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Abstract

Given a natural language statement, how to verify its ve-
racity against a large-scale textual knowledge source like
Wikipedia? Most existing neural models make predictions
without giving clues about which part of a false claim goes
wrong. In this paper, we propose LOREN, an approach for
interpretable fact verification. We decompose the verification
of the whole claim at phrase-level, where the veracity of the
phrases serves as explanations and can be aggregated into the
final verdict according to logical rules. The key insight of
LOREN is to represent claim phrase veracity as three-valued
latent variables, which are regularized by aggregation logi-
cal rules. The final claim verification is based on all latent
variables. Thus, LOREN enjoys the additional benefit of in-
terpretability — it is easy to explain how it reaches certain
results with claim phrase veracity. Experiments on a public
fact verification benchmark show that LOREN is competitive
against previous approaches while enjoying the merit of faith-
ful and accurate interpretability. The resources of LOREN are
available at: https://github.com/jiangjiechen/LOREN.

1 Introduction
The rapid growth of mobile platforms has facilitated creating
and spreading of information. However, there are many du-
bious statements appearing on social media platforms. For
example, during the 2020 U.S. presidential election, there
are many false claims about Donald Trump winning the elec-
tion, as shown in Figure 1. Verifying these statements is in
critical need. How to verify the validity of a textual state-
ment? We attempt to predict whether a statement is sup-
ported, refuted or unverifiable with an additional large tex-
tual knowledge source such as Wikipedia. Notice that it is
computationally expensive to compute the input statement
with every sentence in Wikipedia.

This work focuses on interpretable fact verification — it
aims to provide decomposable justifications in addition to
an overall veracity prediction. We are motivated by a simple
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Figure 1: An example of how our proposed fact verification
framework LOREN works. Texts highlighted denote the data
flow for three phrases extracted from the claim. LOREN not
only makes the final verification but also finds the culprit
phrase (w2) that causes the claim’s falsity.

intuition: the veracity of a claim depends on the truthfulness
of its composing phrases, e.g., subject, verb, object phrases.
A false claim can be attributed to one or more unsupported
phrases, which we refer to as the culprit. The claim is valid
if all phrases are supported by certain evidence sentences in
Wikipedia. For example, one culprit in Figure 1 would be
the phrase “won”. Therefore, faithful predictions of phrase
veracity would explain why a verification model draws such
a verdict. In addition, through phrasal veracity prediction,
identifying the culprit also alleviates the burden of correct-
ing an untrustworthy claim, as we can easily alter “won” to
“lost” to make it right.

Most current studies focus on designing specialized neu-
ral network architectures, with the hope of exploiting the se-
mantics from sentences (Nie, Chen, and Bansal 2019; Zhou
et al. 2019; Liu et al. 2020b; Zhong et al. 2020; Si et al. 2021;
Jiang, Pradeep, and Lin 2021). However, these methods are
limited in interpretability, as they usually only give an over-
all verdict. This puts forth trust issues for humans, as a deci-
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sion is usually made in a black-box fashion. Recent studies
on explainable fact verification (Stammbach and Ash 2020;
Samarinas, Hsu, and Lee 2021; Wu et al. 2021) mostly focus
on giving intuitive display of the key basis for the model re-
sults, instead of building an interpretable models that output
the reasons for obtaining the results while giving the results.

It is challenging to learn interpretable models that not only
predict but also explain its rationale, since there is a lack
of truthfulness labels on the phrase level. There are public
datasets with veracity label for the overall claim, but it is un-
known which part of the claim makes it untrustworthy. Man-
ually annotating such fine-grained data is unrealistic and re-
quires tremendous human labor. How to supervise a model
to reach meaningful phrasal veracity predictions? Our in-
sight comes from the intuition that simple symbolic logical
rules can be utilized to create weak supervisions for inter-
mediate phrasal predictions. Empirically, all phrases should
be supported if a claim is true, and a claim is refuted if there
exists at least one false phrase. If the outcome of a claim is
unverifiable, then there must be no refuted phrase and at least
one phrase that should be verified as unverifiable. With the
logical rules in mind, we only have to identify the patterns
these suspicious phrases give during training.

For this purpose, we propose LOREN, a LOgic-
REgularized Neural latent model, to predict the veracity of
a claim, as well as to give explanation. The overall idea of
LOREN is to decompose the verification into a series of
hypothesis verification at the phrase level, which are con-
strained by the introduced logical aggregation rules. Each
rule concerns the compositional logic that describes how
phrasal veracity predictions are logically aggregated into
claim veracity. Together, the veracity prediction of every
claim phrase serves as the atomic propositions of the compo-
sitional logic. Thus, a key perspective of LOREN is to rep-
resent these phrase veracity as latent variables regularized
by the softened aggregation logic for meaningful predic-
tions for claim phrases. To solve this latent model, LOREN
adopts a modern approach using amortized variational in-
ference (variational auto-encoding) (Kingma and Welling
2014). Furthermore, LOREN constructs the teacher model
by aggregating logic over all latent variables, distilling log-
ical knowledge to the student (claim verification) model. To
arrive at these propositions, as another key perspective, we
convert the problem of finding relevant phrases in evidence
into a machine reading comprehension (MRC) task, where
we generate probing questions for evidence to answer. To
summarize, the contributions of this work include:

• We propose an interpretable method LOREN to predict
the veracity of both a claim sentence and its phrases.

• We present a technique to weakly supervise phrasal ve-
racity learning with a MRC module and latent variable
modeling regularized by logical rules.

• We experiment LOREN on FEVER (Thorne et al. 2018),
a large fact verification benchmark. Besides competitive
verification results, LOREN also provides faithful (over
96% agreement) and accurate phrasal veracity predic-
tions as explanations.

2 Related Work
There are several related problems about verifying the truth-
fulness of one or multiple sentences, including natural lan-
guage inference (NLI) (Kang et al. 2018), claim verifica-
tion (Thorne et al. 2018), misinformation detection (Zellers
et al. 2019), etc. In this paper, we study the claim verification
task (Thorne et al. 2018), which focuses on verifying claims
against trustworthy knowledge sources. The majority of ex-
isting studies adopt a two-step pipeline to verify a textual
claim, i.e., evidence retrieval and claim verification. Current
verification systems can be categorized by the granularity of
the interaction between claim and evidence, including those
of sentence-level (Nie, Chen, and Bansal 2019; Zhou et al.
2019), semantic role-level (Zhong et al. 2020) and word-
level (Liu et al. 2020b). They learn the representations of
claim and evidence sentences of different granularity based
on neural networks and gives a final verdict in an end-to-
end fashion. In contrast, we conduct phrase-level verifica-
tion and take a further step forward to more interpretable
reasoning and verification.

There are some recent studies on interpretable fact veri-
fication, such as using GPT-3 (Brown et al. 2020) to sum-
marize evidence and generate explanations (Stammbach and
Ash 2020), pointing out salient pieces in evidence with at-
tention weights (Samarinas, Hsu, and Lee 2021), and pick-
ing relevant sentences in retrieved evidence (Wu et al. 2021).
Instead, we take a different route towards interpretable fact
verification by producing where and how a claim is falsified.
The final verdict is drawn based on explanations, making a
step forward to being right for the right reasons.

Previous efforts towards unifying symbolic logic and neu-
ral networks include those of Sourek et al. (2015); Man-
haeve et al. (2018); Lamb et al. (2020). A class of inte-
grated symbolic logic and neural network methods is based
on the variational EM framework (Qu and Tang 2019; Zhou
et al. 2020). Another standard method is to soften logic with
neural network components (Hu et al. 2016; Li et al. 2019;
Wang and Pan 2020), which can be trained in an end-to-end
manner. Our method draws inspiration from both lines of
work. We represent the intermediary veracity predictions as
latent variables in latent space, which are regularized with
softened logic.

3 Proposed Approach
In this section, we present the proposed method LOREN for
verifying a textual claim against a trustworthy knowledge
source (e.g., Wikipedia), which consists of two sub-tasks:
1) evidence retrieval and 2) fact verification. In this paper,
we primarily focus on fact verification and assume evidence
text (e.g., several related sentences) is retrieved by a sepa-
rate method. A possible verification result can be supported
(SUP), refuted (REF) or not-enough-information (NEI).

Different from most previous methods that give an overall
prediction, our goal is to predict the final claim veracity and
faithful phrase veracity as explanations. First, we define the
task of claim verification and phrase verification.

Claim Verification Given a claim sentence c and retrieved
evidence text E, our goal is to model the probability distri-
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bution p(y|c, E), where y ∈ {SUP,REF,NEI} is a three-
valued variable indicating the veracity of the claim given
evidence. In this paper, bold letters indicate variables.

Phrase Verification We decompose the verification of
a claim at phrase-level, and predict the veracity zi of a
claim phrase wi ∈ Wc by p(zi|c, wi, E), where zi ∈
{SUP,REF,NEI}. We extract the claim phrases Wc with
a set of heuristic rules using a series of off-the-shelf tools
provided by AllenNLP (Gardner et al. 2018). Claim phrases
include named entities (NEs), verbs, adjective and noun
phrases (APs and NPs).

Specifically, we leverage a part-of-speech (POS) tagger
for identifying verbs and a constituency parser to identify
noun phrases (NPs). For the fine-grained extraction of NPs,
we further decompose them into more fine-grained ones us-
ing POS tagger and named entity recognizer (NER). We use
several simple heuristic rules, including: 1) we parse all leaf
NPs, and keep all verbs with a POS tagger; 2) we break down
the NPs with an NER and isolate the adjectives from NPs
for finer-grained phrases. For example, we have “Donald
Trump” (NE), “won” (verb) and “the 2020 election” (NP)
as claim phrases in Figure 1.

3.1 Logical Constraints
After introducing the phrase verification, we observe that
some natural, logical consistencies between phrase verifica-
tion and claim verification should be satisfied. Specifically,
a claim is found 1) REF if at least one claim phrase is re-
futed by evidence; 2) SUP if all claim phrases are supported;
3) NEI if neither of the above, that is, there is no contradic-
tory but at least one phrase gets unknown outcome. Notice
that the checking rule for the REF judgment has priority over
NEI, because it is also possible for a phrase to be NEI in a
refuted claim, but not vice versa. Formally, we give the fol-
lowing definition of the aggregation logic.

Definition 1 Given a statement c, a set of claim phrasesWc,
and a set of evidence E, with >(c), ⊥(c) and �(c) denoted
as true, false and unknown respectively. V (c,Wc, E) is de-
fined as the value of c taking one of the three, i.e. {>,⊥,�}
w.r.t. Wc given evidence E, which corresponds to the pre-
dicted label y ∈ {SUP,REF,NEI}. Then we have:

V (c,Wc, E) |= >, iff ∀w ∈ Wc, V (c, w,E) |= >
V (c,Wc, E) |= ⊥, iff ∃w ∈ Wc, V (c, w,E) |= ⊥
V (c,Wc, E) |= �, iff ¬(V (c,Wc, E) |= >)∧

∀w ∈ Wc, V (c, w,E) |= {>,�}

where V (c, w,E) is defined as the value of c w.r.t. a single
claim phrase w and the given evidence E.

With the logic in mind, we then introduce how LOREN
learns to predict the veracity of both a claim and its phrases
without direct supervision for the latter.

3.2 Overview of LOREN
The basic idea of LOREN is to decompose the verification of
a claim at phrase-level, and treats the veracity of each phrase
wi ∈ Wc as a three-valued latent variable zi. We define

z = (z1, z2, . . . , z|Wc|). The veracity of a claim y depends
on the latent variables z. Inspired by Hu et al. (2016), to im-
pose the logical constraints mentioned above, we propose a
distillation method that transfers the logical knowledge into
the latent model. Next, we will detail the latent model and
the logical knowledge distillation.

Latent Model We formulate the fact verification task in
a probabilistic way. Given an input x = (c, E) consisting
of textual claim c and retrieved evidence text E, we define
target distribution pθ(y|x) as below:

pθ(y|x) =
∑
z

pθ(y|z, x)p(z|x) (1)

where p(z|x) is the prior distribution over latent variable
z conditioned on the input x, and pθ gives the probabil-
ity of y conditioned on x and latent z. Note that we as-
sume that zi is independent of each other, namely, p(z|x) =∏
i p(zi|x,wi). Given the gold label y?, the objective func-

tion is to minimize the negative likelihood as follow:
L(θ) = − log pθ(y

?|x). (2)
Theoretically, we can adopt the EM algorithm for optimiza-
tion. However, in our setting, it is difficult to compute the
exact posterior pθ(z|y, x) due to the large space of z. With
recent advances in the variational inference (Kingma and
Welling 2014), we could amortize the variational posterior
distribution with neural networks. It results in the well-
known variational bound (negative Evidence Lower BOund,
ELBO) to be minimized:

negative ELBO:Lvar(θ,φ)︷ ︸︸ ︷
−E

qφ(z|y,x)
[log pθ(y

∗|z, x))] +DKL(qφ(z|y, x) ‖ p(z|x))

(3)
where qφ(·) is the variational posterior distribution condi-
tioned on y, x, and DKL is Kullback–Leibler divergence.
In experiments, we use an off-the-shelf and pre-trained
NLI model as prior distribution p(z|x), whose parame-
ters are fixed.1 The NLI model yields the distribution of
contradicted, neutral and entailment, which we
take correspond to REF, NEI and SUP to some extent.

Logical Knowledge Distillation To integrate the informa-
tion encoded in the logical rules into latent variables, we pro-
pose a distillation method, which consists of a teacher model
and a student model. The student model is the pθ(y|z, x) we
intend to optimize. The teacher model is constructed by pro-
jecting variational distribution qφ(z|y, x) into a subspace,
denoted as qT

φ (yz|y, x). The subspace is constrained by the
logical rules, since yz is the logical aggregation of z. Thus,
simulating the outputs of qT

φ serves to transfer logical knowl-
edge into pθ. Formally, the distillation loss is formulated as:

Llogic(θ, φ) = DKL

(
pθ(y|z, x) ‖ qT

φ (yz|y, x)
)
. (4)

Overall, the final loss function is defined as the weighted
sum of two objectives:
Lfinal(θ, φ) = (1− λ)Lvar(θ, φ) + λLlogic(θ, φ) (5)

1We use a DeBERTa (He et al. 2021) fine-tuned on MNLI
dataset (Bowman et al. 2015) as the NLI model.
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where λ is a hyper-parameter calibrating the relative impor-
tance of the two objectives.

3.3 Teacher Model Construction
ELBO cannot guarantee latent variables to be the veracity of
corresponding claim phrases without any direct intermedi-
ate supervisions. As a key perspective, they are aggregated
following previously described logical rules, making them
weak supervisions for phrase veracity.

To this end, we relax the logic with soft logic (Li et al.
2019) by product t-norms for differentiability in training and
regularization of latent variables. According to §3.1, given
probability of the claim phrase veracity z, we logically ag-
gregate them into yz as follows (for simplicity, we drop the
input x):

qT
φ (yz = SUP) =

|z|
Π
i=1

qφ(zi = SUP)

qT
φ (yz = REF) = 1−

|z|
Π
i=1

(1− qφ(zi = REF))

qT
φ (yz = NEI) = 1− qT

φ (yz = SUP)− qT
φ (yz = REF)

(6)

where
∑

yz
qT
φ (yz) = 1 and

∑
zi
qφ(zi) = 1.

The prediction behavior of qT
φ reveals the information of

the rule-regularized subspace, indicating the uncertain and
probabilistic nature of the prediction (Chen et al. 2020).
By minimizing the distillation loss Llogic in Eq. 4, the
phrasal veracity predictions are regularized by the aggrega-
tion logic even if we do not have specific supervisions for
claim phrases.

3.4 Building Local Premises
Before parameterizing pθ(·) and qφ(·) in the latent model,
we find the information required for verifying each claim
phrase from evidence in an MRC style. We collect them
into a set of local premises corresponding to each claim
phrase, which is important for LOREN’s interpretability
w.r.t. phrasal veracity. One of the key perspective is to con-
vert the finding of such information into a generative ma-
chine reading comprehension (MRC) task, which requires a
question generation and answering pipeline.

Probing Question Generation Before MRC, we first
build probing questions Q for every claim phrase respec-
tively. Each question consists of two sub-questions: one
cloze questions (Devlin et al. 2019) (e.g., “[MASK] won
the 2020 election.”) and interrogative questions (Wang et al.
2020) (e.g., “Who won the 2020 election?”). Both types of
questions are complementary to each other. The cloze ques-
tions lose the semantic information during the removal of
masked phrases (e.g., “he was born in [MASK]”, where
[MASK] can either be a place or a year.). And the gener-
ated interrogative ones suffer from the incapability of a text
generator. In experiments, we use an off-the-shelf question
generation model based on T5base (Raffel et al. 2020) to
generate interrogative questions.

Local Premise Construction For every claim phrase
wi ∈ Wc, we first generate probing question qi ∈ Q with
off-the-shelf question generators. The MRC model takes
as an input Q and E and answers WE . Then, we replace
wi ∈ Wc with answers w′i ∈ WE , yielding replaced claims
c′i such as “Donald Trump lost the 2020 election”, where
w′i =“lost” and wi =“won”. Such replaced claims are de-
noted as local premises {c′i}

|Wc|
i=1 to reason about the veracity

of every claim phrase.

Self-supervised Training of MRC The MRC model is
fine-tuned in a self-supervised way to adapt to this task at
hand. The MRC model takes as input a probing question and
evidence sentences and outputs answer(s) for the question.
During training, claim phrases Wc in a claim are used as
ground truth answers, which is self-supervised. Note that we
build the MRC dataset using only SUP samples, as the infor-
mation in REF or NEI samples is indistinguishably untrust-
worthy and thus unable to be answered correctly. During in-
ference, the MRC model produces an answer w′i ∈ WE for
a claim phrase wi ∈ Wc, which is used to replace wi for
constructing a local premise.

A phrase in the claim may differ in surface form from
the answers in the evidence, which is thus not suitable for
an extractive MRC system. Therefore, we adopt a genera-
tive MRC model under the sequence-to-sequence (Seq2Seq)
paradigm (Khashabi et al. 2020).

3.5 Veracity Prediction
Given pre-computed local premises, we then use neural net-
works to parameterize pθ(y|z, x) and the variational dis-
tribution qφ(z|y, x) for veracity prediction. They are opti-
mized by the variational EM algorithm and decoded itera-
tively.

Given c, E and local premises P for claim phrases re-
spectively, we calculate the contextualized representations
with pre-trained language models (PLMs). We concatenate
claim and each of the local premises with {x(i)

local = (c, c′i)}
and encode them into hidden representations {h(i)

local ∈
Rd}. Similarly, we encode the claim and concatenated ev-
idence sentences as xglobal = (c, E) into the global vector
hglobal ∈ Rd, followed by a self-selecting module (Liu et al.
2020a) to find the important parts of a vector.

Not all phrases are the culprit phrase, so we design a cul-
prit attention based on a heuristic observation that: a valid
local premise should be semantically close to the evidence
sentences. Thus, we design the similarity between h

(i)
local and

hglobal to determine the importance of the i-th claim phrase.
We calculate the context vector hlocal as follows:

hlocal = tanh(

|Wc|∑
i=1

αih
(i)
local);αi = σ(Wα[hglobal;h

(i)
local])

(7)
where Wα ∈ R1×2∗d is the parameter and σ is the softmax
function.

After calculating these representations, we design pθ(·)
and qφ(·) both to be two-layer MLPs, where the last layer is
shared as label embeddings:
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Training Development Test
SUP 80,035 6,666 6,666
REF 29,775 6,666 6,666
NEI 35,659 6,666 6,666

Table 1: Statistics of FEVER 1.0 dataset.

• qφ(zi|y, x) takes as input the concatenation of the la-
bel embeddings of y (ground truth y? in training), h(i)

local
and hglobal, and outputs the probability of zi. Note that
qφ(z|y, x) =

∏
i qφ(zi|y, x).

• pθ(y|z, x) takes as input the concatenation of
(z1, z2, . . . , zmax) (max length by padding), hglobal and
hlocal, and outputs the distribution of y.

During training, qφ(·) and pθ(·) are jointly optimized with
Eq. 5. We use the Gumbel reparameterization (Jang, Gu, and
Poole 2017) for discrete argmax operation from z. Specifi-
cally, we keep the argmax node and perform the usual for-
ward computation (Gumbel Max), but backpropagate a sur-
rogate gradient (gradient of Gumbel Softmax).

Decoding During inference, we randomly initialize z,
and then iteratively decode y and z with pθ(y|z, x) and
qφ(z|y, x) until convergence. In the end, we have both the
final prediction y and the latent variables z serving as the
phrasal veracity predictions for all claim phrases.

4 Experiments
4.1 Dataset and Evaluation Metrics
Dataset We evaluate our verification method on a large-
scale fact verification benchmark, i.e., FEVER 1.0 shared
task (Thorne et al. 2018), which is split into training, devel-
opment and blind test set. FEVER utilizes Wikipedia (dated
June 2017) as the trustworthy knowledge source from which
the evidence sentences are extracted. The statistical report
of FEVER dataset is presented in Table 1, with the split
sizes of SUPPORTED (SUP), REFUTED (REF) and NOT
ENOUGH INFO (NEI) classes. In this dataset, there are 3.3
phrases per claim/question on average.

Evaluation Metrics Following previous studies, we eval-
uate the systems using:

• Label Accuracy (LA): The accuracy of predicted label
for claim regardless of retrieved evidence;

• FEVER score (FEV): The accuracy of both predicted la-
bel and retrieved evidence, which encourages the correct
prediction based on correct retrieved evidence.

In other words, FEVER score rewards a system that makes
predictions based on correct evidence. Note that no evidence
is needed if a claim is labeled NEI.

In addition, we propose several metrics to evaluate the
quality of explanations, i.e., phrasal veracity predictions z:

• Logically aggregated Label Accuracy (LAz): We calcu-
late the accuracy of logically aggregated yz by Eq. 6,
which evaluates the overall quality of explanations z;

• Culprit finding Ability (CULPA): LAz cannot evaluate
individual phrase veracity zi or decide whether a model
finds the correct culprit phrase. Thus, we randomly select
100 refuted claims from development set, and manually
label the culprit phrases (allowing multiple culprits).2
CULPA calculates the Precision, Recall and F1 of the
culprit finding based on discrete veracity from z.

• Agreement (AGREE): The agreement between predic-
tions of aggregated veracity yz and the final veracity y,
which evaluates the faithfulness of explanations;

We use two ways of aggregation logic for calculating LAz
and AGREE, i.e., discrete hard logic (as in §3.1) and proba-
bilistic soft logic (as in §3.3).

4.2 Baseline Methods
We evaluate LOREN against several public state-of-the-art
baselines:

• UNC NLP (Nie, Chen, and Bansal 2019) is the champion
system in the FEVER competition, which uses ESIM
(Chen et al. 2017) to encode pairs of claim and evi-
dence sentence, enhanced with internal semantic relat-
edness scores and WordNet features.

• GEAR (Zhou et al. 2019), which is a pioneer model to
utilize BERT (Devlin et al. 2019) to model the interaction
between claim and evidence sentence pairs, followed by
a graph network for the final prediction.

• DREAM (Zhong et al. 2020), which is built on top of an
XLNet (Yang et al. 2019) and breaks the sentences into
semantic graphs using semantic role labeler, followed by
a graph convolutional network (Velickovic et al. 2018)
and graph attention for propagation and aggregation.

• KGAT (Liu et al. 2020b), which collapses sentences into
nodes, encodes them with RoBERTa (Liu et al. 2019),
and adopts a Kernel Graph Attention Network for ag-
gregation. Further research equips KGAT with Core-
fRoBERTa (Ye et al. 2020), a PLM designed to capture
the relations between co-referring noun phrases.

• LisT5 (Jiang, Pradeep, and Lin 2021) is currently the
champion in FEVER 1.0 shared tasks. LisT5 employs
a list-wise approach with data augmentation on top of
a T5-3B (Raffel et al. 2020) with 3 billion parameters,
which is almost 10 times larger than the large versions of
BERT, RoBERTa and XLNet.

We note that the comparison between baselines is not always
fair due to too many different settings such as evidence re-
trieval and backbone pre-trained language models.

4.3 Implementation Details
We describe the implementation details in the experiments
for the following. LOREN consists of a pipeline of modules,
among which the MRC model and the verification model are

2Note that the set of annotated culprits is a subset of the ex-
tracted claim phrases for the convenience of calculation. We find
that there are on average 1.26 culprit phrases per claim for the sam-
pled ones, indicating that the refuted claims in the FEVER dataset
generally have a single culprit.
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trained by exploiting the FEVER dataset. All of the back-
bone PLMs inherit HuggingFace’s implementation (Wolf
et al. 2020) as well as most of the parameters.

Training Details of MRC We train the model in a self-
supervised way, i.e., using the SUP samples in training and
development set. The constructed dataset consists of 80,035
training samples and 6,666 development samples, corre-
sponding to the statistics of SUP samples in Table 1.

We fine-tune a BARTbase model (Lewis et al. 2020) for
the MRC model. Following the standard Seq2Seq training
setup, we optimize the model with cross entropy loss. We
apply AdamW as the optimizer during training. We train the
model for 4 epochs with initial learning rate of 5e-5, and use
the checkpoint with the best ROUGE-2 score on the devel-
opment set.

Training Details of Veracity Prediction During data pre-
processing, we set the maximum lengths of xglobal and x(i)

local
as 256 and 128 tokens respectively, and set the maximum
number of phrases per claim as 8. For each claim phrase wi,
we keep the top 3 answers in the beam search as candidates
from the MRC model, replace wi with them respectively,
and concatenate the sentences as the local premise for the
claim phrase wi. During training, we set the initial learning
rate of LOREN with BERT and RoBERTa as 2e-5 and 1e-
5, and batch size as 16 and 8 respectively. The models are
trained on 4 NVIDIA Tesla V100 GPUs for ∼5 hours for
best performance on development set. We keep checkpoints
with the highest label accuracy on the development set for
testing. During inference, decoding quickly converges after
2 or 3 iterations.

Evidence Retrieval Since the primary focus of this work
is fact verification, we directly adopt the evidence retrieval
methods from KGAT (Liu et al. 2020b) for comparison in
the verification sub-task. We leave the reported performance
of several evidence retrieval techniques and the results of
LOREN with oracle evidence retrieval in Appendix.

5 Results and Discussion
In this section, we evaluate the performance of LOREN
compared with baselines and analyze the interpretability of
LOREN w.r.t. phrase veracity and local premise quality.3

5.1 Overall Performance
Table 2 reports the overall performance of LOREN com-
pared with baselines on the development and test set of
FEVER. In general, LOREN outperforms or is comparable
to published baseline methods of similar sizes. LisT5 shows
its superiority over other methods, which may be mainly
attributed to its much larger and more powerful PLM (T5-
3B). Still, LOREN outperforms LisT5 in FEV score in the
development set. For DREAM, we notice it achieves bet-
ter score in LA score in the test set than LOREN. Due
to the difference in evidence retrieval strategies and back-
bone PLMs, LOREN is not fully comparable with DREAM.
However, a higher FEV score of LOREN (for both BERT

3We set λ = 0.5 by default in our experiments.

Model Dev Test
LA FEV LA FEV

UNC NLP 69.72 66.49 68.21 64.21
GEAR (BERTbase) 74.84 70.69 71.60 67.10

DREAM (XLNetlarge) 79.16 - 76.85 70.60
KGAT (BERTlarge) 77.91 75.86 73.61 70.24
x (RoBERTalarge) 78.29 76.11 74.07 70.38
x (CorefRoBERTal) - - 75.96 72.30

LOREN (BERTlarge) 78.44 76.21 74.43 70.71
x (RoBERTalarge) 81.14 78.83 76.42 72.93

LisT5 (T53B) 81.26 77.75 79.35 75.87

Table 2: Overall performance of verification results on the
dev and blind test set of FEVER task, where FEV (FEVER
score) is the main evaluation metric. The best is bolded, and
the second best is underlined.

λ in Lfinal LA LAz AGREE

Hard Soft Hard Soft

λ = 0.0 81.10 51.99 51.92 54.02 53.90
λ = 0.3 80.98 75.24 78.75 90.06 93.14
λ = 0.5 81.14 76.54 79.66 92.94 96.11
λ = 0.7 80.92 77.77 80.28 93.81 96.79
λ = 0.9 80.28 75.55 80.02 91.56 98.43

Table 3: Evaluation of phrase veracity quality with the ad-
justment of the balancing weight λ in the loss function (Eq.
5) in LOREN. The accuracy and faithfulness of phrase ve-
racity boost as λ increases towards Llogic.

and RoBERTa) indicates it makes decisions more faith-
ful to evidence than DREAM. In contrast, we make fairer
comparisons with KGAT (same PLMs and evidence re-
trieval techniques), and find that LOREN with BERTlarge

and RoBERTalarge beats KGAT with RoBERTalarge and
CorefRoBERTalarge, respectively.

We then perform a detailed analysis of the proposed com-
ponents in LOREN (RoBERTalarge) on the development set
to assess their influences on the performance and explana-
tion quality.

5.2 Evaluation of Phrase Veracity
As one of the most important features in LOREN, phrasal
veracity predictions explain the verification results. There-
fore, such explanations must be accurate as well as faithful
to the final prediction. Since the hyper-parameter λ controls
the influence of logical constraints, we perform an ablation
study of λ, where λ = 0 indicates no logical constraints on
the latent variables.

As seen in Table 3, we report the results of LA, LAz and
AGREE which comprehensively evaluate the general qual-
ity of phrasal veracity predictions. We have three major ob-
servations from the table: 1) Aggregation with soft logic
is better than hard logic in terms of accuracy and faithful-
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Choice of p(z) LA LAz AGREE CULPA (P/R/F1)

NLI prior 81.14 79.66 96.11 75.8/75.9/74.3
Pseudo prior 80.93 80.44 97.25 70.5/77.1/71.4
Uniform prior 80.85 80.74 97.08 34.1/78.8/46.1

Table 4: Results of different choices of prior distribution
p(z) during training, where yz in LAz is calculated using
soft logic.

ness. This indicates that predicted probability distributions
of phrase veracity are important and gives more information
than discrete labels. 2) In general, the explanations are faith-
ful, with over 96% of aggregated phrase veracity consistent
with the claim veracity. The explanations are also accurate
according to LAz and LA scores. 3) With the increase of λ
and stronger regularization of Llogic, the general accuracy
and faithfulness of phrase veracity increase. Without Llogic,
LOREN cannot give any meaningful explanations.

In summary, the results demonstrate the effectiveness of
phrase veracity and the importance of the aggregation logic.

Ablation on Prior Distribution As presented in §3.3, we
use the results of a fixed, off-the-shelf NLI model (He et al.
2021) as the prior distribution p(z). We first evaluate the
quality of NLI predictions in this task by directly mak-
ing them as phrasal veracity predictions. We make local
premises as premise and the claim as hypothesis. The predic-
tions are aggregated into yz using the same soft logic, and we
get the LAz score at only 53.41%. However, with LOREN
training, LAz can reach the score at 79.66% or more.

We further perform an ablation study to investigate the
influence of the choice of prior distribution. We propose two
alternatives:

1. logical pseudo distribution. We create pseudo p(z) and
sample 1 or 2 phrases as the culprit phrase(s) based on
culprit attention weight α in Eq. 7, and label them as REF
and the rest as non-REF. Such p(z) is in accordance with
the logic but distinguishable of the culprit phrase(s);

2. uniform distribution, which is commonly used as p(z).

z is randomly initialized during decoding in all scenarios.
As reported in Table 4, after switching prior distributions,

the model still performs well and learns logically consis-
tent phrase veracity w.r.t. LA, LAz and AGREE. For logi-
cal pseudo prior, LAz and AGREE are better than NLI prior
since there is gap between off-the-shelf NLI models and this
task. But their scores on CULPA are close, proving similar
culprit finding ability for both prior distributions. However,
with uniform distribution, LOREN makes the same predic-
tions for all claim phrases, which results in high CULPA re-
call (78.8%) but poor F1 scores due to its indistinguishabil-
ity.

5.3 Evaluation of MRC Quality
The system should acquire enough distinguishable informa-
tion to know the veracity of claim phrases. One of the key
designs in LOREN is using an MRC model to retrieve evi-
dential phrases for verifying claim phrases, i.e., constructing

MRC Model MRC Acc
SUP REF NEI

UnifiedQA (hit@1) 43.90 39.47 30.00
UnifiedQA (hit@4) 56.10 52.63 47.50
LOREN (hit@1) 95.12 78.95 83.75
LOREN (hit@4) 95.12 89.47 87.50

Table 5: Manual evaluation of the performance of MRC
models. Hit@k denotes that we keep the top-k answers in
the beam search as the candidates. The answer is accurate if
any one of the k answers is correct.
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(a) Results on CULPA.
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(b) Results on LA & LAz .

Figure 2: Performance on culprit finding (CULPA) and veri-
fication (LA and LAz) vs. the mask rate ρ of local premises,
simulating the influence by deficiency of the MRC model.

local premises. In this section, we evaluate the quality of the
MRC model and its influence on culprit finding.

Since there are no ground truth answers for REF and NEI
claims, we manually evaluate the MRC model in LOREN,
which is a BARTbase fine-tuned in a self-supervised way.
The data samples are labeled as correct if they are the right
answer(s) for verifying the claim phrase, otherwise erro-
neous.4 We randomly selected 20 data samples per class for
manual evaluation, with a total of 60 samples and 238 QA
pairs (also 238 claim phrases). As a zero-shot baseline, we
adopt UnifiedQA (Khashabi et al. 2020), which fine-tunes a
T5base (Raffel et al. 2020) on existing QA tasks.

Results in Table 5 reveal the effectiveness of self-
supervised training for adaptation and room for future re-
finement. Note that, different from traditional MRC tasks,
the question can contain false information for non-SUP
cases. Thus the accuracy drops as the question deteriorates.
The results shed light on the automatic correction while per-
forming verification (Thorne and Vlachos 2021) since the
answers can serve as a correction proposal.

Influence of MRC Performance We further analyze the
influence brought by the quality of the MRC model. To do
so, we randomly mask the local premises at the rate of ρ
(e.g., Donald Trump won [MASK].), simulating the failure

4We extract the correct answers from evidence manually for
evaluation. For NEI samples, there could be some claim phrases
that do not have correct counterparts in the evidence. So we decide
the MRC results for those phrases to be correct if the results are the
same as claim phrases.
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of the MRC model in an extreme situation. As seen in Fig-
ure 2, in general, the quality of local premises are critical for
identifying the culprit phrases. In Figure 2(a), F1 score of
CULPA quickly deteriorates as the quality of local premises
gets worse. When mask rate reaches 100%, precision drops
to 36.0% but recall hits 80.5%. This is because LOREN no
longer identifies the culprit phrase and predicts all phrases
to be the same, which is similar to the scenario of uniform
prior distribution as discussed in §5.2. From Figure 2(b), we
find claim verification ability (LA) of LOREN does not drop
much, which is partly because the answers are already dis-
played in the evidence text. Also, the gap between LAz and
LA gradually narrows as mask rate ascends, because phrase
verification degenerates into claim verification and makes
the same predictions when local premises do not provide tar-
geted information for claim phrases.

5.4 Case Study
We present three examples in Figure 3 to show the inter-
pretability of LOREN. In the first, LOREN performs well
in both claim and phrasal veracity predictions. It success-
fully finds the culprit phrase “number three”, and a correc-
tion suggestion by MRC, i.e., “number one” in Premise 2.

In the second example, LOREN makes mistakes by pre-
dicting the veracity of the second phrase to be REF. The root
causes for this mistake are complicated, including lack of
commonsense knowledge and failure of the MRC and ev-
idence retrieval modules. The MRC retrieves “European”
(hit@1) for filling the masked “Iranian”, whereas there is
no definite answer to be drawn from the evidence. Strictly
speaking, we can only know from the evidence text that Ash-
ley Cole was born in England, but do not know whether he
has dual citizenship or joined another country for certain.
Therefore, we have not enough information (NEI) to draw
the verdict, but LOREN predict it to be REF. However, the
probability of NEI and REF for phrasal veracity prediction
z2 (0.466 vs. 0.520) and for claim veracity yz (0.464 vs.
0.522) are rather close, which indicates that LOREN strug-
gles to make that decision. These findings stress the useful-
ness and interpretability of the predicted phrase veracity z.

We investigate a multiple culprits scenario in the third ex-
ample. The last three phrases in claim 3 could be seen as
the culprits, and LOREN predicts “nothing” and “Dorthy B.
Hughes” as REF. This corroborates that LOREN is by de-
sign capable of detecting multiple culprits in a claim.

6 Conclusion and Future Work
In this paper, we propose LOREN, an approach for inter-
pretable fact verification by distilling the logical knowledge
into the latent model. In the experiments, we find LOREN
not only enjoys competitive performance with baselines but
produces faithful and accurate phrase veracity predictions as
explanations. Besides, the local premises constructed by the
self-supervised MRC module are of high quality and deeply
influence the finding of culprits, making LOREN’s ability of
automatic factual correction worthy of investigation in the
future.

We add that, a general notion of culpability discovery
in fact verification may depend on claim decomposition. A

Prediction : REFUTES 
Ground Truth: REFUTES

y

Claim1: Kung Fu Panda was number three at the box office.

Evidence: Kung Fu Panda … resulting in the number one position at the box office…

Premise1: Kung Fu Panda was number three at the box office.

Veracity: SUPPORTS                                = [0.981, 0.009, 0.009]

Premise2: Kung Fu Panda was the number one at the box office.

Veracity: REFUTES                                   = [0.178, 0.805, 0.017]

Premise3: Kung Fu Panda was the number three at the box office.

Veracity: SUPPORTS                                = [0.808, 0.088, 0.104]

z1

z2

z3

Premise1: Ashley Cole is Iranian. 
Veracity: SUPPORTS                                = [0.981, 0.004, 0.015]

Premise2: Ashley Cole is European.

Veracity: REFUTES                                   = [0.014, 0.520, 0.466]

z1

z2
Prediction : REFUTES 
Ground Truth: NOT ENOUGH INFO

y

Claim2: Ashley Cole is Iranian.

Evidence: Ashley Cole ( born 20 December 1980 ) is an English professional footballer 
who … in Major League Soccer. Born in Stepney , London…

 = [0.014, 0.522, 0.464]yz

 = [0.141, 0.824, 0.035]yz

Prediction : REFUTES 
Ground Truth: REFUTES

y

Claim3: In a Lonely Place had nothing to do with any novel by Dorthy 
B. Hughes.

Evidence: In a Lonely Place is a 1947 novel by mystery writer Dorothy B. Hughes…

Premise1: In a Lonely Place had nothing to do with any novel by 
Dorthy B. Hughes.

Veracity: SUPPORTS                                = [0.828, 0.162, 0.010]

Premise2: In a Lonely Place had a lot to do with any novel by Dorthy B. 
Hughes.  
Veracity: REFUTES                                   = [0.052, 0.913, 0.035]

Premise3: In a Lonely Place had nothing to do with any novels by 
Dorthy B. Hughes.

Veracity: SUPPORTS                                = [0.669, 0.314, 0.017]

Premise4: In a Lonely Place had nothing to do with any novel by 
Dorothy B. Hughes.

Veracity: REFUTES                                   = [0.393, 0.464, 0.143]

z1

z2

z3

z4

 = [0.011, 0.973, 0.016]yz

Figure 3: A case study of the interpretability of LOREN,
where the probabilities in phrasal veracity prediction zi are
SUP, REF and NEI respectively.

claim should be decomposed into fine-grained units where
the culprit hides while making the units self-explanatory
to humans. Besides phrases introduced in this paper, there
could be other forms of decomposition units, e.g., depen-
dency arc. We suggest future research focus on the limi-
tations of LOREN, including decomposition, evidence re-
trieval, and out-of-domain issues. Accordingly, better solu-
tions for these issues can improve LOREN’s generality.
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