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Abstract

Large transformer-based language models have achieved in-
credible success at various tasks which require narrative com-
prehension, including story completion, answering questions
about stories, and generating stories ex nihilo. However, due
to the limitations of finite context windows, these language
models struggle to produce or understand stories longer than
several thousand tokens. In order to mitigate the document
length limitations that come with finite context windows, we
introduce a novel architecture that augments story process-
ing with an external dynamic knowledge graph. In contrast to
static commonsense knowledge graphs which hold informa-
tion about the real world, these dynamic knowledge graphs
reflect facts extracted from the story being processed. Our ar-
chitecture uses these knowledge graphs to create information-
rich prompts which better facilitate story comprehension than
prompts composed only of story text. We apply our archi-
tecture to the tasks of question answering and story com-
pletion. To complement this line of research, we introduce
two long-form question answering tasks, LF-SQuAD and LF-
QUOREF, in which the document length exceeds the size of
the language model’s context window, and introduce a story
completion evaluation method that bypasses the stochastic
nature of language model generation. We demonstrate broad
improvement over typical prompt formulation methods for
both question answering and story completion using GPT-2,
GPT-3 and XLNet.

Introduction
Large language models such as GPT-2 (Radford et al. 2019)
have been used for a variety of story-related tasks includ-
ing story completion (Xu et al. 2020; Guan et al. 2020),
reading comprehension (Radford et al. 2019; Raffel et al.
2020), and story generation (Fan, Lewis, and Dauphin 2018;
Roemmele 2016). However, previous works have mostly fo-
cused on extremely short stories that fit within the limited
context windows of transformer-based language models. For
example, several of these works use the popular ROCSto-
ries dataset (Mostafazadeh et al. 2016) which is composed
of five-sentence stories. Using GPT- 2’s tokenization rules,
the stories in this dataset have an average token length of
53.5, much smaller than most transformer context windows.
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While language models with finite context windows are ca-
pable of generating stories of arbitrary length through itera-
tive text predictions, these longer stories are prone to intro-
duce information that abandons or contradicts information
present earlier in the story. Much work has been done to
increase story coherence through external knowledge bases
(Xu et al. 2020; Guan et al. 2020), but these works have fo-
cused on making stories consistent with the real world rather
than on making stories consistent with themselves.

A language model’s ability to generate internally consis-
tent text relies on a property which we term “story compre-
hension”. This ability is a prerequisite to successfully com-
pleting various tasks including story completion, story gen-
eration, document summarization, question answering, etc.
It stands to reason that language models with finite con-
text windows, including transformer-based language mod-
els, cannot comprehend more text than fits within their con-
text windows, putting an upper limit on the story compre-
hension ability of these models. This poses a problem for
long-form text generation applications such as AI Dungeon1

in which end users have a vested interest in the coherency of
generated stories.

In this work we introduce a novel architecture for im-
proving the story comprehension of large language models
through external knowledge bases. Our approach involves
extracting facts from a document and constructing a custom
dynamic knowledge graph. Then, given a story comprehen-
sion task, we extract and verbalize relevant information from
the knowledge graph and incorporate it into information-rich
prompts for a language model.

The primary contributions of this work include:

• Defining an architecture which interfaces effectively with
a large language model, providing the language model
with fact-rich prompts that enhance story comprehension

• Introducing LF-SQuAD and LF-QUOREF, two novel
evaluation tasks designed to measure long-form story
comprehension

• Introducing a new evaluation metric for story completion
that, unlike previous metrics such as BLEU, does not as-
sume that a human-written response is the single correct
answer

1https://play.aidungeon.io
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Figure 1: Visualization of the three tasks accomplished by our architecture. In Knowledge Graph Construction, we use an
Open Information Extraction model with rule based post processing to convert a long-form text document into a document-
specific knowledge graph. In Fact Retrieval we find which facts are most relevant to some story comprehension task. In Prompt
Formulation we use few-shot learning with GPT-3 to verbalize extracted facts as natural language and incorporate them into a
prompt for a large language model.

We apply our architecture to two story comprehension
tasks, question answering and story completion, and eval-
uate its impact on the performance of three transformer-
based language models, GPT-2 (Radford et al. 2019), GPT-3
(Brown et al. 2020), and XLNet (Yang et al. 2019). Our eval-
uation tasks require a language model to process and under-
stand text that exceeds its context window size, and hence
are not directly comparable to existing tasks and method-
ologies which rely on documents with limited lengths. We
demonstrate consistent improvement over a system in which
no knowledge base is used and language models must make
predictions using traditional prompts.

Related Work
There have been several previous works exploring how
knowledge graphs can augment language models. Guan
et al. (2020) use commonsense knowledge graphs to gen-
erate data for fine-tuning GPT-2 to enhance the language
model’s ability to generate coherent, non-repetitive stories.
Xu et al. (2020) also use a knowledge graph to fine-tune
language models for story generation, adding a mechanism
to extract relevant information from the knowledge graph
based on predicted keywords as it was needed. Both works
use static pre-constructed knowledge graphs.

Guu et al. (2020) use an external knowledge base to train a
language model on open-domain question answering. It uses
a collection of text snippets from Wikipedia as a knowledge

base rather than a knowledge graph, and it trains a a neu-
ral knowledge retriever rather than retrieving based on pre-
dicted keywords.

In contrast to these works, our system uses a knowledge
base that is dynamic and reflects facts that have appeared
in the story rather than commonsense information. Our fo-
cus is not on helping the language model comprehend the
real world but on helping the language model comprehend
the document being processed. In addition, the documents
we use to evaluate our system are many times longer than
documents used in directly comparable systems, shifting our
tasks to a new and largely unexplored domain.

Dynamic knowledge graphs have been used in Dialogue
State Tracking applications to model participants in a con-
versation (He et al. 2017; Zhou and Small 2019). Bosselut,
Bras, and Choi (2019) and Bosselut et al. (2019) also aim
to generate knowledge graphs dynamically, but treat knowl-
edge graph generation as a language modelling problem for
discovering implicit commonsense relations between enti-
ties, rather than an extraction problem for recording explicit
facts specific to document text.

There has also been much work over the years to auto-
matically generate knowledge graphs from text documents.
Wang et al. (2018) use a statistical model to predict entity
relations from filtered domain-specific text. Distiawan et al.
(2019) train a relation extraction model to add new relations
between entities in an existing knowledge graph. Angeli,
Premkumar, and Manning (2015) use dependency parses to
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extract tuples including entities and relations. Nayak and Ng
(2020) focus on extracting overlapping relations, where en-
tities have multiple relations reflected in a single text span.
All of these works aim to extract knowledge about the world
from the text, creating one large database that applies gener-
ally or that always describes a specific domain. Our system,
conversely, aims to create a knowledge base that describes
a single long-form document, including subjective facts that
may not be meaningful or even intelligible out of context.
Particularly relevant to this paradigm of document-specific
knowledge graphs are (Ammanabrolu and Riedl 2019; Am-
manabrolu et al. 2020; Adhikari et al. 2020), which use
knowledge graphs to track agent progress and world state
in text adventure games. This work uses similar mecha-
nisms for generating knowledge graphs from text, but we
use knowledge graphs to generate language model prompts
rather than to inform reinforcement learning agents.

Finally, there are many approaches to story related tasks
that do not rely on prevailing transformer-based language
models. These include the introduction of new variants of
the transformer architecture (Ainslie et al. 2020), hierarchi-
cal representation and generation of stories (Li, Luong, and
Jurafsky 2015; Fan, Lewis, and Dauphin 2018), and em-
bedding facts with a neural network for question answer-
ing (Kumar et al. 2016; Xiong, Merity, and Socher 2016).
We emphasize that our purpose is not to compete with these
other methods but to maximize the performance of existing
transformer-based language models on similar tasks in a way
that does not require any training, fine-tuning, or labelled
data.

Architecture
We use a dynamic knowledge graph to enhance the coher-
ence of language model output when making document-
based predictions as shown in Figure 1.

Our story comprehension pipeline consists of three steps:
(1) Knowledge Graph Construction, in which we construct a
knowledge graph G that contains key information extracted
from a natural language document D, (2) Fact Retrieval
from the knowledge graph, in which we retrieve from G
facts that are relevant to some document comprehension task
T , and (3) Prompt Formulation, which includes both the
synthesis of knowledge graph facts into free-form text and
the concatenation of those facts with an excerpt from the
story text and some framing text to form a prompt P . Fur-
ther details can be found in Algorithm 1. Our complete ar-
chitecture implementation is available in the supplementary
materials for this paper.

Knowledge Graph Construction
The first task for our architecture is to generate a knowl-
edge graph G that contains information extracted from
a text document D containing a story or narrative text.
Once constructed, G is composed of facts of the form
[head, relation, tail], where head and tail are entities from
the document and relation describes how those entities are
related. We constructG by, for each sentence s ∈ D, extract-
ing 0 or more facts from s and adding them to G. We extract

Algorithm 1: Story Comprehension Pipeline
Inputs
D = natural language document to be processed
E = schemaless knowledge extractor (Open IE)
LM = text generation via language model (GPT-2, GPT-3, XLNet)
ψ = filter function for KG facts
Φ = text similarity metric (uses either SBERT or Levenshtein)
Υ = fact verbalization function
k = language model context length
query = the question to be answered, or the final paragraph of the
story to be completed, query 6⊂D
framing text = Additional task-specific text inserted into prompt
to focus the language model
Pipeline
1: G = []
2: for sentence in D do
3: T = E(sentence)
4: T = [t for t in T if ψ(t)]
5: G = G + T
6: end for
7: similarities = []
8: for f in G do
9: similarities.append(Φ (f , query))

10: end for
11: indices = argmax(similarities,n=3)
12: facts = G[indices]
13: verbalized facts = [Υ(f ) for f in facts]
14: kD = k - len(framing text + verbalized facts + query)
15: prompt = D[-kD:] + verbalized facts + framing text +

query
16: output text = LM (prompt)

facts using the Stanford Open Information Extraction (Open
IE) model (Angeli, Premkumar, and Manning 2015), which
separates natural language sentences into short clauses and
then segments clauses into a knowledge graph triple.

Many applications that use knowledge graphs for natu-
ral language tasks use a schema, such as the knowledge
graphs Wikidata (Vrandečić and Krötzsch 2014) and Con-
ceptNet (Liu and Singh 2004). Schemas often predefine a
set of possible relations between entities, which facilitate
automatic data analysis or text generation. In our applica-
tion facts in G will only ever be processed by a language
model, which eliminates the need for a predefined schema.
We choose the more flexible approach of using a schema-
less knowledge graph where the head, relation, and tail of
each fact can be composed of any natural language found in
the text. relation is typically a verb phrase and head is typ-
ically a noun phrase. See Table 3 for examples of extracted
knowledge graph facts.

To mitigate any mistakes made by the Open IE model,
we apply several filtering rules before adding each fact to
G. The purpose of these rules is to eliminate any facts that
lack a recoverable meaning. We do not add a fact of the form
[head, relation, tail] to G if it follows any of the following
patterns:

• tail is identical to head (e.g. [you, just sit, you])

• head does not contain a noun (e.g. [screamed, howling
like, wolf])
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• the first word in tail is identical to the last word in
relation (e.g. [i, enjoy playing, playing soccer])

• head or tail starts with a pronoun or conjunction (e.g.
[who, lurking, behind a wire], [but, should, be careful])

• there are no verbs present in the fact (e.g. [breakfast,
lunch, dinner])

We use the NLTK interface for WordNet (Miller 1995) to
determine the part-of-speech of words in each fact.

Fact Retrieval from Knowledge Graph
Given a story comprehension task T and a generated knowl-
edge graph G, our next step in producing a suitable prompt
P is to find which facts in G are most relevant to T . We
use two relevance metrics, one for question answering and
one for story completion. For question answering, where we
are interested in finding discrete information about specific
story entities, we determine relevance using the string edit
distance between knowledge graph facts f ∈ G and the
question T . The most relevant fact for question answering
can be defined as

argmin
f∈G

lev(f, T ) (1)

where lev represents the Levenshtein distance function.
For story completion we are more concerned with se-

mantic similarity than literal string similarity, so we deter-
mine relevance using Sentence-BERT (SBERT) (Reimers
and Gurevych 2019), a variation on the BERT network (De-
vlin et al. 2018) designed to generate embeddings which fa-
cilitate semantic comparisons. We find the cosine similarity
between the SBERT embeddings of T (in this case the most
recent paragraph of the story) and each fact f ∈ G. The most
relevant fact for story completion can be defined as

argmax
f∈G

cos(SB(f), SB(T )) (2)

where cos represents the cosine similarity function and SB
is the application of the SBERT embedding model.

We also try applying SBERT for the question answering
task and Levenshtein distance for the story completion task,
but find that these settings yield inferior performance.

For both question answering and story completion we se-
lect the top 3 most relevant facts fromG. We also experiment
with larger numbers but find a negligible change in overall
system performance.

Prompt Formulation
When a knowledge graph schema is used, facts can be con-
verted to sentences using template rules (Xu et al. 2020;
Guan et al. 2020). Because we have a schemaless knowl-
edge graph with open-ended relations, we instead use few-
shot learning with GPT-3 (Brown et al. 2020) to verbalize
knowledge graph facts as sentences that can be incorporated
into language model prompts. We use the prompt shown in
Figure 2 to coax GPT-3 into generating well-formed sen-
tences.

We note that while GPT-3 is not currently publicly avail-
able, other methods of verbalizing knowledge graph facts

Figure 2: Prompt used to verbalize knowledge graph facts
through few-shot learning with GPT-3. [Fact Head], [Fact
Relation], and [Fact Tail] are replaced with the three con-
stituents of the knowledge graph fact being verbalized. Sev-
eral example inputs and outputs are shown in Table 3.

exist. For example, Agarwal et al. (2021) demonstrate suc-
cess fine-tuning T5 (Raffel et al. 2020) for knowledge graph
verbalization, and in many cases even simple concatenation
of fact constituents produces adequate verbalizations.

Experiments
To test whether our system improves the performance of
large language models, we evaluate it using two tasks that
require document comprehension: question answering and
story completion. We hypothesize that our dynamic knowl-
edge graph will aid the language model in generating more
coherent text by capturing facts that would not normally fit
within the language model’s context window if the language
model were working merely on unfiltered document text.

We repeat experiments using three language models:
GPT-2, GPT-3, and XLNet. These models are selected due
to their prevalence as generative language models and their
high performance on other document comprehension tasks
(Radford et al. 2019; Brown et al. 2020; Yang et al. 2019).
Other large language models such as BERT (Devlin et al.
2018) and T5 (Raffel et al. 2020) are not trained to perform
autoregressive text generation and are thus not natural fits
for both the question answering and story completion tasks.

Question Answering
For the question answering task our goal is to correctly
answer questions about documents. The task has been re-
ferred to as ‘Reading Comprehension’ in other works and
is distinct from the open-domain question answering task,
in which no document containing the correct answer is pro-
vided.

We evaluate our system’s performance on two new
question answering datasets, LF-SQuAD and LF-QUOREF
(with LF standing for long-form), which we make available
in the supplementary materials. These datasets are adapted
from SQuAD (Rajpurkar et al. 2016) and QUOREF (Dasigi
et al. 2019) respectively. The primary difference in these new
datasets is that rather than associating questions with para-
graphs we associate them with documents. For each ques-
tion in SQuAD and QUOREF, we reconstruct the original
source document and pair the question with the entire doc-
ument rather than with a specific paragraph. This substan-
tially increases the difficulty of the question answering task,
particularly for transformer-based language models that can
fit paragraphs in their context windows but not entire doc-
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Figure 3: Prompt used for the Question Answering task.
[Source Text] is replaced with as much of the end of the
document text as will fit in the context window. [Verbal-
ized Facts] is replaced with the most relevant facts from the
knowledge graph verbalized as sentences. [Question] is re-
placed with the question from the dataset. The entire prompt
is limited to a 1000 token context length. In the baseline ap-
proach, the [Verbalized Facts] field is omitted, which makes
room for more document text in the [Source Text] field.

uments. In constructing LF-SQuAD and LF-QUOREF we
also filter out any questions that have multiple correct an-
swers listed to simplify the evaluation process and avoid
situations in which answers could be expressed multiple
ways. In these experiments we use an abridged version of
each dataset to accommodate our compute-heavy task. We
first choose the document-question pairs associated with the
longest documents and then randomly select 600 document-
question pairs from LF-SQuAD and 568 document-question
pairs from LF-QUOREF. We use the same subset of the
datasets in all experiments.

We answer questions using the process defined in Algo-
rithm 1 and the language models listed above. We compare
each model’s answer to the human labelled answer using an
F1 score, which measures the amount of overlap in tokens
used in each answer as in (Rajpurkar et al. 2016). Specifi-
cally, we calculate F1 by finding the precision p (percentage
of tokens in model answer also found in human answer) and
recall r (percentage of tokens in human answer also found
in model answer) and defining F1 as 100× 2pr/(p+ r).

We compare our results to a more traditional approach
in which no facts are provided in the prompt and the same
language models are used. This approach typically provides
more of the actual document text to the language model,
as the maximum prompt length remains the same. We note
that it is similar to the question answering approach used
in (Radford et al. 2019), except that we do not prime the
model with multiple question-answer pairs in order to fit
more story text. We were unable to identify any other base-
line approaches that could be meaningfully applied to the
task of answering questions about long form documents via
a pretrained language model.

Story Completion
We make a distinction between story completion, in which
a system reads part of a human-written story and composes

a plausible end or next portion of the story, and story gen-
eration, in which a system composes a story ex nihilo. The
mechanics of the two tasks are similar and we believe our
methods are applicable to both, but in this work we evalu-
ate only on story completion due to a lack of satisfactory
automated metrics for story generation.

We evaluate system performance using a dataset of Spar-
knotes summaries of popular novels2. We use summaries
rather than stories because they contain highly factual and
detail-rich sentences without extra prose or dialogue, mak-
ing them well suited for comprehension tasks. Although the
summaries are shorter than the corresponding stories, they
are still considerably longer than the stories used in compa-
rable works of which we are aware. For example, the com-
monly used ROCStories dataset (Mostafazadeh et al. 2016)
contains an average of 53.5 tokens per story using GPT-2’s
tokenizer, while the Sparknotes summaries contain an aver-
age of 1166.3 tokens per story. For reference, the maximum
total length of a combined prompt and response is 1024 to-
kens with GPT-2 and 2048 tokens with GPT-3. In these ex-
periments we use a prompt length of 800 to allow sufficient
space for the model’s response.

We evaluate by processing the first paragraph of a human-
written story and using it to predict the text of the second
paragraph, then processing the first two paragraphs and us-
ing them to predict the text of the third paragraph, etc. un-
til every paragraph has been predicted based on the pro-
cessed preceding paragraphs. At each step we construct a
knowledge graph from all of the story paragraphs seen so
far and select knowledge graph facts based on what is rele-
vant to the most recently processed paragraph. We generate
a prompt consisting of document text with the verbalized
knowledge graph facts inserted before the last story para-
graph. The prompt is limited to a maximum of 800 tokens,
and the amount of document text is scaled appropriately. As
with question answering, we compare our results to a tradi-
tional approach in which no facts are provided in the prompt,
which typically causes more document text to be provided.

We use two automatic methods to evaluate the efficacy of
our enhanced prompts. Given a language model L, a prompt
p, and a human-written completion c, the first evaluation
method is to generate a new completion ĉ = generate(L, p)
and measure the BLEU score between c and ĉ. This method
is currently the typical evaluation method for story comple-
tion, but it relies on the faulty assumption that c is the “cor-
rect answer” and that increased n-gram overlap between c
and ĉ correlates with generation quality. In reality, there are
many different ways to appropriately complete any given
story portion, and most will have little n-gram overlap with
c. Additionally, ĉ is stochastically generated by the language
model, making it difficult to replicate BLEU results. To
overcome these issues with BLEU evaluation, we introduce
a second story-completion evaluation metric based on per-

2We use the summaries for the 606 novels found at https://www.
sparknotes.com/lit/ at the time of writing. For each novel we collect
the text at https://www.sparknotes.com/lit/[story ID]/summary/. In
total we make predictions on over 4000 paragraphs of text, and we
make all summaries available with the supplementary materials.
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LM Method LF-S F1 LF-Q F1

GPT-2
Traditional Prompts 8.1 24.0

Our Pipeline 18.6* 25.4

GPT-3
Traditional Prompts 15.7 22.4

Our Pipeline 20.0* 25.7

XLNet
Traditional Prompts 6.6 14.1

Our Pipeline 12.9* 18.5*

Table 1: Results of question answering experiments de-
scribed in Section 4.1. LF-S and LF-Q are LF-SQuAD and
LF-QUOREF respectively. F1 scores in this context measure
the precision and recall between bag-of-words tokens used
in a human-written and predicted answer. Bolded scores are
better and * indicates a significant result (α = 0.01).

plexity (PPL). Given the same L, p, and c as above, we use
the language model to measure the perplexity of c given p, or
PPL = L( c | p). Note that we are no longer assuming that
c is the only high quality completion. Rather, we treat c as
one sample from the population of high quality completions
for a given story. Thus, if our enhanced prompts consistently
improve the probability of generating c in the majority of
cases, we infer that our method improves the probability of
generating most high-quality completions and successfully
increases story comprehension. PPL is also non-stochastic,
which improves the reliability of results. Unlike previous
metrics commonly used for evaluating language models, our
PPL metric specifically measures the quality of prompts,
making it effective at evaluating this and other automatic
prompt engineering tasks.

Due to the nature of the OpenAI API used to access GPT-
3, we make two adjustments to the typical perplexity calcu-
lation. First, because the API only gives access to the 100
most likely tokens at each generation step, we treat any to-
ken not appearing in the top 100 as having the same like-
lihood as the 100th most likely token. This occurs for only
4.4% of tokens with both traditional and enhanced prompts.
Second, due to cost and time limitations we run perplexity
tests on only a subset (roughly 65%) of the Sparknotes test
cases. Perplexity calculations using the other two language
models are performed in the usual manner.

Module Analysis
In order to better understand our system’s performance we
measure accuracy after each module. We evaluate by mea-
suring the frequency with which the correct answer to each
question-answer pair appears in our system at seven points
in the pipeline: in the original document, after extracting
knowledge graph facts, after applying filtering rules, after
selecting the most relevant facts from the knowledge graphs,
after verbalizing facts in natural language, after constructing
a prompt, and after generating a response with the language
model. We use GPT-2 as the language model in these experi-
ments. We do not perform this analysis for story completion
as the literal human-written completion will never appear in
any portion of the system.

LM Method BLEU PPL

GPT-2
Traditional Prompts 0.0620 2.42

Our Pipeline 0.0622 2.24*

GPT-3
Traditional Prompts 0.0643* 10.93

Our Pipeline 0.0455 10.89

XLNet
Traditional Prompts 0.0306* 1.61

Our Pipeline 0.0254 1.56*

Table 2: Results of story completion experiments on the
Sparknotes dataset described in Section 4.2. Bolded scores
are better (higher for BLEU, lower for PPL) and * indicates
a significant result (α = 0.01).

Figure 4: Percentage of correct answers retained by the sys-
tem after each module of the QA Pipeline on two datasets.
When desired information is lost, it usually happens dur-
ing the fact selection step and when applying the language
model to generate a response. The filtering step loses almost
no correct answers and the verbalizing step adds correct an-
swers. Constructing the prompt causes a spike in answer ap-
pearances because it re-incorporates as much of the docu-
ment text as possible given context length constraints.

Results
Results for the question answering experiments are found
in Table 1, and story completion results are found in Ta-
ble 2. For question answering our prompt construction sys-
tem outperforms traditional prompts on both datasets and
using all three language models, and results are statistically
significant (α = 0.01) in the majority of cases. LF-SQuAD
has a longer average document length than LF-QUOREF,
which accounts both for the higher overall accuracy on LF-
QUOREF and our system’s higher performance relative to
the baseline on LF-SQuAD. This underscores the difficulty
of long-form question answering by language models and
validates our system’s performance on the defined task.

For story completion our prompts outperform traditional
prompts on the PPL metric for all three language models,
including significant (α = 0.01) improvements using GPT-2
and XLNet. BLEU scores were less consistent; we achieve
slightly better BLEU scores than traditional prompts using
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Original Text The age distribution was 6% aged 0–4 years, 14% aged 5–15 years, 4% aged 16–19 years. . .
KG Fact [head:4% // relation:aged // tail:16-19 years]

GPT-3 Verbalized 4% of the population aged 16–19 years.
Original Text . . . Milo then leads his friends towards the Valley of Sound, where they meet . . . Dynne, a monster

made of smoke.
KG Fact [head:a monster // relation:made // tail:of smoke]

GPT-3 Verbalized The monster was made of smoke.
Original Text As the two men eat borscht, a red Russian soup made of beets, Rainsford praises his host’s . . .

KG Fact [head:the two men // relation:eat // tail:borscht]
GPT-3 Verbalized The two men ate borscht.

Original Text Perez gets injured and decides to stay behind . . .
KG Fact [head:Perez // relation:stay // tail:behind]

GPT-3 Verbalized Perez stayed behind.
Original Text Kovrin is restless and does not sleep much, but he talks a great deal . . .

KG Fact [head:Kovrin not // relation:sleep // tail:much]
GPT-3 Verbalized Kovrin doesn’t sleep much.

Table 3: Examples of original document text, knowledge graph facts extracted from the text, and the corresponding sentences
generated by GPT-3 via few-shot learning. Note that GPT-3 is capable of recovering meaning found in the original text but not
the knowledge graph (e.g. the word “population” in the first example, which is implied in the original text and omitted in the
knowledge graph).

GPT-2 and significantly worse (α = 0.01) BLEU scores with
GPT-3 and XLNet. PPL scores measure the likelihood of
generating the human-written response (and by assumption
other appropriate responses) given the constructed prompt,
while BLEU scores compare a randomly generated response
to the human-written one.

The results for module-specific experiments are in Figure
4. We find that the performance of each module is similar on
LF-SQuAD and LF-QUOREF. Most of the information loss
that occurs happens at two points: when selecting relevant
facts from the knowledge graph and when generating a final
answer using the language model. This is not particularly
surprising, as these are the two phases where the most total
information is pared out. The filtering step loses almost no
correct answers, despite the fact that it does remove a lot of
information, which means that our filtering rules are effec-
tive at removing only irrelevant knowledge graph facts. The
verbalizing step actually increases the percentage of cases
where our system retains the correct answer. This is likely
due to cases when the correct content is contained in selected
knowledge graph facts and GPT-3 adds important function
words or formatting. We find similar trends when we mea-
sure the percentage of correct answer tokens retained by the
system rather than measuring only the presence of the com-
plete correct answer.

Conclusion
In this work we have demonstrated that a dynamic knowl-
edge graph containing document-specific information can
enhance prompt generation for large language models,
thereby mitigating the limitations of finite context lengths

used by transformer-based language models. We have eval-
uated our architecture on two story comprehension tasks,
question answering and document completion, and believe
that it will be successfully applied to other tasks which re-
quire comprehension of large documents. We are optimistic
that these and similar techniques will allow for more practi-
cal and effective story generation systems in the future.

Each part of the presented architecture is independently
trained for general purpose language processing, leaving
many opportunities for potential domain-specific improve-
ments. We are particularly interested in developing more tai-
lored models for retrieving relevant facts from the knowl-
edge graph and creating a feedback system for fine-tuning
a domain-specific Open IE model. We also look forward to
more sophisticated retrieval methods, including predicting
which knowledge graph facts are likely to be relevant in the
future based on learned storytelling patterns. Even as it cur-
rently stands with no domain-specific fine-tuning, our archi-
tecture is effective at enhancing the story comprehension of
large language models.

We are encouraged by the rapid improvements that have
been made in the area of neural story processing, including
many significant developments in the past two years alone.
As researchers collectively have pushed the limits of what
large language models are capable of, context window sizes
have proven to be a prohibitive obstacle. This work is an
initial attempt at mitigating the weaknesses of finite-length
context windows, and it indicates great potential for this line
of research going forward.
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