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Abstract

Binary optimization, a representative subclass of discrete opti-
mization, plays an important role in mathematical optimization
and has various applications in computer vision and machine
learning. Generally speaking, binary optimization problems
are NP-hard and difficult to solve due to the binary constraints,
especially when the number of variables is very large. Exist-
ing methods often suffer from high computational costs or
large accumulated quantization errors, or are only designed
for specific tasks. In this paper, we propose an efficient algo-
rithm, named Discrete Principal Coordinate Descent (DPCD),
to find effective approximate solutions for general binary opti-
mization problems. The proposed algorithm iteratively solves
optimization problems related to the linear approximation of
loss functions, which leads to updating the binary variables
that most impact the value of the loss functions at each step.
Our method supports a wide range of empirical objective func-
tions with/without restrictions on the numbers of 1s and −1s in
the binary variables. Furthermore, the theoretical convergence
of our algorithm is proven, and the explicit convergence rates
are derived for objective functions with Lipschitz continuous
gradients, which are commonly adopted in practice. Extensive
experiments on binary hashing tasks and large-scale datasets
demonstrate the superiority of the proposed algorithm over
several state-of-the-art methods in terms of both effectiveness
and efficiency.

Introduction
Binary optimization problems are generally formulated as
follows:

min
x

f(x), s.t. x ∈ {±1}n. (1)

Problem (1) appears naturally in several fields of computer
vision and machine learning, including clustering (Wang and
Sha 2011), graph bisection (Wang et al. 2017; Yuan and
Ghanem 2016a), image denoising (Bi, Liu, and Pan 2014),
dense subgraph discovery (Ames 2015; Balalau et al. 2015;
Yuan and Ghanem 2016a; Yuan and Zhang 2013), multi-
target tracking (Shi et al. 2013), and community discovery
(He et al. 2016). In many application scenarios, such as binary
hashing (Gui et al. 2018; Liu et al. 2014; Shen et al. 2018;
Wang et al. 2018; Xiong et al. 2021), Problem (1) needs to be

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

solved for millions of binary variables, which makes the size
2n of the feasible set very large (far larger than the number
of atoms in the universe). Usually, it is difficult to find the
optimal solution. Therefore, providing a fast algorithm to
approximately solve Problem (1) is important in practice.

Furthermore, additional constraints on the numbers of 1s
and −1s in the binary variables x are adopted in many cases.
For example, in binary hashing (Shen et al. 2015, 2018) and
graph bisection (Wang et al. 2017; Yuan and Ghanem 2016a),
a balance condition is often required, which means that the
numbers of 1s and −1s are equal to each other. On the other
hand, dense subgraph discovery (Ames 2015; Balalau et al.
2015; Yuan and Ghanem 2016a; Yuan and Zhang 2013) and
information theoretic clustering (Wang and Sha 2011) require
that the numbers of 1s and −1s in x are some fixed integers.

To handle the previously mentioned constraints, in this pa-
per, we focus on the following binary optimization problem:

min
x

f(x), s.t. x ∈ Ωr, (2)

where x is a binary vector of length n, f(·) is a differentiable
objective function (which may be nonconvex), r ≥ −1 is a
given integer, N0 denotes the set of nonnegative integers, and
the restriction Ωr on x is defined as

Ωr =

{
{±1}n, if r = −1;

{x ∈ {±1}n : 1⊤x = 2r − n}, if r ∈ N0.
(3)

When r = −1, Problem (2) is a binary optimization problem
without further constraints. When r ∈ N0, Problem (2) be-
comes an optimization problem with the restriction that there
are exactly r 1s in the binary vector x. For instance, when
r = n/2, the constraint 1⊤x = 2r − n = 0 implies that the
number of 1s is equal to the number of −1s in x.

In general, Problem (2) is NP-hard due to the binary con-
straints (Johnson and Garey 1979). Many algorithms, such as
continuous relaxation, equivalent optimization, signed gradi-
ent optimization and direct discrete optimization, have been
proposed to approximate the solution (for details, please refer
to Section ). However, they usually suffer from high compu-
tational costs or large accumulated quantization errors, or are
only designed for specific tasks.

To overcome these difficulties, in this paper, we propose a
fast and generalized optimization algorithm, termed Discrete
Principal Coordinate Descent (DPCD), to approximately
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solve Problem (2). The time complexity for the binary opti-
mization problem is relatively high when directly applying
signed gradient methods (updating all variables at each itera-
tion based on the gradients). In contrast, the proposed DPCD
updates the principal coordinates that have the highest im-
pact on the value of the loss function at each iteration, which
makes the updating procedure very fast. Different from other
binary optimization algorithms in the literature, our DPCD
method supports a large family of empirical objective func-
tions with/without restrictions on the numbers of 1s and −1s
in the binary variables. Furthermore, we prove the theoreti-
cal convergence of DPCD for loss functions with Lipschitz
continuous gradients, which cover almost every loss function
in practice. Explicit convergence rates are also derived. Ex-
tensive experiments on binary hashing tasks demonstrate the
superiority of our method over state-of-the-art methods in
terms of both efficiency and effectiveness.

Related Work
A very rich literature and a wide range of promising methods
exist for binary optimization. We briefly review four classes
of representative and related methods.

Continuous Relaxation Methods
An intuitive method for approximately solving Problem (1)
is to relax the binary constraints to continuous variables, then
threshold the continuous solutions to binary vectors. For in-
stance, in the Linear Programming (LP) relaxation (Hsieh,
Natarajan, and Dhillon 2015; Komodakis and Tziritas 2007),
the binary constraint is substituted with the box constraint,
i.e., x ∈ [−1, 1]n, which can be solved by continuous opti-
mization methods, such as the interior-point method (Mehro-
tra 1992). On the other hand, the Semi-Definite Programming
(SDP) relaxation (Wang et al. 2017) replaces the binary con-
straint with some positive semi-definite matrix constraint. In
spectral relaxation (Lin et al. 2013; Olsson, Eriksson, and
Kahl 2007), the binary constraint is relaxed to some ℓ2-ball,
which is non-convex. One of advantages of such continuous
relaxation methods is that the relaxed problems can be ap-
proximately and efficiently solved by existing continuous
optimization solvers. However, the relaxation is usually too
loose, and the thresholding often yields large quantization er-
rors.

Equivalent Optimization Methods
Unlike relaxation methods, equivalent optimization methods
replace the binary constraint with some equivalent forms,
which are much easier to handle. For example, motivated by
linear and spectral relaxations, Wu and Ghanem (Wu and
Ghanem 2018) replaced the binary constraint with the inter-
section of the box [−1, 1]n and the sphere {x : ∥x∥22 = n},
and then applied the Alternating Direction Method of Multi-
pliers (ADMM) (Boyd et al. 2011; Li and Pong 2015; Wang,
Yin, and Zeng 2015) to solve the optimization problem iter-
atively. Other methods in this direction include the MPEC-
ADM and MPEC-EPM methods ((Yuan and Ghanem 2016a,
2017)), the ℓ0 norm reformulation (Lu and Zhang 2013; Yuan

and Ghanem 2016b), the ℓ2 box non-separable reformula-
tion (Murray and Ng 2010), and the piecewise separable
reformulation (Zhang et al. 2007). Usually, these equivalent
optimization methods guarantee the convergence to some
stationary and feasible points, but the convergence speed
is often too slow, resulting in high computational costs for
large-scale optimization problems.

Signed Gradient Methods

In the Signed Gradient Method (SGM) (Liu et al. 2014),
a linear surrogate of the objective function f(x) is given
at each iteration. Then, the minimization (actually a max-
imization problem was studied in the original paper (Liu
et al. 2014), we state an equivalent form here) of this sur-
rogate function gives the updating rule for Problem (1) as:
xk+1 = −sgn(∇f(xk)). The sequence obtained by this up-
dating rule is guaranteed to converge if the objective function
is concave. However, even for a very simple non-concave
function, SGM may generate a divergent sequence and never
converge (please refer to Lemma 1). Furthermore, SGM can-
not handle binary problems with restrictions on the number
of 1s since this number may change during each iteration. A
stochastic version of this method is Adaptive Discrete Min-
imization (ADM) (Liu et al. 2017), in which an adaptive
ratio ψ is selected at each iteration, then some random ψn
entries of x are updated by xk+1

i = −sgn(∇if(x
k)). Al-

though ADM works well for certain loss functions, it fails
when the value of the loss function depends largely on only
a few variables, since the random selecting procedure may
skip such important variables.

Discrete Optimization Methods

In the field of image hashing, many direct discrete optimiza-
tion methods, such as DCC (Shen et al. 2015), SADH (Shen
et al. 2018), ARE (Hu et al. 2018), SGH (Jiang and Li 2015)
and FastHash (Lin et al. 2014), have been proposed, which
aim to directly optimize binary variables. It is well known
that the Coordinate Descent (CD) (Wright 2015) is widely
used for solving optimization problems with smooth and con-
vex constraints. Motivated by this method, several Discrete
Cyclic Coordinate descent (DCC) methods (e.g., RDCM
(Luo et al. 2018), FSDH (Gui et al. 2018), and SDH (Shen
et al. 2015)) have been proposed to handle the binary con-
straint directly. The main idea is that, at each iteration, we
consider a subproblem with most entries of the binary vari-
ables fixed, and minimize the loss function with respect to the
remaining entries. Although such methods can work well for
specific loss functions, they are generally difficult to extend
to general binary optimization problems. Furthermore, they
often suffer from expensive computational costs.

Discrete Principal Coordinate Descent
In this section, we present in detail the DPCD algorithm for
solving Problem (2), which is a general binary optimization
problem with/without restrictions on the numbers of 1s and
−1s. We also provide a theoretical convergence analysis.
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Notation and Preliminaries
We first introduce several notations and preliminaries. A vec-
tor is represented by some lowercase bold character, while a
matrix is represented by some uppercase bold character. Let
xi and Aij denote the i-th and (i, j)-th entries of a vector x
and a matrix A, respectively. The transpose of a matrix A is
represented by A⊤. We use ⟨·, ·⟩ to denote the Euclidean in-

ner product. Let ∥A∥ =
√∑

ij A
2
ij and ∥A∥1 =

∑
ij |Aij |

be the Frobenius norm and 1-norm of a matrix A, re-
spectively. The gradient of a differentiable function f(x)
is denoted by ∇f(x) = (∇1f(x),∇2f(x), · · · ,∇nf(x)).
Let sgn(x) = (sgn(x1), sgn(x2), · · · , sgn(xn)) denote the
element-wise sign function where sgn(xi) = 1 for xi ≥ 0
and −1 otherwise. The Hamming distance between two bi-
nary vectors y and z of equal length is defined by dH(y, z),
which is the number of positions at which the corresponding
entries are different. For a set S, let #S denote the number
of elements in S.

Main Algorithm
The proposed DPCD algorithm runs iteratively between the
principal coordinate update and neighborhood search.

Principal Coordinate Update. The basic idea is that, at
the k-th iteration, we change the sign of some adaptively
chosen entries of the binary vector xk, such that the value
of the loss function decreases steeply after each change. To
achieve this goal, we focus on L-principal coordinates (see
the following definition), which have major influences on the
value change of the loss function.

Definition 1. Let f(x) be a differentiable function andL > 0
be a positive constant. A coordinate index i is called an L-
principal coordinate of x ∈ {−1, 1}n if the product xi ·
∇if(x) ≥ L.

One motivation of our method is SGM (Liu et al. 2014). At
the k-th iteration of SGM, the linear surrogate of the objective
function f(x) is given as:

f̂k(x) = f(xk) + ⟨∇f(xk),x− xk⟩. (4)

Then xk+1 is obtained by minimizing Eq. (4):

xk+1 = arg min
x∈{±1}n

f̂k(x) = −sgn(∇f(xk)). (5)

The sequence obtained by Eq. (5) is guaranteed to converge
if f(x) is concave. However, from Lemma 1 in Subsection
we know, for non-concave functions, SGM (Liu et al. 2014)
may generate divergent sequences and never converge, since
changing too many entries of x at a time may increase the
value of the loss function. To overcome this difficulty, the
proposed DPCD method only changes the signs of entries
(entries with principal coordinates) whose absolute values
of directional derivatives are large enough. This yields con-
vergence for a wide class of loss functions (please refer to
Lemma 1 and Theorem 1). Also, in the proposed algorithm,
the constraint Ωr is always satisfied after each iteration.

Algorithm 1: Discrete Principal Coordinate Descent (DPCD)
Input: Loss function f(x), code length n, the restriction Ωr

where r = −1 or r ∈ N0, parameters α1, α2, ϵ.
Output: Binary codes x∗.
Initialize x∗ by the sign of some random vector according
to Ωr; x1 = x∗ and k = 1;

while not converge or not reach maximum iterations do
Calculate ∇f(xk) =
(∇1f(x

k),∇2f(x
k), · · · ,∇nf(x

k));
Derive proper thresholds L1, L2 by Eq. (6) or Eq. (7);
Build sets Sk+ = {i : ∇if(x

k) > α1L1, x
k
i = 1} and

Sk− = {i : ∇if(x
k) < −α2L2, x

k
i = −1};

if the restriction condition is x ∈ Ω−1 (i.e., r = −1)
then

Update xk+1
i = −sgn(∇if(x

k)) = −xk
i for i ∈

Sk+ ∪ Sk−;
else

Sort {|∇if(x
k)| : i ∈ Sk+} and {|∇jf(x

k)| :
j ∈ Sk−} in descending order as |∇i1f(x

k)| ≥
|∇i2f(x

k)| ≥ |∇i3f(x
k)| ≥ · · · , and

|∇j1f(x
k)| ≥ |∇j2f(x

k)| ≥ |∇j3f(x
k)| ≥ · · · ,

respectively;
Update xk+1

il
= −xk

il
and xk+1

jl
= −xk

jl
for 1 ≤ l ≤

min{#Sk+, #Sk−};
(Optional) Neighborhood search for xk+1;
k = k + 1;

Return x∗ = xk+1.

To be more specific, when xk is given at the k-
th iteration, we first calculate the gradient ∇f(xk) =
(∇1f(x

k),∇2f(x
k), · · · ,∇nf(x

k)) for the differentiable
loss function f(x). Next, we derive some proper thresh-
olds L1, L2 based on the value of ∇f(xk). When ∇f is
L0-Lipschitz continuous on [−1, 1]n, where L0 is easy to
calculate, we simply set

L1 = L2 = L0 + ϵ (6)
for some sufficiently small positive constant ϵ > 0, i.e., we
consider (L0 + ϵ)-principal coordinates. For example, in
Lemma 1, it is easy to see that L0 = 1; then we take L1 =
L2 = 1 + ϵ for some small ϵ > 0 in the algorithm. When L0

does not exist or is difficult to compute, we let L1 and L2 be
averages of the absolute values of the positive and negative
entries in the gradient ∇f(xk), respectively, i.e.,{

L1 = 1
n1

∑
∇if(xk)>0 ∇if(x

k);

L2 = − 1
n2

∑
∇if(xk)<0 ∇if(x

k),
(7)

where n1 and n2 are the numbers of positive and negative
entries in ∇f(xk), respectively. With the given thresholds
L1 and L2, we set Sk+ = {1 ≤ i ≤ n : ∇if(x

k) >
α1L1, x

k
i = 1} and Sk− = {1 ≤ i ≤ n : ∇if(x

k) <
−α2L2, x

k
i = −1} to be the sets of α1L1-principal coor-

dinates with positive partial derivatives and α2L2-principal
coordinates with negative partial derivatives, respectively,
where α1 and α2 are some parameters in [0.1, 10] which
are learned depending on the tasks and datasets. If the re-
striction condition is x ∈ Ω−1, we update xk+1

i by solving
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minx∈{±1}n f̂k(x) in Eq. (5) with respect to i ∈ Sk+∪Sk−

(other entries of x are fixed) and derive:

xk+1
i = −sgn(∇if(x

k)) = −xk
i . (8)

In other words, we change the sign of xk
i for xk

i = 1 with
α1L1-principal coordinates, and for xk

i = −1 with α2L2-
principal coordinates. If the number of 1s in x is required to
be fixed (i.e., the restriction condition is x ∈ Ωr for some
r ∈ N), we update Eq. (8) with respect to the m largest
absolute values in {|∇if(x

k)| : i ∈ Sk+} and {|∇jf(x
k)| :

j ∈ Sk−}, respectively, where m = min{#Sk+, #Sk−}
(such procedure guarantees that xk ∈ Ωr implies xk+1 ∈
Ωr). When the complexity of the gradient calculations is low,
the updating is fast.

Neighborhood Search. We add an optional heuristic neigh-
borhood search after the principal coordinate update to
avoid saddle points. In practice, we run one neighborhood
search after T principal coordinate updates, where T is
between 10 and 20. First, we define the concept of m-
neighbors for a point x ∈ Ωr, where m ∈ N. When
r = −1, the set of m-neighbors for x ∈ Ω−1 is denoted
by N−1(x) := {y ∈ {±1}n : 0 < dH(y,x) ≤ m}, which
is the set of points with a Hamming distance at most m
from x. When r ≥ 0, the set of m-neighbors for x ∈ Ωr

is denoted by N(x) := {y ∈ {±1}n : 0 < dH(y,x) ≤
2m,

∑n
i=1 yi =

∑n
i=1 xi}, which is the set of points ob-

tained by interchanging at most m pairs of 1 and −1 entries
in x. For instance, when m = 1, we have N−1((1,−1, 1)) =
{(−1,−1, 1), (1, 1, 1), (1,−1,−1)} and N((1,−1, 1, )) =
{(−1, 1, 1), (1, 1,−1)}.

In a neighborhood search for some x ∈ Ω−1 (or Ωr

with r ∈ N0), the aim is to find some y ∈ N−1(x) ∪ {x}
(orN(x)∪{x}) with the minimal function value f(y)−f(x)
(or equivalently, f(y)). In practice, we sample from N−1(x)
(or N(x)) instead of iterating over all points. This neighbor-
hood search step is helpful for finding a local minimum point.
The proposed algorithm is summarized in Algorithm 1.

Convergence Comparison: DPCD vs. SGM
One of the differences between the proposed DPCD and
SGM (Liu et al. 2014) is the choice of xk

i that are updated by
Eq. (8) at the k-th iteration. SGM updates Eq. (8) for each i,
while DPCD only changes the sign of xk

i when the coordinate
indexes are L-principal for some L. This difference is crucial
to the convergences of the algorithms. More specifically,
SGM can only guarantee convergence for the minimization
of concave functions, while DPCD converges in finite steps
for any functions with Lipschitz continuous gradients. We
show the superiority of DPCD by the following example.
Lemma 1. Consider the problem

min
x∈{±1}n

f(x) := min
(x1,x2,··· ,xn)∈{±1}n

1

2

n∑
i=1

(xi + βi)
2,

where 0 < βi < 1. Let β = mini βi. It holds that: (1) SGM
generates a divergent sequence for any initial point; (2) With
parameters α1 = α2 = 1 and 0 < ϵ < β, the proposed
DPCD method always converges to the optimal solution.

Theoretical Convergence Results

For simplicity, we ignore the neighborhood search part in
the convergence analysis. Actually, the neighborhood search
does not have any influence on the convergence since it al-
ways generates some binary vectors without increasing the
value of the loss function. Thus, we can simply focus on
the principal coordinate update part of the proposed DPCD
method. We derive the following convergence results. When
we say the algorithm converges in T steps, we mean that the
binary vector xT+1 obtained in the (T+1)-th iteration equals
xT in the T -th iteration (then the algorithm can stop here).
Moreover, it is easy to see that our algorithm can converge
to some local optimum with the help of the neighborhood
search (without the neighborhood search, it only converges
to some fixed binary vectors).

Theorem 1. Let f : Rn → R be a differentiable function
such that ∇f is L0-Lipschitz continuous on [−1, 1]n. Setting
the thresholds L1 = L2 = L0 + ϵ where ϵ > 0, and ignor-
ing the neighborhood search. Then, the sequence xk gener-
ated by Algorithm 1 always converges in fmax−fmin

2ϵ steps
at most, where fmax := maxx∈{±1}n f(x) and fmin :=
minx∈{±1}n f(x).

Experiments

In this section, we compare the DPCD algorithm with several
state-of-the-art methods on binary hashing tasks. All codes
are implemented in MATLAB using a workstation with an
Intel 8-core 2.6GHz CPU and 32GB RAM.

Binary Hashing

Binary hashing aims to encode high-dimensional data points,
such as images and videos, into compact binary hash codes
such that the similarities between the original data points
and hash codes are preserved. This can be used to provide
a constant or sub-linear search time and reduce the storage
cost dramatically for such data points. The efficiency and
effectiveness of binary hashing make it a popular technique
in machine learning, information retrieval and computer vi-
sion (Gui et al. 2018; Hu et al. 2018; Liu et al. 2014; Shen
et al. 2018; Wang et al. 2018). In a typical binary hashing
task, X = (x1,x2, . . . ,xn)

⊤ ∈ Rn×d denotes a matrix of
the original data points, where xi ∈ Rd is the i-th sample
point, n is the number of samples, and d is the dimension
of each sample. In the supervised setting, we let Y ∈ Rn×c

be the label matrix, i.e., Yi,j = 1 if xi belongs to the j-
th class and 0 otherwise. The aim is to map X to some
B = (b1,b2, . . . ,bn)

⊤ ∈ {±1}n×r, i.e., map each xi to a
binary code bi ∈ {±1}r for some small integer r and pre-
serve some similarities between the original data points in
X and hash codes in B. In the large-scale image retrieval
tasks, we compute the Hamming distances between the hash
codes of query images and database images, then use nearest
neighbor search to find similar items for query images.
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Method MAP Precision@500 Training time (seconds)
32 bits 64 bits 96 bits 32 bits 64 bits 96 bits 32 bits 64 bits 96 bits

DPCD 0.7019 0.7088 0.7126 0.6337 0.6353 0.6370 3.76 6.01 9.39
DCC 0.5941 0.6193 0.6314 0.5486 0.5766 0.5894 11.18 36.03 158.87
SGM 0.6856 0.6986 0.7013 0.6177 0.6308 0.6360 7.87 10.83 16.30
LP 0.5237 0.5468 0.5459 0.4704 0.4972 0.4866 4.52 7.96 13.64

L2box-ADMM 0.6399 0.6724 0.6830 0.5929 0.6095 0.6162 43.07 90.10 200.94
MPEC-EPM 0.5823 0.6253 0.6276 0.5385 0.5738 0.5790 36.36 124.54 260.22

Table 1: Evaluation of DPCD and five general binary optimization methods with the same supervised loss function (10). The
CIFAR-10 dataset is adopted. Results are reported in terms of MAP, Precision@500 and training time.

Image Datasets. Three large-scale image datasets, CIFAR-
101, ImageNet2, and NUS-WIDE3, are used in the binary
hashing experiments. CIFAR-10 has 60k images, which are
divided into 10 classes with 6k images each. We use a 384-
dimensional GIST feature vector (Oliva and Torralba 2001) to
represent each image. 59k images are selected as the training
set and the test set contains the remaining 1k images. A subset
of ImageNet, ILSVRC 2012, contains 1.2 million images
with 1k categories. As in (Hu et al. 2018; Shen et al. 2015), we
use a 4096-dimensional deep feature vector for each image,
take 127K training images from the 100 largest classes, and
50K images from the validation set as the test set. NUS-
WIDE contains 270K images with 81 labels. The images may
have multiple labels. The 500-dimensional Bag-of-Words
features are used here (Chua et al. July 8-10, 2009). We adopt
the 21 most frequent labels with the corresponding 193K
images. For each label, 100 images are randomly selected as
the test set and the remaining as the training set.

DPCD vs. General Binary Optimization Methods. To
illustrate the efficiency and effectiveness of our algorithm,
we compare DPCD with several general state-of-the-art bi-
nary optimization methods DCC (Shen et al. 2015), SGM
(Liu et al. 2014), LP (Hsieh, Natarajan, and Dhillon 2015),
L2box-ADMM (Wu and Ghanem 2018), and MPEC-EPM
(Yuan and Ghanem 2016a), on the image retrieval task. The
dataset CIFAR-10 is adopted here. Various loss functions
are designed for binary hashing (for examples, see Table 2).
For fair comparison, we adopt the widely used supervised
objective function (Gui et al. 2018; Shen et al. 2015)

f(B,W) =
1

2
∥Y −BW∥22 +

δ

2
∥W∥22 (9)

for each method. Thus the optimization problem becomes:

min
B,W

1

2
∥Y −BW∥22 +

δ

2
∥W∥22, (10)

s.t. B ∈ {±1}n×r,W ∈ Rr×c,

where δ is a regularization parameter, and W ∈ Rr×c is
the projection matrix (see (Shen et al. 2015)) which will be

1http://www.cs.toronto.edu/kriz/cifar.html.
2http://www.image-net.org/.
3http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm.

learned jointly with B. The whole optimization runs itera-
tively over B and W. When W is fixed, we apply the DPCD
algorithm to B. The key step is to calculate the gradient of
f(B,W) as:

∇Bf(B,W) = (BW −Y)W⊤. (11)

Then, L1, L2 can be obtained by Eq. (7). After deriving Sk+

and Sk−, we update B by Eq. (8). When B is fixed, W can
be updated by

W = argmin
W∗

f(B,W∗) = (B⊤B+ δIr)
−1B⊤Y. (12)

Finally, we adopt the linear hash function h(X) = sgn(XP)
to encode X onto binary codes, where P ∈ Rd×r can be
derived by:

P = argmin
P∗

∥XP∗ −B∥2 = (X⊤X)−1X⊤B. (13)

During the test phase, for a query item, first we use the above
linear hash function to derive the hash code, then adopt near-
est neighborhood search under Hamming distance to find its
similar items. The regularization parameter δ in Eq. (10) is
set to 1. For the DPCD method, we run one 5-neighborhood
search after 10 principal coordinate updates, tune the param-
eters α1 and α2 from {0.1, 0.2, 0.3, . . . , 0.9, 1, 2, 3, . . . , 10}
by cross-validation for each dataset and each binary code
length, and set the maximum iteration number for B to 20
each time when W is fixed. We run at most five iterations for
updating B and W iteratively. For other methods, we only
use their algorithms to update B. The updates of W are the
same as DPCD. We adopt the implementations and param-
eters suggested by the authors for these methods. Ground
truths are defined by the label information from the datasets.
The experimental results are reported in terms of mean av-
erage precision (MAP), Precision@500 and training time
efficiency (we ignore the comparison of test time here since
the test parts are similar for each method). The experiments
are conducted on the CIFAR-10 dataset. From Table 1 we
can see that DPCD outperforms all other methods in MAP
and Precision@500. For instance, on CIFAR-10 with 96 bits,
DPCD outperforms DCC by 8.1%, and MPEC-EPM by 8.5%
in terms of MAP. It is clear that increasing the number of bits
yields better performance for all methods. Also, the training
time for the proposed DPCD method is always faster than
other compared methods. For example, DPCD runs 20 times
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DPCD

DCC

SGM

LP

L2box-ADMM

MPEC-EPM

Figure 1: Top six retrieved neighbors of three query images, returned by DPCD, DCC, SGM, LP, L2box-ADMM and MPEC-EPM
using 64 bits on CIFAR-10. The loss function (10) is adopted. The red background indicates false retrieved images.

faster than MPEC-EPM on 64 bits, which verifies that one
major advantage of our method is the fast optimization pro-

cess. Furthermore, for each of the above six methods, we
give in Fig. 1 the top six retrieved neighbors of three query
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Method Loss Function MAP Precision@500 Training time (s)
32 bits 64 bits 96 bits 32 bits 64 bits 96 bits 32 bits 64 bits 96 bits

SADH-L
minB Tr(B⊤LB)

0.2448 0.3104 0.3294 0.3692 0.4588 0.4835 121.90 384.01 738.33
DPCD 0.2612 0.3085 0.3441 0.3945 0.4508 0.4992 19.03 33.50 48.29
ARE

minB ∥BB⊤ − rXX⊤∥2 0.2509 0.2997 0.3276 0.3626 0.4478 0.4724 244.46 287.19 332.95
DPCD 0.2808 0.3316 0.3607 0.3970 0.4856 0.5112 35.07 52.97 92.50
SGH

minB ∥BB⊤ − rS∥2 0.3225 0.4102 0.4367 0.4299 0.5220 0.5593 64.29 80.43 77.38
DPCD 0.3148 0.4204 0.4523 0.4165 0.5252 0.5731 24.47 38.84 41.60
SDH

minB,W ∥Y −BW∥2 + δ∥W∥2 0.5716 0.5827 0.5920 0.6041 0.6056 0.6189 24.53 107.50 486.95
DPCD 0.6124 0.6230 0.6392 0.6287 0.6357 0.6502 6.91 16.39 22.53
FSDH

minB,W ∥B−YW∥22 + δ∥W∥22
0.5690 0.5639 0.5676 0.5918 0.5860 0.5988 2.76 3.07 5.95

DPCD 0.6159 0.6170 0.6253 0.6260 0.6297 0.6335 5.42 8.96 10.99
FastHash

minB ∥BB⊤ − rY∥2 0.5174 0.5398 0.5403 0.5867 0.6014 0.6180 1381.75 4668.13 10605.82
DPCD 0.5621 0.5579 0.5767 0.5991 0.6145 0.6226 6.42 7.88 11.79

Table 2: Comparison of three unsupervised methods (SADH-L, ARE and SGH) and three supervised methods (SDH, FSDH and
FastHash) with/without using the proposed DPCD. ILSVRC 2012 and NUS-WIDE are adopted for unsupervised and supervised
methods, respectively. Results are reported in terms of MAP, Precision@500 and training time. S = similarity matrix. L =
Laplacian matrix of the similarity.

images, on the CIFAR-10 dataset with 64 binary bits, where
the distance between two images is defined by the Hamming
distance between their corresponding hashing binary bits.
From Fig. 1 we can see that DPCD always returns images
with same labels as the query images. LP returns several
false images due to the relaxation. Other methods also re-
trieve several database images with different labels from the
query images. Overall, we conclude that DPCD performs best
among the compared methods in the image retrieval task.

DPCD vs. Specific Binary Hashing Methods. DPCD is
not only fast, but also very versatile, and can thus be used
to handle many different loss functions. To demonstrate this,
we apply DPCD to several widely used loss functions, and
compare the results with the corresponding hashing meth-
ods that were designed for each specific loss function. The
optimization process is similar to the supervised case. Ta-
ble 2 illustrates a comparison of DPCD with three unsuper-
vised methods, SADH-L (Shen et al. 2018), ARE (Hu et al.
2018), and SGH (Jiang and Li 2015), on the ILSVRC 2012
dataset, and three supervised hashing methods, SDH (Shen
et al. 2015), FSDH (Gui et al. 2018), and FastHash (Lin
et al. 2014), on the NUS-WIDE dataset, using their specific
loss functions. The proposed DPCD shows increased perfor-
mance over the original methods and achieves higher MAP
and Precision@500 in most cases, especially for the super-
vised loss functions. In terms of the training time, DPCD
outperforms all methods except FSDH (FSDH also runs very
fast due to the closed form updating at each iteration). The
proposed DPCD can significantly decrease the training time
for unsupervised loss functions due to the fast updating of the
binary codes B. Finally, we conclude that DPCD is a fast and
effective optimization method for large-scale image retrieval
tasks.

Conclusion
This paper presents a novel fast optimization method, called
Discrete Principal Coordinate Descent (DPCD), to approx-
imately solve binary optimization problems with/without

restrictions on the numbers of 1s and −1s in the variables.
We derive several theoretical results on the convergence of
the proposed algorithm. Experiments on binary hashing tasks
demonstrate that our method generally outperforms state-of-
the-art methods in terms of both solution quality and opti-
mization efficiency.
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