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Abstract

Pre-training language models (LMs) on large-scale unlabeled
text data makes the model much easier to achieve excep-
tional downstream performance than their counterparts di-
rectly trained on the downstream tasks. In this work, we study
what specific traits in the pre-training data, other than the
semantics, make a pre-trained LM superior to their counter-
parts trained from scratch on downstream tasks. We propose
to use artificially constructed datasets as the pre-training data
to exclude the effect of semantics, and further control what
characteristics the pre-training corpora have. By fine-tuning
the pre-trained models on GLUE benchmark, we can learn
how beneficial it is to transfer the knowledge from the model
trained on the dataset possessing that specific trait. We de-
fine and discuss three different characteristics in the artificial
dataset: 1) matching the token’s uni-gram or bi-gram distribu-
tion between pre-training and downstream fine-tuning, 2) the
presence of the explicit dependencies among the tokens in a
sequence, 3) the length of the implicit dependencies among
the tokens in a sequence. Our experiments show that the ex-
plicit dependencies in the sequences of the pre-training data
are critical to the downstream performance. Our results also
reveal that models achieve better downstream performance
when pre-trained on a dataset with a longer range of implicit
dependencies. Based on our analysis, we find that models pre-
trained with artificial datasets are prone to learn spurious cor-
relation in downstream tasks. Our work reveals that even if
the LMs are not pre-trained on natural language, they still
gain transferability on certain human language downstream
tasks once the LMs learn to model the token dependencies in
the sequences. This result helps us understand the exceptional
transferability of pre-trained LMs.

1 Introduction
Pre-training LMs by masked language modeling (MLM) is
prevalent in the natural language processing (NLP) commu-
nity, and they are indispensable to a variety of NLP tasks.
The popularity of pre-trained LMs mainly lies in their ex-
ceptional transferability on downstream tasks: fine-tuning
these downstream-agnostic pre-trained models on miscella-
neous downstream tasks often gives extraordinary perfor-
mances compared with training from scratch. While the
exact reasons for the success of MLM is unclear, some
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have attributed this success to the pre-trained models hav-
ing learned the semantic dependencies among tokens (Saun-
shi, Malladi, and Arora 2020) and being able to model the
complex co-occurrence statistics of the tokens (Sinha et al.
2021). While these justifications are reasonable, it is unclear
whether there are other factors of the pre-training data that
affect the transferability of the pre-trained LMs.

The core problem we determine to answer is: What spe-
cific traits in the pre-training data, other than the seman-
tics, make a pre-trained LM more easier to achieve better
downstream performance. To answer the above question, we
design the following experiments: we create miscellaneous
artificial datasets, each possessing different traits, and we
pre-train many different transformer LMs on those datasets.
We then fine-tune the pre-trained models on English down-
stream tasks. The process is illustrated in Figure 1. Illustra-
tions of the artificial datasets used in this paper are in Fig-
ure 2. This is the first paper to study a transformer-based
LM’s transferability through the lens of artificial datasets.

Based on the experiments, we have the following take-
away observations:

• We find that, surprisingly, pre-training MLMs on certain
artificial datasets with no natural language semantics in-
formation makes their downstream task performance su-
perior to models pre-trained from scratch on downstream
tasks.

• We discover that pre-training on data with a longer range
of both explicit and implicit token dependencies1 makes
them superior to their counterparts pre-trained on data
with shorter token dependencies. This indicates that the
ability to model long-term dependency among tokens in
the sequence is important for the transferability of the
pre-trained model.

• We analyze the models’ behaviors against two challeng-
ing datasets and show that models pre-trained with artifi-
cial datasets are vulnerable toward spurious correlation.

2 Related Work
Our work uses artificial datasets to understand pre-trained
LMs’ ability to be fine-tuned. Bhattamishra, Ahuja, and

1The definition of explicit token dependency and implicit token
dependency will be given in Section 6 and Section 7, respectively.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

10518



Stage 1
L1 MLM pre-train

Stage 2
GLUE fine-tune

Stage 3
GLUE Testing

5

LM Head Classifier Head

It

positive

Transformer

masking

1 0 43

1 0 435

Transformer

1 0 43 5

is a good movie

Classifier Head

It

Transformer

1 0 43 6

is a bad movie

?

Token ID Input Token

0 is
1 it
2 very
3 good
4 movie
5 a
6 bad
7 ,

Figure 1: The workflow in our studies. Stage 1: Pre-training the whole MLM on language 1 (L1), in which each sentence is a
sequence of token ID generated by certain rules. Stage 2: Fine-tuning the whole model on English downstream tasks (GLUE
tasks). Stage 3: Evaluating the performance of the fine-tuned models on the English downstream tasks. In stages 2 and 3, the
model takes English token sequences as input. To do that, each token embedding in the token embedding layer needs to be
mapped to a token in English. For example, we map the first token embedding in the embedding table, whose token ID is 0, to
the English token ”is”; and the second token embedding in the embedding layer, whose token ID is 1, to the English token ”it”.
The whole process, from stage 1 to stage 3, takes three days on a single V100 GPU.

Goyal (2020) also use artificial dataset (formal language) to
study a transformer model’s behavior, but their work only
involves the transformer model’s ability to recognize certain
types of formal languages.

Our work may seem to resemble the Test for Inductive
Bias via Language Model Transfer (TILT) (Papadimitriou
and Jurafsky 2020a) at first sight, which trains a long short-
term memory (LSTM) LM on one language, which may
be non-natural language, followed by only fine-tuning word
embeddings on Spanish and test the perplexity on Spanish.
In fact, this work is very different from TILT. The main
purpose of TILT is to analyze the encoding of grammati-
cal structure in LSTM LMs, so they do not fine-tune the
LSTM on Spanish. The setting of TILT does not match
the common setting widely applied nowadays, in which we
fine-tune pre-trained LMs on downstream tasks. Different
from TILT, our goal is to understand what trait of the pre-
training datasets makes the fine-tuned model perform better
than models trained from scratch on downstream tasks, thus
we fine-tune the transformer LMs on the downstream tasks.

Sinha et al. (2021) construct datasets from natural lan-
guage corpora for pre-training by breaking the word order
in a sentence. Our work can be seen as a complementary
work to theirs: Sinha et al. (2021) break the word order
while preserving the ’local statistics’ of a sentence, thus pre-
serving semantic features in the pre-training data to some
extent. From their experiments, they show that purely distri-
butional information (local co-occurrences of words) largely
explains the success of MLMs. Contrarily, we discard the se-
mantics in the pre-training data while equipping the model
with the ability to model token dependencies during pre-
training. In our experiments, we illustrate that part of the
success of MLMs can be attributed to their ability to model
token dependencies within a sequence.

3 Analyzing LM’s Transferability by
Artificial Data

The core idea of our experiment is to use different artificial
datasets that have different traits to understand how a spe-
cific trait in the pre-training data affects the downstream per-
formance. In our experiments, we pre-train n RoBERTa (Liu
et al. 2019) models on n different types of pre-training data.
Due to our constrained resources, we use RoBERTa-medium
in our experiments; we will refer to RoBERTa-medium as
RoBERTa in our paper. We call the pre-training data L1 (first
language). The number of tokens in the pre-training cor-
pora of all our L1s is around 100 million.While the dataset
is small, Micheli, d’Hoffschmidt, and Fleuret (2020) have
shown that this amount of data is sufficient to pre-train a
compact language model.

We then evaluate the pre-trained models’ ability by fine-
tuning them on different downstream tasks. We adopt the
GLUE (Wang et al. 2019; Socher et al. 2013; Dolan and
Brockett 2005; Cer et al. 2017; Williams, Nangia, and Bow-
man 2018; Rajpurkar et al. 2016) benchmarks to evalu-
ate the models pre-trained on different L1s. We exclude
WNLI, RTE, and CoLA for their notoriously unstable per-
formance (Devlin et al. 2019; Dodge et al. 2020). We use a
specific set of hyperparameters and three different random
seeds to fine-tune the model for each task. We report the
average and standard deviation over different seeds of the
results on the evaluation set. The overall workflow is illus-
trated in Figure 1. Details regarding all experiments can be
found in Appendix A.

3.1 Artificial Datasets
We construct different artificial datasets as L1 in this paper.
Each artificial dataset is constructed based on certain rules,
which can be deemed as the grammar governing the artifi-
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cial dataset. Detailed construction and illustration of artifi-
cial datasets can be found in Section 5 to 7 and Figure 2.
We design different grammar to scrutinize how the down-
stream performance may vary due to the characteristic of
the pre-training data. The vocabulary2 of artificial datasets
contains integers ranging from 0 to 29994 and 5 special to-
kens. We choose to use 29995 tokens since the vocabulary
size for our downstream English tasks is 29995 plus 5 spe-
cial tokens. We will use the word ’token’, ’token ID’, and
’integer’ interchangeably to refer to the token for the artifi-
cial datasets. The sequence length of each sequence in the
artificial pre-training data is determined by uniformly sam-
pling between 100 and 120 (128 is the max sequence length
the model we trained can process, and this is sufficient for
GLUE downstream tasks in most of the cases).

3.2 Vocabulary during Pre-training and
Fine-tuning

The vocabulary for fine-tuning the English downstream
tasks is obtained by Byte Pair Encoding (BPE), the vocab-
ulary size is 30K, including five special tokens. Since the
vocabulary used during pre-training has no overlap with that
during fine-tuning, the model cannot transfer any semantic
knowledge from the pre-trained models. The token embed-
ding that represents an integer during pre-training will be
used to represent a different and unrelated token in English.

4 Baseline Models
In this paper, we use three different baseline performances
to benchmark the performances pre-trained on different L1s.

English: We pre-train a RoBERTa-medium using a subset
of English Wikipedia. The GLUE score obtained by fine-
tuning this model serves as the performance upper bound
for other models in our paper.

Kannada: We pre-train a RoBERTa-medium using Kan-
nada from OSCAR dataset (Suárez, Romary, and Sagot
2020). Kannada is a language spoken by the people in the
southwestern region of India. The main reason we choose
this dataset lies in its subject(S)-object(O)-verb(V) structure,
different from the S-V-O structure of our target language
used in fine-tuning. This model helps us understand how En-
glish downstream performance can benefit from pre-training
on a non-English human language.

Training from scratch: We train transformer models with
the same architecture of RoBERTa-medium directly on
downstream GLUE tasks without pre-training. This baseline
performance, compared with other pre-trained models, helps
us understand how effective pre-training is.

We show the performance of baseline models in the first
and second block of Table 1. Without any surprise, the model
pre-trained on English performs the best, and the model
trained from scratch on GLUE performs the worst, while
the performance of the model transferred from Kannada is
in between the other two baseline models.

2Vocabulary is the set of tokens used by the language model,
including special tokens such as [MASK] and [CLS].

5 Characteristic 1: Matching the
Distribution between Pre-training and

Fine-tuning
The first characteristic we examine is the token distribution
of the pre-training data. We construct three artificial datasets
with different token distributions to understand how the to-
ken distributions for pre-training affect downstream GLUE
performance after fine-tuning.

5.1 Datasets
Uniform The first artificial dataset is constructed by sam-
pling 29995 integers from the vocabulary based on the uni-
form distribution to form a sequence. The model learns noth-
ing but randomly picks a token during pre-training.

Uni-gram The second dataset, called Uni-gram, is de-
signed to match the uni-gram token distribution of the real
English token distribution. This dataset is constructed by
calculating the token distribution of the English Wikipedia
dataset we used as the baseline, follows by sampling to-
kens based on that distribution to form sequences of vari-
able lengths. Being able to perform MLM pre-task over this
dataset indicates the model learns to model the downstream
tasks’ token distribution.

Bi-gram The third dataset is constructed such that the bi-
gram distribution of this dataset matches that of the En-
glish Wikipedia corpus. This dataset is constructed by sam-
pling tokens based on the bi-gram distribution of the English
Wikipedia subset.

5.2 Results
The results are in the third block of Table 1. We see that
the model pre-trained with uniform token distribution per-
forms the worst, which is as bad as the models trained from
scratch. The other two models that have learned the down-
stream tokens’ distribution perform marginally better, while
still falling far behind the two baseline models trained on hu-
man languages. This implies that only modeling the down-
stream task’s uni-gram distribution or bi-gram distribution
is not enough to make a pre-trained language model able to
perform well on the downstream tasks.

6 Characteristic 2: Explicit Token
Dependencies in a Sequence

In this section, we intend to focus on the explicit depen-
dencies between tokens in the sequences of the pre-training
data. In this paper, we say there exists an explicit dependency
between two tokens xi and xj if knowing one of the two to-
kens can tell us what the other token is. Explicit token depen-
dency is rich in human languages, such as the subject-verb
agreement: if the verb is in singular form, then the subject
must be singular. We ask whether the extraordinary down-
stream performance of a pre-trained LM springs from its
skillfulness in modeling the explicit dependencies among to-
kens in a sequence. To this end, we construct datasets with
explicit token dependencies.

10520



L1 STS-B QNLI QQP SST-2 MNLI MRPC Avg
Scratch 18.6 (1.4) 62.1 (0.5) 77.6 (0.2) 82.2 (0.5) 62.1 (0.5) 70.6 (3.5) 61.6
Pre. En +65.1 (1.0) +22.4 (1.0) +7.0(0.2) +4.3 (0.3) +12.7 (0.5) +11.3 (0.5) +20.5
Pre. Ka +55.0 (1.5) +14.7 (0.5) +4.2 (0.1) +0.3 (0.7) +5.6 (0.0) +8.5 (0.4) +14.7
Uniform -1.3 (0.1) -1.7 (0.6) -0.1 (0.2) -0.3 (0.4) +0.9 (0.2) +1.4 (0.8) -0.2

Uni-gram +2.9 (1.6) -0.6 (0.5) +0.5 (0.2) -1.0 (0.3) +0.9 (0.1) +5.1 (1.1) +1.3
Bi-gram +5.0 (1.7) +0.0(0.3) -0.4 (0.1) -0.5 (0.4) +1.4 (0.3) +7.7 (0.9) +2.2
Flat-2 +19.9 (6.0) +13.7 (0.1) +0.8 (0.1) -2.7 (0.1) +3.2 (0.1) +8.0 (1.4) +7.2
Flat-4 +49.4(4.2) +16.2 (0.4) +1.5 (0.1) -0.9 (1.4) +4.7 (0.4) -6.6 (1.5) +10.7
Flat-6 +55.3(0.0) +16.3 (0.3) +2.3 (0.2) +0.3 (0.9) +5.9 (0.3) +1.0 (2.2) +13.5

Flat-128 +58.5 (0.8) +16.0 (0.4) +2.2 (0.0) -1.1 (0.2) +4.1 (0.3) +7.5 (0.8) +14.5
Nest Par. +43.4 (4.3) +17.3 (0.2) +3.3 (0.3) -1.1 (0.7) +6.3 (0.3) +3.2 (0.9) +12.0
Shuff.-64 +49.7 (0.3) +13.5 (0.3) +1.5 (0.2) -1.7 (0.7) +3.3 (0.5) +8.4 (0.3) +12.4
Shuff.-32 +44.7 (0.2) +14.2 (0.7) +1.3 (0.2) -0.9 (0.5) +3.4 (0.1) +8.5 (1.3) +11.9
Shuff.-16 +34.0 (0.2) +14.6 (0.2) +2.1 (0.1) -3.1 (0.4) +3.7 (0.4) +7.2 (1.4) +9.8
Shuff.-8 +19.8 (7.8) +13.0 (0.2) +2.5 (0.2) -0.0 (0.6) +4.0 (0.2) +5.8 (0.9) +7.5
Shuff.-6 +10.3 (0.4) +13.8 (0.0) +1.9 (0.1) -1.2 (0.2) +4.3 (0.1) +9.3 (1.3) +6.4
Shuff.-4 +8.5 (2.3) +9.0 (1.6) +1.5 (0.1) -0.4 (0.1) +2.3 (1.0) +7.1 (0.2) +4.7

Table 1: Downstream results of models in Section 4 to Section 7. We report the performance training from scratch on GLUE
in the first block, and we report the relative improvement over the trained from scratch models for all other artificial datasets.
The value in the parentheses is the standard deviation. The evaluation metrics of MRPC and QQP are F1 score, Spearman
correlation coefficient is reported for STS-B, and the rest tasks are evaluated with accuracy. Pre. is the abbreviation of pre-
training, En stands for English, Ka stands for Kannada, Par. is short for Parentheses, and Shuff. is short for Shuffle.

6.1 Data
Flat Parentheses The first dataset that contains explicit
token dependencies is called Flat Parentheses, and the rea-
son for its name will be clear later. We construct this dataset
by first determining a half sequence length T/2, and sample
T/2 (not necessarily consecutive) integers from English’s
uni-gram token distribution to form a sequence. We dupli-
cate each token in the sampled sequence and then shuffle
the sequence to form our final data with length T . Visualiza-
tion can be found in Figure 2a. Each integer in the generated
sequence will occur even times, so we can view the same
integers in the sequence as a pair of depending integers. We
call the distance between a pair of depending integers in the
sequence the length of dependency.

To understand how the length of dependency in the
pre-training data affects the fine-tuned downstream perfor-
mance, we construct different Flat Parentheses datasets that
have a different maximum length of dependency. We use
Flat Parentheses-L to denotes the Flat Parentheses dataset
that has a maximum dependency length of L.

Nesting Parentheses In the Flat Parentheses dataset, if we
connect each pair of depending integers with an arc as in
Figure 2a, we can see that these arcs might cross with each
other. A special case of Flat Parentheses is when all the arcs
connecting all pairs of depending integers do not cross with
each other, forming a hierarchical (nesting) structure, as in
Figure 2b. This dataset is called Nesting Parentheses in Pa-
padimitriou and Jurafsky (2020a). We follow Papadimitriou
and Jurafsky (2020b) to generate this dataset by a stack-
based grammar; the detailed procedure is in the Appendix
B.Figure 2b shows a simple example. We can observe from
Figure 2b that a sequence generated in this manner contains

(a) Flat Parentheses (Section 6)

(b) Nesting Parentheses (Section 6)

(c) Shuffle-4 (Section 7)

Figure 2: Illustration of the artificial datasets in Section 6
and 7. The arcs in 2a, 2b and blocks in 2c are showed here
for easier understanding.

a nesting hierarchical parentheses structure, which is similar
to the dependency tree structure in natural language.

6.2 Results
The results for the Parentheses datasets are presented in the
forth block of Table 1. Comparing with the results in the
first and third block of Table 1, it is clear that the Parenthe-
ses datasets result in far better average GLUE scores than
training from scratch on downstream tasks, or transferring
from randomly generated sequences in Section 5. It is in-
teresting to note that the Flat Parentheses dataset is quite
similar to the Uni-gram dataset in Section 5 since tokens in
both datasets are sampled from the same uni-gram distribu-
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tion. The only difference is that the occurrence of each token
in Flat Parentheses must be even. While bearing significant
similarity, their performance diverges largely. This indicates
that learning to model the explicit token dependencies be-
tween tokens is critical to how well the pre-trained model
can perform on downstream tasks. Another astonishing ob-
servation is that pre-training on both Parentheses datasets
yields GLUE scores comparable to the model trained on an-
other human language, Kannada.

The results in the fourth block show that the RoBERTa
models trained on both Nesting Parentheses and Flat Paren-
theses have similar performances on downstream tasks.
While we expect the model pre-trained on Nesting Parenthe-
ses to learn to model hierarchical structure among tokens,
the downstream performance does not surpass the model
trained on Flat Parentheses, which does not learn the hierar-
chical structure in pre-training. The result implies that being
skilled at modeling the hierarchical structure among tokens
might not be critical to a pre-trained LM’s transferability.

Comparing the results of Flat Parentheses-N, we observe
that when N = 2, their performance already outperforms
that of the baselines trained on Uni-gram or Bi-gram. While
Flat Parentheses-2 degenerates to only repeating each token
twice, pre-training on this trivial dataset still makes the pre-
trained model performs better than other baseline models.
While Flat Parentheses-2 already outperforms models pre-
trained on Uni-gram and Bi-gram, its performance still falls
behind other Flat Parentheses datasets with longer depen-
dency length. This indicates that the knowledge transferred
from datasets with explicit token dependencies is beneficial
to English downstream tasks, and the longer dependency
length the pre-training data has, the better downstream per-
formance can be acquired.

7 Characteristic 3: Implicit Token
Dependencies in a Sequence

In this section, we focus on the implicit dependencies among
tokens presented in pre-training data. In natural languages,
a token in a sequence may implicitly depend on multiple
neighboring tokens in the sequence. For example, consider
the following sentence: I can’t believe I spent two hours
watching that [MASK] movie. We might expect the [MASK]
to be a negative sentimental word, and we make this infer-
ence based on all the tokens in the sentence. The dependency
that a token depends on a set of neighboring tokens instead
of a specific token is called implicit dependency in this pa-
per. In terms of downstream performance, we want to know
how important it is for a pre-trained LM to learn the implicit
token dependencies among tokens in the sequence. We are
also interested in how the length of this implicit dependency
affects downstream performance. We design a dataset called
Shuffle-N to answer the previous questions.

7.1 Shuffle-N
We explain how to construct this dataset, while the readers
can refer to the example of Shuffle-4 in Figure 2c. Each se-
quence in this dataset is formed by concatenating blocks of
N integers. In each block, we sample N consecutive num-

bers from 0 to 29994, and we shuffle the sampled integers to
form a block. Integers in different blocks are sampled inde-
pendently. To solve the MLM task on this dataset, the model
only needs to focus on a context that is no more than 2N −1
tokens (the previous N − 1 tokens and the next N − 1 to-
kens). The maximum N we used in our experiments is 64,
since the maximum sequence length in our model is 128. By
varying N , we can examine how the length of the implicit
dependency in the pre-training data affects the downstream
performance.

Note that we do not require that each block to have non-
overlapping integers when constructing the dataset. Chances
are that the same integer may occur in the same sequence
multiple times, forming an explicit dependency. However,
we find that the generated datasets contain few explicit token
dependencies, so learning this explicit token dependency
does not help the model perform MLM. We also carry out
further analysis on Section 8 to show that the models learned
from this dataset indeed focus on the 2N neighborhoods.

This dataset is designed to capture the constituent struc-
ture of human language, and different N can capture the vari-
able length that a constituent may span in human language.
Since words in the same constituent have some implicit de-
pendency, we hypothesize that LMs trained on human lan-
guage will learn how to model the dependency among the
tokens in it, leading to the superior transferability of natural
language trained LMs. In Shuffle-N, the ‘block’ corresponds
to the ‘constituent’ in human language, and those tokens in
the block correspond to words in a constituent.

7.2 Results
The results for Shuffle-N is presented in the fifth block in Ta-
ble 1. We find that all models pre-trained on Shuffle-N yield
better downstream performance than the Uni-gram and Bi-
gram, showing that learning to model implicit dependency
among tokens during pre-training is critical for the model to
perform well on downstream tasks. Comparing the perfor-
mance of Shuffle with different N , we observe that averaged
performance increases as N increases. Most GLUE tasks
show improvement when N increases from 4 to 6, while
STS-B’s performance consistently goes up as N increases
to 64. While we yet to know the reason behind the positive
correlation between the downstream STS-B’s performance
and the pre-train implicit dependency length N , it is still
surprising to see that only varying a specific characteristic
of the pre-training data can make such a great difference on
a downstream task’s performance.

8 Analysis: How Does Different Pre-training
Artificial Datasets Affect the Models’

Behavior on Human Language?
In the previous three sections, we use different artificial
datasets to understand how a specific trait in the pre-training
data affects the downstream performance. While we antici-
pate that the model pre-trained with an artificial dataset with
a certain characteristic will learn specific ways to process the
artificial input data during pre-training, it is unclear whether
the model will have a similar behavior when processing a
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Figure 3: The distribution of j∗. The x-axis is the relative
position with respect to the bT/2c-th token in the input se-
quence. The height of the histogram when x-axis value is j
represents the number of count that j = j∗ among sentences
in SQuAD.

human language. In this section, we design an experiment
to analyze how the models pre-trained on artificial datasets
behave when faced with human language.

8.1 Method
During MLM pre-training, the model needs to reconstruct
a masked token based on the remaining tokens in the se-
quence. Given an input sequence X with T tokens, let xi

denotes the i-th token in X , and let X\{i,j} denotes the se-
quence X with xi and xj being masked. We would like to
know how the presence of xi affects how well the model
can predict xj . To that end, we compare the LM’s prediction
at the j-th position when the input sequence is X\{j} and
X\{i,j}. Since the LM’s prediction is a probability distribu-
tion over the set of all tokens in the vocabulary, we can cal-
culate the entropy of the model’s prediction. We use P\{j}
and P\{i,j} to denote the LM’s prediction at the j-th position
when the input sequence is X\{j} and X\{i,j}, and denote
the entropy of a distribution P as H(P ). If knowing xi is

important for the prediction of xj , then H(P\{j}) should be
lower than H(P\{i,j}) since knowing xi will reduce the un-
certainty for predicting xj .

In our experiment, given a sequence X , we choose the
bT/2c-th token in the input sequence as xi and iterate over
all the tokens in the sequence as xj to find which position j
is most related to the bT/2c-th token as below.

j∗ = arg max
j:xj∈X

H(P\{bT/2c,j})−H(P\{j}). (1)

Then we find the j∗ for each input sentence and accumulate
the distribution of j∗ for all sentences in a dataset.

8.2 Result
The sentences used for computing the distribution of j∗ here
are from SQuAD (Rajpurkar et al. 2016)3. The results are in
Figure 3. First, we immediately find that the j∗ distribution
of Bi-gram peaks around the center. This is expected since
during pre-training, the model trained on Bi-gram learns to
only focus on a very small context. We can observe that both
the distributions of Flat Parentheses-6 and Flat Parentheses-
4 center near the bT/2c-th token, which is the expected be-
havior. Furthermore, the distribution of Flat Parentheses-4
is more condensed around the bT/2c-th token than that of
Flat Parentheses-6, showing that pre-training on the former
dataset makes the model focus on a smaller context. Another
interesting observation is that the distribution of j∗ for Nest-
ing Parentheses shows a high-low-high-low pattern around
the bT/2c-th token, this phenomenon springs from the na-
ture of the Nesting Parentheses dataset. The distribution of
j∗ for Shuffle 4 is also focused within the previous 3 to-
kens and the next 3 tokens of the bT/2c-th token, which
also results from the nature of the dataset the model is pre-
trained on. We thus verify that what we expect the model to
learn from the artificial dataset can be transferred to English
downstream tasks.

9 How Robust are Models Pre-trained with
Different Datasets?

We have evaluated the pre-trained models trained with ar-
tificial datasets of different traits, and the results show that
some models are as good as the models pre-trained from a
human language in terms of GLUE scores. Are these models
as robust as the models pre-trained from human language?
Chances are the GLUE scores on the evaluation set are de-
cent, but the model only learns to fit some spurious correla-
tion of the GLUE tasks, making the model less robust. Here
we use two challenging datasets to assess the robustness of
the fine-tuned models pre-trained on different datasets.

9.1 Experiment Setup
We use RoBERTa models pre-trained on different L1s, fine-
tuning them using the original GLUE training set, and test
the fine-tuned model on a more challenging evaluation set.
We use two GLUE tasks, QQP and QNLI, and their corre-
sponding challenging datasets, QQPPAWS and QNLI-Adv.

3We choose SQuAD instead of GLUE since sentences in
SQuAD are longer.
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Tasks Pre-train En From Scratch Pre-train Ka Bi-gram Nest.Par. Shuffle-4
QQP 84.6 77.6 81.8 77.2 80.9 79.1

QQPPAWS 43.0 43.9 44.0 42.7 43.0 42.8
QNLI 84.5 62.1 76.8 59.8 79.4 71.1

QNLI-Adv 64.8 0.1 8.6 53.8 1.0 1.1

Table 2: Evaluation performance of models fine-tuned on QQP and QNLI. The evaluation metrics are the same as Table 1.

QQPPAWS The Quora Question Pairs (QQP) (Iyer, Dan-
dekar, and Csernai 2017) contains real-world question pairs
collected from Quora. While this dataset is widely used
to train and evaluate a paraphrase model, it is shown that
paraphrase pairs in QQP tend to contain high lexical over-
lap. This makes us hard to determine whether a model re-
ally learns how to distinguish between paraphrases and non-
paraphrases, or it just learns the spurious correlation that
similar bag-of-word implies paraphrase.

QQPPAWS is proposed by Zhang, Baldridge, and He
(2019) to solve the above problem. Zhang, Baldridge, and
He (2019) use word swapping and back translation along
with human annotation to create a high-quality paraphrase
dataset. In QQPPAWS, two questions with high lexical over-
lap do not often imply they are a pair of paraphrases.

QNLI-Adv In the original Question-answering NLI
(QNLI), given a question-answer pair, the model needs to
determine whether the answer corresponds to the question,
i.e., entailment. To see whether the model only learns to la-
bel question-answer pairs with high lexical overlap as entail-
ment, we propose a challenging evaluation dataset from the
original QNLI evaluation split. We call this dataset QNLI-
Adv. The construction of QNLI-Adv is extremely simple: in-
stead of feeding the model a pair of question and answer, we
give the model two identical questions, and the model has
to answer non-entailment to this input. That is, the ground-
truth labels of data in QNLI-Adv are all non-entailment.

9.2 Result
From Table 2, we observe that all pre-trained models are
equally vulnerable to QQPPAWS. This may result from the
fact that QQPPAWS is deliberately constructed to be a chal-
lenging dataset and has a low discrimination index.

On the other hand, when evaluated with QNLI-Adv, the
models behave differently. The model pre-trained on En-
glish is the most robust one, with the accuracy only drop-
ping 20% comparing to the original QNLI evaluation set.
We find that both Nesting Parentheses and Shuffle-4 per-
forms unbelievably poorly, showing that while learning to
model the explicit and implicit token dependencies enables
the model to perform well on downstream tasks, it is vul-
nerable to spurious correlations in the downstream tasks.
This vulnerability against spurious correlation can not only
be observed on model pre-trained on artificial datasets; even
the model pre-trained on Kannada, a human language, per-
forms poorly on QNLI-Adv, indicating that not learning the
semantics of the downstream language will make the model
less robust toward challenging datasets. The unreasonably
high robustness of Bi-gram may be attributed to the fact that

the performance of Bi-gram on the original evaluation set
is not much better than random guessing among entailment
and non-entailment, so randomly guessing will result in ac-
curacy around 50%.

10 Discussion and Conclusion
In this work, we study what traits besides semantics in
the pre-training data make the pre-trained LMs able to
yield exceptional downstream performance. We propose to
study this problem with the aid of artificial datasets. The
framework is general, and thus if one would like to study
whether other characteristics will affect the transferability
of transformer-based LM, they can adopt this framework.

Specifically, we construct linguistic-inspired artificial
datasets, and finding that pre-training on certain artificial
datasets makes the MLMs’ English downstream perfor-
mance comparable to transferring from an MLM pre-trained
on an non-English human language. We show that both the
explicit and implicit dependencies between tokens in the se-
quences are critical to the transferability of the pre-trained
model. The result in Tabel 1 indicates that pre-training on
artificial datasets with explicit/implicit token dependencies
makes the pre-trained LMs superior to the from-scratch and
Uni/Bi-gram baselines.

The downstream performance of LMs pre-trained on
datasets with explicit/implicit token dependencies still falls
behind models pre-trained with English. This performance
gap is expected: when using artificial datasets to pre-train an
LM, the LM cannot learn any semantic features useful for
downstream tasks. We also carry out experiments to test the
models’ behavior when faced with challenging datasets and
showing that models pre-trained without English are more
prone to learn spurious correlation of the downstream tasks.

Overall, our results contribute to an important problem in
the NLP community: where does the transferability of pre-
trained transformers arise from? While one may infer that
transformers pre-trained on natural language can model to-
ken dependencies in the sequences, it is unclear how much
this contributes to the transferability of the pre-trained trans-
former LMs. We disentangle the effect of semantic simi-
larity during pre-training and downstream fine-tuning. We
show that even when the pre-training data and downstream
tasks share no semantic features, the transformer LMs pos-
sess positive transferability to natural language downstream
tasks if it has the ability to model the token dependencies in
the sequences. We attribute the transferability of pre-trained
transformer LMs to their capability of modeling the depen-
dencies among tokens, and we envision that the results may
help researchers in different disciplines to apply transformer
pre-trained models to their domains of interests.
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