 88.0+02 80.5+03 80.6+04  79.7+04
MASKER*3 86.8400 85.8+00 78.3+00 75.1+00 84.0+00 81.0+00 80.4+00 78.5+00
CL (pos/neg) 86.6+12 87.3+10 83.5+17  74.2435 88.3+09  82.7+09 79.9+13  80.0+05
MCL (attn) 89.1+03 86.0+14 83.4+15 75.3+08 88.8+08 80.0+38 80.4+01  80.2+05
MCL (grad) 88.7+03 87.5+07 82.3+18 72.9+16 88.6+06 80.7+09 80.6+0.7  79.3+15
MCL (grad+HL) 88.54+08 86.9+1.0 83.8408 75.0+08 89.2+07 82.4+4.1 81.0+07  80.1+03
MCL (grad+SL) 88.9+07 86.7+06 84.0+0.1 74.3+35 88.5+07 81.6+08 81.2+04  79.9+06
C2L (-MR) 88.9+13 86.4+038 82.2+06 75.4+20 88.7+09 82.8+03 80.7+03  80.2+02
C2L 89.2+05 87.6+05 84.8+09 77.5+0.2 89.6+04 84.3+13 82.0+07 80.2+0.6

Table 2: Cross-domain accuracy (%) on the three sentiment analysis and multi-domain NLI datasets. * indicates that the results
are reproduced by the original implementation. We denote each sentiment dataset as follows: IMDB (I), FineFood (F), and SST2
(S). For NLI, each domain is denoted as follows: Telephone (T), Letters (L), and FaceToFace (F).

Negative:
“celebrity cameos do not automatically equal laughs.”
GRAD OURS
Positive:
“yet another sexual taboo into a really funny movie.”
GRAD OURS
Positive:
“has a rather unique approach to documentary.”
OURS GRAD

Table 3: Qualitative examples on the SST2 dataset. For com-
parison, we present an original input text, and highlight the
words selected by gradient method (GRAD) and our valida-
tion method (OURS) respectively.

better understands the causal correlations between input text
and the task label, the network becomes more robust against
spurious correlations as we claimed. It is noteworthy that
C?L adopts the self-supervision signals without requiring any
additional human efforts (e.g., revised training set).
Meanwhile, the results manifest that the baselines are
less effective against the spurious correlations. For exam-
ple, though MCL (grad+SL) achieves the best accuracy 78.3
in the original NLI test set, it fails to distinguish the causal
correlations from spurious correlations, showing even lower
performance than BERT-Base in the revised NLI test sets.
This suggests that leveraging task models exploits the label-
indicative features regardless of their spuriousness.

RQ2: Cross-Domain Generalization

The performance of neural networks can deteriorate under
a domain shift between training and test data. Previous lit-
erature (Li et al. 2018; Moon et al. 2020) have shown that
over-relying on the domain-specific keywords limits the gen-
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eralization ability of networks, as the same keywords may
not appear in another domain, for which we aim to remove
such spurious features. We thus test whether the deep models
can perform robustly from domain shifts.

Table 2 presents the classification accuracy for the cross-
domain scenario, where each model is trained only on the
source domain and evaluated on the target domain without
further training. In the table, we can find C2L is more robust,
outperforming all the baselines in cross-domain settings. It
demonstrates that contrasting causal triplets makes the net-
work more robust against domain shifts.

Our study also confirms the following observations to our
advantage: 1) the candidate validation step meaningfully con-
tributes to performance gains, and 2) the validation is espe-
cially effective when multiple decisions are collected. More
specifically, 1) MCL (grad+HL), MCL (grad+SL), C%L (-
MR) and C2L show better performance than MCL (attn) or
MCL (grad) in many cases. And 2) C2L achieves the best
performances in all the cross-domain settings, such as 84.8
at FineFood—IMDb and 84.3 at SST-2—FineFood with a
significant performance gap, while in-domain accuracy still
remains comparable. This suggests that the proposed ap-
proach can effectively avoid spurious features, which cannot
be generalized to new domains. In our extensive study, we
additionally observe that identifying causal features makes
the model better transfer to longer texts.

For further analysis, we show qualitative examples in Ta-
ble 3. We present the original text in SST-2 and highlight
the words selected by MCL (grad) and C2L respectively.
As discussed, we can observe that MCL (grad) gives high
scores for the spurious words, such as the word “celebrity” or
“taboo”, where perturbing the word cannot change its label.
Meanwhile, our approach identifies the causal words more
accurately, such as “not” and “funny”, where one can easily
flip the label of the causally masked sentence by unmasking
it with the words “always” and “boring”.
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Figure 3: Accuracy (%) on a varying number of training
samples in the IMDb dataset.

RQ3: Data Scarcity

In many realistic applications, the training data is often too
scarce. As a stress test for such data-scarce scenarios, we
train each model with the IMDb dataset, but in different
training set sizes (25%, 50%, and 75%) and evaluate in the
official test set. The results are presented in Figure 3. From
the results, we can find C2L performs more robustly against
data scarcity, outperforming the others when there are fewer
training samples (25% and 50%). An interesting point is, the
best performing model is MCL (grad) when there are enough
data (75%). These trends indicate that MCL (grad) makes the
best use of not only causal features but also spurious features,
that can improve in-domain accuracy but cannot generalize
to new data, as addressed in RQI1.

Among the results, it is noteworthy that C?L (-MR) poorly
works when there are not enough data, as it builds control
groups of varying quality, which limits the quality of causal-
ity estimation in the data-scarce scenario. On the contrary,
C2L stably performs well regardless of the size of the given
dataset, which demonstrates the advantages of leveraging
language models.

Related Work
Robust Text Classification

The goal of text classification is to assign labels to the given
text. In spite of the recent advances for language understand-
ing (Devlin et al. 2019; Liu et al. 2019), deep models are still
challenged by spurious correlations, associating “free” with
negative sentiment (Wang and Culotta 2020a), “gay” with
toxicity (Wulczyn, Thain, and Dixon 2017), and “not” with
contradiction (Gururangan et al. 2018). Against spurious cor-
relations, recent work pursued additional human annotations,
such as 1) human rationales (Zhang, Marshall, and Wallace
2016) and 2) counterfactually-augmented datasets (Kaushik,
Hovy, and Lipton 2019; Khashabi, Khot, and Sabharwal
2020), for supervising neural attention (Zou et al. 2018; Bao
et al. 2018; Choi et al. 2020), or model gradients (Liu and
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Avci 2019; Teney, Abbasnedjad, and Hengel 2020). However,
due to annotation scarcity, the automatic annotation has been
studied in the following directions: (Ng, Cho, and Ghassemi
2020; Wang and Culotta 2020b) generate the counterfactual
sentences, (Garg and Ramakrishnan 2020) estimate token im-
portance via counterfactual inference, and (Wang and Culotta
2020a; Klein and Nabi 2020) find a similar counterpart in the
given dataset. Similar to our masking approach, (Moon et al.
2020; Liu, Chen, and Zhao 2021) enforce the model to make
a prediction based on the surrounding contexts by masking
out some keywords (or, event mentions).

Our distinction: Our work shares the same goal of automat-
ing manual annotations, with the distinction of higher tol-
erance to noises and biases, by making an unbiased causal
feature selection and avoiding noisy per-instance prediction,
replaced by a group decision, represented by our proposed
masked pairs.

Contrastive Learning

A recent advance for representation learning is contrastive
objective (Oord, Li, and Vinyals 2018; Hjelm et al. 2018),
which exploits the idea of learning by comparison to capture
the subtle features of data. By recent studies, some crucial
considerations for better contrastive learning are revealed,
such as heavy data augmentation (Gontijo-Lopes et al. 2020;
Tian et al. 2020), large sets of negatives (Chen et al. 2020b),
and difficulty of negative pairs (Kalantidis et al. 2020). In
this work, we focus on leveraging counterfactual samples,
i.e., minimally dissimilar pairs (Kaushik, Hovy, and Lipton
2019). Among the existing counterfactual contrastive learn-
ing approaches (Wang et al. 2020; Zhang et al. 2020), (Liang
et al. 2020; Chen et al. 2020a) is closest to our work, by
masking salient features, measured by task model, such as
gradient-based explanation, i.e., Grad-CAM (Selvaraju et al.
2017).

Our distinction: Unlike existing efforts using causal features
for contrastive learning, to the best of our knowledge, our
work is the first to study the debiasing of task models, without
increasing annotation overheads on the human side.

Conclusion and Future Work

We studied the problem of counterfactual augmentation, with
the distinction of collectively considering the counterfactual
sentences, less biased by task models. Our empirical results
validated that, with our causally contrastive objective, the
robustness of text classification models can be significantly
improved, showing the effectiveness of our approaches. We
hope future research to explore generalization to other tasks
(e.g., question answering or conversation modeling) and lan-
guages (e.g., low-resource languages).
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