
Machine Learning for Online Algorithm Selection under Censored Feedback

Alexander Tornede, 1 Viktor Bengs, 2 Eyke Hüllermeier 2

1Department of Computer Science, Paderborn University
2Institute for Informatics, LMU Munich

alexander.tornede@upb.de, viktor.bengs@lmu.de, eyke@lmu.de

Abstract

In online algorithm selection (OAS), instances of an algorith-
mic problem class are presented to an agent one after another,
and the agent has to quickly select a presumably best algo-
rithm from a fixed set of candidate algorithms. For decision
problems such as satisfiability (SAT), quality typically refers
to the algorithm’s runtime. As the latter is known to exhibit
a heavy-tail distribution, an algorithm is normally stopped
when exceeding a predefined upper time limit. As a conse-
quence, machine learning methods used to optimize an al-
gorithm selection strategy in a data-driven manner need to
deal with right-censored samples, a problem that has received
little attention in the literature so far. In this work, we re-
visit multi-armed bandit algorithms for OAS and discuss their
capability of dealing with the problem. Moreover, we adapt
them towards runtime-oriented losses, allowing for partially
censored data while keeping a space- and time-complexity
independent of the time horizon. In an extensive experimental
evaluation on an adapted version of the ASlib benchmark, we
demonstrate that theoretically well-founded methods based on
Thompson sampling perform specifically strong and improve
in comparison to existing methods.

1 Introduction
Algorithm selection (AS) considers the automatic selection
of an algorithm most suitable for solving an instance of an
algorithmic problem class, such as the boolean satisfiability
problem (SAT) or the traveling salesperson problem (TSP).
Suitability is often quantified in terms of a loss function
(or performance measure), such as solution quality or the
algorithm’s runtime — we shall focus on the latter in the
remainder of this work. AS is motivated by the phenomenon
of performance complementarity, roughly stating that the best
algorithm within a pool of candidate algorithms will typically
vary from instance to instance (Wolpert and Macready 1997;
Kerschke et al. 2019).

Considering AS in an online setting, i.e., online algorithm
selection (OAS), the problem can be posed as an iterative de-
cision making problem, where instances arrive and decisions
have to be made in an online manner. This setting suggests
modeling the task as a contextual multi-armed bandit prob-
lem (Chu et al. 2011). In contrast to standard AS, one usually

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

does not assume an upfront training dataset, consisting of
loss function measurements for some of the algorithms on
some training instances. Instead, in the online setting, the
algorithm is provided feedback in the form of an evaluation
of the loss function for the selected algorithm on the current
instance, after the selection has been made.

In practice, algorithm runtime distributions often exhibit a
heavy-tail property (Gomes, Selman, and Crato 1997), mean-
ing that some algorithms can take extremely long to termi-
nate on some instances. To avoid an online AS system from
stalling, it is common to run algorithms with a timeout after
which the algorithm is forcefully terminated if it did not solve
the instance before. Correspondingly, one may end up with
unsolved instances and right-censored runtimes (Kleinbaum
and Klein 2010): although the true runtime is not known
precisely, it is known to exceed the timeout. Needless to say,
learning algorithms should try to exploit such censored data,
which nevertheless provide a kind of “weak supervision”. Al-
though different forms of the OAS problem have been studied
quite intensively in the literature (cf. Section 3), censoring
has hardly been considered so far.

To alleviate this situation, we revisit well-known linear
contextual bandit algorithms for the OAS problem under
censored data and and discuss their weaknesses. Thereupon,
we present theoretically grounded adaptations of these algo-
rithms, incorporating improvements toward learning from
censored data and employing selection criteria tailored to-
ward runtime-based loss functions from the field of AS. In an
extensive experimental study, we show that our approaches
improve in terms of performance upon comparable existing
approaches while featuring a time- and space-complexity in-
dependent of the time horizon. All code including detailed
documentation and the technical appendix can be found on
Github (cf. Section 7).

2 The Online Algorithm Selection Problem
The online algorithm selection problem is an iterative deci-
sion making problem, which comprises a problem instance
space I featuring instances of an algorithmic problem class,
and a set of candidate algorithms A, which can solve such
instances. The instances arrive iteratively over time, so that,
at each time step t, an algorithm spht, itq “ at P A has to be
chosen by the algorithm selector

s : Hˆ I Ñ A (1)

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

10370

which decides about the algorithm used to solve the instance
it P I . Here, ht P H denotes the history of the selection pro-
cess, consisting of triplets tpik, ak, lkqut´1

k“1 informing about
the problem instances encountered so far, the algorithms
that have been applied, and the corresponding evaluations in
terms of losses lk “ lpik, akq determined by a loss function
l : I ˆA Ñ R. This process either continues ad infinitum
(unlimited horizon) or ends at some final time step T (final
horizon). Consequently, the goal is to minimize the (average)
loss achieved over the course of time, which, for the final
horizon case, means to minimize

Lpsq “ T´1
ÿT

t“1
lpit, spht, itqq . (2)

In light of this, the optimal selector, called oracle or virtual
best solver (VBS), is defined as

s˚pht, itq ..“ arg minaPA Erlpit, aq |hts , (3)

where the expectation accounts for possible randomness in
the application of algorithm a.

To approximate the VBS, any intelligent selection strategy
has to leverage the historical data and perform some kind of
online learning. This is a challenging task, especially as it
involves the well-known exploration-exploitation dilemma of
sequential decision making: The learner is constantly faced
with the question of whether to acquire new information
about the effectiveness of hitherto less explored algorithms,
possibly improving but also taking the risk of large losses, or
rather to exploit the current knowledge and choose algorithms
that are likely to yield reasonably good results.

One way of constructing an OAS s is to learn, based on
the history h, a (cheap-to-evaluate) surrogate loss function
plh : I ˆAÑ R and invoke the principle of “estimated” loss
minimization:

sph, iq ..“ arg minaPA plhpi, aq . (4)

For this purpose, we assume instances i P I to be repre-
sentable in terms of d-dimensional feature vectors fpiq P Rd,
where f : I Ñ Rd is a feature map. In the case of SAT, for
example, features could be the number of clauses, the number
of variables, etc.

Due to the online nature of the problem, it is desirable
that OAS approaches have a time- and space-complexity
independent of the time-horizon. In particular, memorizing
all instances (i.e., entire histories ht) and constantly retraining
in batch mode is no option. Moreover, from a practical point
of view, decisions should be taken quickly to avoid stalling
an AS system.

2.1 Censored Runtimes
A loss function of specific practical relevance is the runtime
of an algorithm, i.e., the time until a solution to a problem
instance is found. However, in domains like combinatorial
optimization, runtimes may exhibit a heavy-tail distribution,
i.e., some algorithms may run unacceptably long on some
instances (Gomes, Selman, and Crato 1997). This is why
algorithms are usually executed under time constraints in the
form of an upper bound on the runtime (a “cutoff”) C P R.
If an algorithm does not terminate until C, it is forcefully

terminated, so as to avoid blocking the system. The instance
is then treated as unsolved.

To account for unsolved instances, the loss is augmented
by a penalty function P : RÑ R:

lpi, aq “ mpi, aq1Jmpi,aqďCK ` PpCq1Jmpi,aqąCK, (5)

where 1J¨K is the indicator function and m : I ˆ A Ñ R
returns the true (stochastic) runtime of an algorithm a on an
instance i. Formally, when selecting algorithm a, either the
runtime mpi, aq is observed, if mpi, aq ď C, or a penalty
PpCq due to a right-censored sample (Kleinbaum and Klein
2010), i.e. mpi, aq ą C, while the true runtime mpi, aq re-
mains unknown. With PpCq “ 10C, (5) yields the well-
known PAR10 score.

Previous work has shown that treating such right-censored
data correctly is important in the context of standard (offline)
AS (Xu et al. 2007; Tornede et al. 2020; Hanselle et al. 2020,
2021) and algorithm configuration (AC) (Hutter, Hoos, and
Leyton-Brown 2011; Eggensperger et al. 2018, 2020). In the
online setting, this might be even more critical, because the
data does not only influence the learning but also the (active)
sampling strategy of the AS.

The simplest approach for dealing with censored samples
is to ignore them all together, which, however, causes an
undesirable loss of information. Another simple strategy is
imputation. For example, in the case of the PAR10 score,
censored samples are commonly replaced by the cutoff time
C or its multiplicity 10C. Obviously, such imputations of
constant values may produce a strong bias. For example,
imputation by C can lead to a systematic underestimation of
the true runtime, and so does the ignorance of the censored
(and hence long) runtimes (Tornede et al. 2020).

A more advanced technique for imputation of right-
censored data developed by Schmee and Hahn (1979) lever-
ages sampling from a truncated normal distribution, which
has been frequently used in the context of AS and AC in the
past (e.g. (Xu et al. 2007; Eggensperger et al. 2018)), but
not necessarily improves upon the naïve imputation schemes
previously discussed (Tornede et al. 2020).

Although recent work (Tornede et al. 2020) has shown
that classical parameter-free survival analysis methods can
perform very well in the offline AS setting, these methods can-
not be easily transformed into online variants. For example,
the well-known Cox proportional hazard model (Cox 1972)
relies on estimating the baseline survival function through
algorithms like the Breslow estimator (in its parameter-free
version), which inherently requires the storage of all data in
the form of so-called risk-sets (Breslow 1972). In principle,
approximation techniques from the field of learning on data
streams are conceivable (Shaker and Hüllermeier 2014). Yet,
in this work, we will focus on veritable online algorithms
that do not require any approximation.

2.2 OAS As A Bandit Problem
OAS can be cast as a contextual multi-armed bandit (MAB)
problem comprising a set of arms/algorithms A to choose
from. In each round t, the learner is presented a context,
i.e., an instance it P I and its features fpitq P Rd, and is
requested to select one of the algorithms for this instance,

10371

i.e., pull one of the arms, which will be denoted by at. As a
result, the learner will suffer a loss as defined in (5).

In the stochastic variant of the contextual MAB problem,
the losses are generated at random according to underlying
distributions, one for each arm, which are unknown to the
learner. Thus, the expected loss E rlpit, atq|fpitqs suffered at
time step t is taken with respect to the unknown distribution
of the chosen algorithm’s runtime mpit, atq and depends on
the instance (features) fpitq. Ideally, the learner should pick
in each time step t an arm having the smallest expected loss
for the current problem instance. Formally,

a˚t P arg minaPA E rlpit, aq|fpitqs , (6)

suggesting the optimal strategy to be s˚t pht, itq “ a˚t . Need-
less to say, this optimal strategy can only serve as a bench-
mark, since the runtime distributions are unknown. Neverthe-
less, having an appropriate model or estimate for the expected
losses, one could mimic the choice mechanism in (6), giving
rise to a suitable online algorithm selector (4).

For convenience, we shall write from now on f i, lt,a or
mi,a instead of fpiq, lpit, aq or mpi, aq for any i, it P I,
a P A. Moreover, we write }x}A ..“

?
xᵀA´1x for any

x P Rd and semi-positive definite matrix A P Rdˆd, and
}x} ..“

?
xᵀx. In Section A of the appendix, we provide a

list of frequently used symbols for quick reference.

3 Related Work
Most related from a problem perspective is the work by De-
groote et al.. In a series of papers (Degroote et al. 2016;
Degroote 2017; Degroote et al. 2018), they define the OAS
problem in a similar form as we do and present different
context-based bandit algorithms. In contrast to their setting,
the one presented in Section 2 does not feature a prior of-
fline training phase, as our goal is to investigate a true online
setting where learning has to be performed from scratch. In
addition, their approaches essentially rely on batch learning
algorithms, making their time- and space-complexity depen-
dent on the time horizon1. Moreover, they do not explicitly
consider the problem of censoring, but apply a PAR10 impu-
tation (as standard in ASlib). Lastly, compared to our work,
their approaches lack a theoretical foundation, for instance,
their models on the runtimes would in principle even allow
negative runtime predictions.

The majority of other work related to OAS is situated
in the fields of (online) algorithm scheduling (Lindauer,
Bergdoll, and Hutter 2016) and dynamic algorithm config-
uration (Biedenkapp et al. 2020) (aka. algorithm control
(Biedenkapp et al. 2019)), where the goal is to predict a
schedule of algorithms or dynamically control the algorithm
during the solution process of an instance instead of predict-
ing a single algorithm as in our case. Gagliolo and Schmid-
huber (2006), Gagliolo and Legrand (2010), Gagliolo and
Schmidhuber (2010), Pimpalkhare et al. (2021), and Cicirello
and Smith (2005) essentially consider an online algorithm
scheduling problem, where both an ordering of algorithms
and their corresponding resource allocation (or simply the

1As we show in this work, some of their batch learning algo-
rithms can actually be replaced by online learners.

allocation) has to be computed. Thus, the prediction target
is not a single algorithm as in our problem, but rather a very
specific composition of algorithms, which can be updated
during the solution process. Different bandit algorithms are
used to solve this problem variant. Lagoudakis and Littman
(2000), Armstrong et al. (2006), van Rijn, Doerr, and Bäck
(2018), Laroche and Féraud (2017) and Lissovoi, Oliveto,
and Warwicker (2020) in one way or another consider the
problem of switching (a component of) an algorithm during
the solution process of an instance by means of reinforce-
ment learning or bandit algorithms. They can be considered
to be in the field of algorithm control and dynamic algorithm
configuration.

Another large corpus of related work can be found in
the field of learning from data streams, where the goal is
to select an algorithm for the next instance assuming that
the data generating process might show a distributional shift
(Gama 2012). To achieve this, Rossi, de Carvalho, and Soares
(2012) and van Rijn et al. (2014) apply windowing techniques
and apply offline AS approaches, which are trained on the
last window of instances and used to predict for the next
instance. Similarly, van Rijn et al. (2015) dynamically adjust
the composition and weights of an ensemble of streaming
algorithms. In a way, the methods presented by Degroote
et al. (2018) can be seen as windowing techniques where the
window size is set to t´ 1, if t is the current time step.

Another related branch of the literature is realtime algo-
rithm configuration (Fitzgerald et al. 2014; Fitzgerald, Mal-
itsky, and O’Sullivan 2015; El Mesaoudi-Paul et al. 2020),
where in contrast to our setting, one seeks to find a suitable
configuration of one single target algorithm (instead of the
algorithm itself) for incoming problem instances.

Finally, Gupta and Roughgarden (2017) analyze several
versions of the AS problem on a more theoretical level, in-
cluding our version of OAS, and show for some problem
classes the existence of an OAS approach with low regret
under specific assumptions.

4 Modeling Runtimes
As hinted at earlier, online algorithm selectors based on a
bandit approach can be reasonably designed through the esti-
mation of the expected losses occurring in (6). To this end,
we make the following assumption regarding the runtime of
an algorithm a P A on problem instance i P I with features
f i P Rd :

mi,a “ exppfᵀ
i θ
˚
aq exppεi,aq, (7)

where θ˚a P Rd is some unknown weight vector for each
algorithm a P A, and εi,a is a stochastic noise variable with
zero mean. The motivation for (7) is twofold. First, theoretical
properties such as positivity of the runtimes and heavy-tail
properties of their distribution (by appropriate choice of the
noise variables) are ensured. Second, we obtain a convenient
linear model for the logarithmic runtime yi,a of an algorithm
a on instance i, namely

yi,a “ logpmi,aq “ f
ᵀ
i θ
˚
a ` εi,a . (8)

It is important to realize the two main implications coming
with those assumption. First, up to the stochastic noise term,

10372

the (logarithmic) runtime of an algorithm depends linearly on
the features of the corresponding instance. This is not a big
restriction, because the feature map f i may include nonlinear
transformations of “basic” features and play the role of a
linearization (Schölkopf and Smola 2001) — the practical
usefulness of non-linear models has recently been shown
,for example, by Tornede et al. (2020). Moreover, previous
work on AS has also considered logarithmic runtimes for
model estimation (Xu et al. 2007). Second, the model (8)
suggests to estimate θ˚a separately for each algorithm, which
is common practice but excludes the possibility to exploit
(certainly existing) similarities between the algorithms. In
principle, it might hence be advantageous to estimate joint
models (Tornede, Wever, and Hüllermeier 2019, 2020).

Additionally, we assume that (i) exppfᵀi θ
˚
aq ď C for any

a P A, i P I and (ii) εi,a is normally distributed with zero
mean and standard deviation σ ą 0. While the first assump-
tion is merely used for technical reasons, namely to derive
theoretically valid confidence bounds for estimates of the
weight vectors, the second assumption implies that exppεi,aq
is log-normal, which is a heavy-tail distribution yielding a
heavy-tail distribution for the complete runtime, thus adher-
ing to practical observations discussed earlier.

5 Stochastic Linear Bandits Approaches
As (8) implies E rlogpmi,aq|f is “ f

ᵀ
i θ
˚
a , it is tempting to ap-

ply a straightforward contextualized MAB learner designed
for expected loss minimization, in which the expected losses
are linear with respect to the context vector, viewing the
logarithmic runtimes as the losses of the arms. This special
case of contextualized MABs, also known as the stochastic
linear bandit problem, has received much attention in the
recent past (cf. Chap. 19 in Lattimore and Szepesvári (2020)).
Generally speaking, such a learner tends to choose an arm
having a low expected log-runtime for the given context (i.e.,
instance features), which in turn has a small expected loss.
A prominent learner in stochastic linear bandits is LinUCB
(Chu et al. 2011), a combination of online linear regression
and the UCB (Auer, Cesa-Bianchi, and Fischer 2002) algo-
rithm. UCB implements the principle of optimism in the face
of uncertainty and solves the exploration-exploitation trade-
off by constructing confidence intervals around the estimated
mean losses of each arm, and choosing the most optimistic
arm according to the intervals.

Under the runtime assumption (8), the basic LinUCB vari-
ant (which we call BLindUCB) disregards censored observa-
tions in the OAS setting, and therefore considers the ridge-
regression (RR) estimator for each algorithm a P A only on
the non-censored observations. Formally, in each time step t,
the RR estimate pθt,a for the weight parameter θ˚a is

arg min
θPRd

ÿt

j“1
1Jaj“a,mij ,a

ďCK
`

fᵀ
ij
θ ´ yij ,a

˘2
` λ}θ}2 ,

(9)
where λ ě 0 is a regularization parameter. The resulting
selection strategy for choosing algorithm at at time t is then

at “ arg min
aPA

fᵀ
it
pθt,a ´ α ¨ wt,apf itq , (10)

where α ą 0 is some parameter controlling the exploration-
exploitation trade-off, and

wt,apf itq “ }f it}At,a

the confidence width for the prediction of the (logarithmic)
runtime of algorithm a for problem instance it based on the
estimate (9).

Here, At,a “ λId ` Xᵀ
t,aXt,a is the (regularized) Gram

matrix, with Id the d ˆ d identity and Xt,a denoting the
design matrix at time step t associated with algorithm a, i.e.,
the matrix that stacks all the features row by row whenever a
has been chosen.

The great appeal of this approach is the existence of a
closed form expression of the RR estimate, which can be
updated sequentially with time- and space-complexity de-
pending only on the feature dimension but independent of
the time horizon (Lattimore and Szepesvári 2020).

However, as already mentioned in Section 2.1, disregard-
ing the right-censoring of the data often yields a rather poor
performance of a regression-based learner in offline AS prob-
lems, so it might be advantageous to adapt this method to
that end.

5.1 Imputation-based Upper Confidence Bounds
A simple approach to include right-censored data into Blin-
dUCB is to impute the corresponding samples by the cut-off
timeC as discussed in Sec. 2.1, giving rise to the RR estimate

pθt,a “ arg min
θPRd

ÿt

j“1
1Jaj“aK

`

fᵀijθ ´ ryij ,a
˘2
` λ}θ}2 ,

(11)
where ryij ,a “ minpyij ,a, logpCqq is the possibly imputed
logarithmic runtime.

When considering censoring, the least-squares formulation
in (11) appears to have an important disadvantage. Those
weight vectors producing overestimates of C in case of a
timeout are penalized (quadratically) for predictions C ă

py ă mpi, aq, although these predictions are actually closer
to the unknown ground truth than C. In fact, one can verify
this intuition theoretically by showing that, for λ “ 0, the
RR estimate pθt,a is downward biased in the case of censored
samples (cf. Greene (2005)). It is important to note that this
bias is caused by a censoring of the runtimes, i.e. of the
signal, and not by a truncation of the inputs or sparse (or non-
representative) features as, for example, in (Dimakopoulou
et al. 2019).

Although the imputation strategy mentioned above has
been shown to work astonishingly well in practice in of-
fline AS (Tornede et al. 2020), the bias in the RR estimates
requires a bias-correction in the confidence bounds of BLin-
dUCB to ensure that the estimate falls indeed into the bounds
with a certain probability. The corresponding bias-corrected
confidence bound widths are

w
pbcq
t,a pf itq “

´

1` 2 logpCq

b

N
pCq
a,t

¯

wt,apf itq , (12)

where N pCqa,t is the amount of timeouts of algorithm a until
t (cf. Section C of the appendix). The resulting LinUCB
variant, which we call BClinUCB (bias-corrected LinUCB),

10373

employs the same action rule as in (10), but useswpbcqt,a instead
of wt,a and the estimate in (11).

Unfortunately, these bias-corrected confidence bounds re-
veal a decisive disadvantage in practice, namely, the con-
fidence bound of an algorithm a P A is usually much
larger than the actually estimated (log-)runtime fᵀ

it
pθt,a for

instance it. Therefore, the UCB value of a— let us call it
δt,a “ fᵀ

it
pθt,a ´ w

pbcq
t,a pf itq— is such that δt,a ă 0 if the

algorithm has experienced at least one timeout. This prefers
algorithms that experienced a timeout over those that did not.
This in turn explains the poor performance of the BClinUCB
strategies in the evaluation in Section 7.

5.2 Randomization Of Upper Confidence Bounds
One way of mitigating the problem of the bias-corrected con-
fidence bounds is to leverage a generalized form of UCB,
called randomized UCB (RandUCB) (Vaswani et al. 2020),
where the idea is to multiply the bias-corrected bounds
w
pbcq
t,a pf itq with a random realization of a specific distribu-

tion having positive support. RandUCB can be thought of as
a mix of the classical UCB strategy, where the exploration-
exploitation trade-off is tackled via the confidence bounds,
and Thompson sampling (Thompson 1933; Russo et al. 2018),
which leverages randomization in a clever way for the same
purpose (see next section). To this end, we define randomized
confidence widths

rwt,apf itq “ w
pbcq
t,a pf itq ¨ r , (13)

where r P R is sampled from a half-normal distribution with
0 mean and standard deviation rσ2. This ensures that r ě 0
and that the confidence widths do indeed shrink when the
distribution is properly parametrized. Although this improves
the performance of LinUCB as we will see later, the im-
provement is not significant enough to achieve competitive
results.

All variants of LinUCB for OAS introduced so far can be
jointly defined as in Alg. 2 in Section B of the appendix.

5.3 Bayesian Approach: Thompson Sampling
As the confidence bounds used by LinUCB seem to be a
problem in practice, one may think of Thompson sampling
(TS) as an interesting alternative. The idea of TS is to assume
a prior loss distribution for every arm, and in each time step,
select an arm (i.e. algorithm) according to its probability of
being optimal, i.e., according to its posterior loss distribution
conditioned on all of the data seen so far. In particular, this
strategy solves the exploration-exploitation trade-off through
randomization driven by the posterior loss distribution.

More specifically, let the (multivariate) Gaussian distri-
bution with mean vector µ P Rd and covariance matrix
Σ P Rdˆd be denoted by N

`

µ,Σ
˘

. Similarly, the cumulative
distribution function of a (univariate) Gaussian distribution
with mean µ P R and variance σ2 at some point z P R
is denoted by Φµ,σ2pzq. A popular instantiation of TS for
stochastic linear bandits (Agrawal and Goyal 2013) assumes
a Gaussian prior distribution N

`

pθt,a, σA
´1
t,a

˘

for each weight
vector of an algorithm a, where λ, σ ą 0 and pθt,a denotes the

RR estimate (11). This yields N
`

pθt`1,a, σA
´1
t`1,a

˘

as the pos-
terior distribution at time step t` 1. The choice mechanism
is then defined by

at “ arg minaPA f
ᵀ
it
rθa , (14)

where rθa „ N
`

pθt,a, σA
´1
t,a

˘

for each a P A. Interestingly, as
the experiments will show later on, this rather naïve version of
Thompson sampling in the presence of censored data works
astonishingly well in practice.

6 Expected PAR10 Loss Minimization
Due to the possibility of observing only a censored loss real-
ization, i.e., PpCq, it is reasonable to believe that a successful
online algorithm selector needs to be able to properly incor-
porate the probability of observing such a realization into its
selection mechanism. For this purpose, we derive the follow-
ing decomposition of the expected loss under the assumptions
made in Section 4 (details in Section D of the appendix):

E
“

lt,a|f it
‰

“
`

1´ Φfᵀ
it
θ˚a ,σ

2plogpCqq
˘

¨ pPpCq ´ ECq

` EC (15)

where Cp1qit,a “ plogpCq´fᵀ
it
θ˚a´σ

2
q{σ, C

p2q
it,a

“ C
p1q
it,a

` σ and

EC “ ECpf
ᵀ
it
θ˚a , σq “ exppfᵀ

it
θ˚a ` σ2

{2q ¨
Φ0,1pC

p1q
it,a
q

Φ0,1pC
p2q
it,a
q

is the conditional expectation of a log-normal distribution
with parameters fᵀ

it
θ˚a and σ2 under a cutoff C. As such,

the decomposition suggests that there are two core elements
driving the expected loss of an algorithm a conditioned on
a problem instance it with features f it : its expected log-
runtime fᵀ

it
θ˚a and its probability of running into a timeout,

i.e.,

Ppmpit, aq ą C|f itq “
`

1´ Φfᵀ
it
θ˚a ,σ

2plogpCqq
˘

. (16)

6.1 LinUCB Revisited
Having the refined expected loss representation in (15), one
could simply plug-in the confidence bound estimates used by
LinUCB for the log-runtime predictions to obtain a selection
strategy following the optimism in the face of uncertainty
principle, i.e., using an estimate of the target value to be mini-
mized (here the expected loss in (15)), which underestimates
the target value with high probability. Denote by

ot,a “ f
ᵀ
it
pθt,a ´ α ¨ wt,apf itq, (17)

pt,a “ f
ᵀ
it
pθt,a ` α ¨ wt,apf itq (18)

the optimistic and the pessimistic estimate used by LinUCB
(or its variants), where wt,a is the confidence width of the cor-
responding LinUCB variant. With this, the selection strategy
at time t is to use a P A minimizing

`

1´ Φpt,a,σplogpCqq
˘

¨
`

PpCq ´ Êp1qC
˘

` Ê
p2q
C , (19)

10374

Algorithm 1 (bj_)Thompson_rev
1: Input parameters σ ą 0, λ ě 0,P : RÑ R, C, BJ P tTRUE,FALSEu
2: for all a P A do
3: At,a “ λ ¨ Idˆd, bt,a “ 0dˆ1, pθt,a “ 0dˆ1, σ̃

2
t,a “ 0 and plt,a “ 0

4: end for
5: for time steps t “ 1 . . . , T do
6: Observe instance it and its features xt “ fpitq P Rd
7: if t ď |A| then
8: Take algorithm at P A and obtain yt “ minplogpmpit, atqq, logpCqq
9: else

10: for all a P A do
11: pθt,a Ð pAt,aq

´1bt,a σ̃2
t,a Ð σ}f it}

2
At,a

12: Sample rθa „ N
`

pθt,a, σpAt,aq
´1

˘

13: plt,a Ð
`

1´ Φfᵀ
it
rθa,σ̃2

t,a
plogpCqq

˘

¨
`

PpCq ´ ECpfᵀ
it
rθa, σ̃t,aq

˘

` ECpf
ᵀ
it
rθa, σ̃t,aq (RHS of (20))

14: end for
15: Take algorithm at “ arg minaPA l̂t,a and obtain yt “ minplogpmpit, atqq, logpCqq
16: end if
17: if yt “ logpCq and BJ “ TRUE then
18: Sample qθa „ N

`

pθt,a, σpAt,aq
´1

˘

(if exppxᵀ
t
qθaq ď C sample again)

19: yt Ð logpxᵀ
t
qθaq

20: end if
21: At,a Ð At,a ` xtx

ᵀ
t bt,a Ð bt,a ` ytxt

22: end for

where

Ê
p1q
C “ expppt,a ` σ2

{2q ¨ Φ0,1pĈ
poq
it,a

q{Φ0,1pĈ
ppq
it,a

`σq,

Ê
p2q
C “ exppot,a ` σ2

{2q ¨ Φ0,1pĈ
ppq
it,a

q{Φ0,1pĈ
poq
it,a

`σq,

and

Ĉ
ppq
it,a

“ plogpCq´pt,a´σ
2
q{σ,

Ĉ
poq
it,a

“ plogpCq´ot,a´σ
2
q{σ

As ot,a (pt,a) underestimates (overestimates) fᵀ
it
θ˚a it is easy

to see that the terms in (19) are underestimating the cor-
responding terms occurring in (15) with high probability,
respectively.

However, as our experiments will reveal later on, the issues
of the LinUCB-based algorithms caused either by the wide
confidence bands or the biased RR estimate remain.

6.2 Thompson Sampling Revisited
Fortunately, the refined expected loss representation in (15)
can be exploited quite elegantly by Thompson Sampling
using Gaussian priors as in Section 5.3. Our suggested instan-
tiation of TS chooses algorithm at P A which minimizes

`

1´ Φfᵀ
it
rθa,σ̃2

t,a
plogpCqq

˘`

PpCq ´ ẼC
˘

` ẼC , (20)

where rθa is a random sample of the posterior N
`

pθt,a, σA
´1
t,a

˘

,

and ẼC “ ECpf
ᵀ
it
rθa, σ̃t,aq, σ̃

2
t,a “ σ}f it}

2
At,a

. Alg. 1 pro-
vides the pseudo code for this revisited Thompson algorithm
and a variant inspired by the Buckley-James estimate we
discuss in the following.

Although the TS approach just presented does involve con-
sideration of the timeout probability, it still suffers from the
problem that the estimates for θ˚a are downward-biased as
they are based on the RR estimate obtained from imputing
censored samples with the cutoff time C. In the spirit of the
Kaplan-Meier estimator (Kaplan and Meier 1958) from the
field of survival analysis, Buckley and James (1979) sug-
gested to augment censored samples by their expected value
according to the current model and then solve the standard
least-squares problem (for an overview of alternative ap-
proaches, we refer to Miller and Halpern (1982)). This idea
is particularly appealing, as it allows for an easy integration
into online algorithms, due to its use of the least-squares
estimator. Also, it has the potential to produce more accurate
(i.e., less biased) estimates for θ˚a . The integration is shown
in lines 17–20 in Alg. 1.

7 Evaluation
We base our evaluation on the standard algorithm selection
benchmark library ASlib (v4.0) (Bischl et al. 2016) and com-
pare to the most relevant competitor approaches. ASlib is a
curated collection of over 25 different algorithm selection
problems, called scenarios, based on different algorithmic
problem classes such as SAT, TSP, CSP. Each scenario com-
prises several instances for which the performance of a set of
algorithms has been evaluated using a certain cutoff to avoid
excessively long algorithm runs. An overview of the included
scenarios and their statistics can be found in Section E of the
appendix. Since ASlib was originally designed for offline AS,
we do not use the train/test splits provided by the benchmark,
but rather pass each instance one by one to the correspond-

10375

Approach bj_thompson thompson_rev degroote_ε-greedy_LR

Scenario

ASP-POTASSCO 949.38 ˘ 62.38 902.64 ˘ 78.43 1047.13 ˘ 46.50
BNSL-2016 9638.04 ˘ 378.05 9467.01 ˘ 252.52 12510.26 ˘ 1291.03
CPMP-2015 8241.01 ˘ 1164.85 8158.72 ˘ 1268.83 6991.97 ˘ 501.36
CSP-2010 8295.76 ˘ 699.43 7892.67 ˘ 692.83 7593.13 ˘ 208.94
CSP-MZN-2013 8207.06 ˘ 532.70 8171.21 ˘ 594.49 8034.62 ˘ 113.78
CSP-Minizinc-Time-2016 4811.54 ˘ 409.79 4759.50 ˘ 306.03 5258.70 ˘ 406.91
GRAPHS-2015 4.1e+07 ˘ 4.4e+06 4.2e+07 ˘ 3.4e+06 3.5e+07 ˘ 1.4e+06
MAXSAT-PMS-2016 2853.44 ˘ 210.21 2808.51 ˘ 218.55 3279.54 ˘ 133.00
MAXSAT-WPMS-2016 6304.15 ˘ 166.98 6592.87 ˘ 210.25 6287.21 ˘ 541.69
MAXSAT12-PMS 5347.39 ˘ 291.87 5408.40 ˘ 482.42 5308.11 ˘ 129.30
MAXSAT15-PMS-INDU 3046.05 ˘ 128.34 3032.08 ˘ 90.71 3867.70 ˘ 255.98
MIP-2016 8081.57 ˘ 845.74 8746.73 ˘ 1159.36 10644.68 ˘ 3405.18
PROTEUS-2014 13484.34 ˘ 541.83 14115.69 ˘ 768.16 15622.29 ˘ 784.60
QBF-2011 15708.25 ˘ 784.81 15178.86 ˘ 904.72 13912.24 ˘ 356.69
QBF-2014 3629.40 ˘ 220.68 3679.96 ˘ 256.03 4116.15 ˘ 116.27
QBF-2016 5082.59 ˘ 718.71 5045.16 ˘ 848.59 5346.29 ˘ 210.05
SAT03-16_INDU 11980.15 ˘ 193.67 12154.46 ˘ 221.01 12754.50 ˘ 200.55
SAT11-HAND 30484.08 ˘ 1379.35 30085.51 ˘ 764.32 29544.70 ˘ 952.78
SAT11-INDU 17540.58 ˘ 530.82 17028.84 ˘ 479.15 17018.24 ˘ 647.90
SAT11-RAND 18061.78 ˘ 2770.70 19061.88 ˘ 2522.11 21008.77 ˘ 530.22
SAT12-ALL 4720.22 ˘ 432.14 5132.48 ˘ 395.74 5650.32 ˘ 214.36
SAT12-HAND 7443.01 ˘ 180.51 7509.02 ˘ 199.39 7634.24 ˘ 267.89
SAT12-INDU 4511.68 ˘ 76.33 4945.79 ˘ 228.37 4755.52 ˘ 206.95
SAT12-RAND 4008.79 ˘ 206.59 4523.33 ˘ 170.56 5023.73 ˘ 174.68
SAT15-INDU 7700.27 ˘ 310.65 7856.08 ˘ 522.84 8220.22 ˘ 525.13
SAT18-EXP 25201.41 ˘ 681.42 24906.56 ˘ 540.36 25272.35 ˘ 881.19
TSP-LION2015 1226.11 ˘ 309.42 1411.06 ˘ 329.16 1634.79 ˘ 112.29

avgrank 1.814815 1.888889 2.296296

Table 1: Average PAR10 scores and standard deviation of Thompson variants and Degroote.

ing online approaches, ask them to select an algorithm and
return the corresponding feedback. To increase evaluation
robustness, we randomly shuffle the instances of each sce-
nario, repeat the evaluation ten times with different seeds and
always report average or median aggregations across those
ten repetitions. As ASlib contains missing feature values for
some instances in some scenarios, we imputed these using
the mean feature value of all instances seen until that point.
Moreover, features were scaled to unit vectors by dividing
by their norm. If the according variant does not self-impute
censored values, these were imputed with the cutoff time.

All experiments were run on machines featuring Intel Xeon
E5-2695v4@2.1GHz CPUs with 16 cores and 64GB RAM,
where each approach was limited to a single-core. All code
including detailed documentation and the appendix itself can
be found on on GitHub2. The corresponding hyperparameter
settings used for the experiments can be found in Section F
of the appendix and in the repository, parameter sensitivity
analyses in Section G.

Instead of directly reporting PAR10 scores, we sometimes
resolve to reporting a normalized version called rePAR10

2https://github.com/alexandertornede/online_as

(relative PAR10), which is comparable across scenarios and
defined with respect to the oracle3. The rePAR10 is simply
defined as the PAR10 score of the corresponding approach
divided by the PAR10 score of the oracle, i.e., the smaller
the rePAR10, the better. Moreover, we will explicitly analyze
the “prediction time”, i.e., the time an approach requires for
making a single selection and updating its model with the
corresponding feedback.

7.1 Ablation Study
First, we analyze how the different LinUCB and Thompson
variants perform in terms of rePAR10 performance, when
some of their components are activated or deactivated.

LinUCB Recall that we differentiate in principle between
BlindUCB and BClinUCB. Both the randomization idea (de-
noted by a ’rand_’ prefix) and the expected PAR10 loss mini-

3Although in standard AS one usually uses the nPAR10 which
is defined wrt. to both the oracle and algorithm best on average
(aka. SBS), we abstain from using it as the SBS cannot be as easily
defined as in the standard setting since instead of offline training
data only the performance of the selected algorithm (and not of all)
in the current time step is available to update the underlying model.

10376

0.010 0.015 0.020 0.025 0.030 0.035
avg. prediction time in seconds

3.2

3.4

3.6

3.8

4.0
re

PA
R1

0
bclinucb_rev
bclinucb
blinducb_rev
blinducb
rand_bclinucb_rev
rand_bclinucb
rand_blinducb_rev
rand_blinducb

(a) LinUCB variants

0.11 0.12 0.13 0.14 0.15
avg. prediction time in seconds

2.24

2.25

2.26

2.27

2.28

re
PA

R1
0

bj_thompson_rev
bj_thompson
thompson_rev
thompson

(b) Thompson variants

0.02 0.04 0.06 0.08 0.10 0.12 0.14
avg. prediction time in seconds

2.2

2.4

2.6

2.8

3.0

3.2

re
PA

R1
0

bj_thompson
degroote_EpsilonGreedy_LinearRegression
bclinucb_rev
rand_blinducb
thompson_rev

(c) Degroote vs. this work

Figure 1: rePAR10 score averaged over all scenarios of ap-
proaches plotted against their average prediction time in sec-
onds.

mization (denoted by ’_rev’ suffix) can in principle be incor-
porated into both yielding a total of 8 variants.

Figure 1a shows the median rePAR10 score over all scenar-
ios of the corresponding variant plotted against its prediction
time in seconds. First of all, it is very clear that all of the
LinUCB variants are at least 3.1 times as worse as the oracle.
A closer look at the selections made by the corresponding
models shows two things. First, although BlindUCB heavily
underestimates runtimes as it completely ignores censored
samples, its estimates yield some of the best algorithm se-
lections among all LinUCB variants. Second, except for the
revisited versions, BClinUCB yields worse results than the
corresponding BlindUCB variant in all cases. As hinted at
earlier, BClinUCB suffers from very large confidence bounds
due to the correction, yielding suboptimal selections in many
cases. Moreover, one can see that directly minimizing the
expected PAR10 loss does not prove to be very beneficial (ex-
cept for the pure BClinUCB variant) and can even worsen the
performance for some variants. From a methodological point
of view, this is not surprising for BlindUCB, as it would tech-
nically require a different treatment of the expected PAR10
loss based on a truncated (instead of a censored) linear model
(cf. Greene (2005)). However, for the BClinUCB variants,
this is rather disappointing. In contrast, the randomization
(i.e. RandUCB) yields consistent improvements (except for
one case), making some of the randomized variants the best
among all LinUCB variants. This also coincides with our
observation that the poor selection performance is caused
by large confidence widths due to the correction, which are
decreased through randomization.

Thompson We presented both a naïve and a revisited form
of Thompson incorporating expected PAR10 loss minimiza-
tion (’_rev’ suffix). Moreover, both versions can be equipped
with the Buckley-James imputation strategy discussed at the
end of Section 6.2 (’bj_’ prefix), yielding a total of 4 variants.

Figure 1b shows the median rePAR10 score over all sce-
narios of the corresponding variant plotted against its average
prediction time per instance. As expected, the more com-
ponents are active, the longer the prediction time becomes.
However, the average prediction time per instance still re-
mains below 0.16s. Both the revisited and the Buckley-James
variant yield an improvement over the plain Thompson vari-
ant. A combined variant worsens the performance, meaning
that the revisited variant achieves the best performance. How-
ever, overall one has to note that all variants behave rather
similar with only small differences in performance.

7.2 Comparison To Competitors
In the following, we only compare two UCB and Thompson
variants to the competitors to avoid overloading the evalua-
tion. In particular, we compare to an approach from Degroote
et al. (cf. Section 3). Their approaches essentially employ
batch machine learning models (linear regression or random
forests) on the runtime, which are fully retrained after each
seen instance. The selection is either done via a simple ε-
greedy strategy (Sutton and Barto 2018, Chapter 2) or using
a UCB strategy, where the confidence bounds are estimated
using the standard deviation extracted from the underlying

10377

random forest by means of the Jackknife (Sexton and Laake
2009) method. In fact, the Degroote approaches cannot be
considered true online algorithms due to their dependence
on the time horizon — they become intractable with an in-
creasing number of instances. Although one can update the
underlying models in principle less often (e.g., every ten in-
stances as in the original paper), we abstain here from doing
so, because our approaches also incorporate every sample
immediately.

As we only consider linear models in this work, we only
compare to the linear ε-greedy strategy presented by Deg-
roote et al. and abstain from comparing against the random
forest versions to avoid that the model complexity becomes a
confounding factor in the evaluation.

Figure 1c illustrates the rePAR10 value in comparison to
the prediction time in seconds of our most successful bandit
algorithms and the linear ε-greedy Degroote approach. First,
it is easy to see that the Thompson variants largely outper-
form the LinUCB variants in terms of performance at the cost
of being slightly slower in terms of prediction time. Second,
the Thompson variants improve around 6% in terms of perfor-
mance upon the Degroote approach. Interestingly, the latter
can compete with all online algorithms in terms of prediction
time, and even outperforms the Thompson variants. This is
mainly because of the limited size of the data, and because the
batch linear regression of the library used for implementation
of the Degroote approach is extremely efficient, making batch
training affordable. Besides, the Thompson variants require
sampling from a multi-variate normal distribution, taking up
most of the prediction time. Nevertheless, as already said,
batch learning will necessarily become impracticable with an
increasing number of observations, and sooner or later get
slower than the incremental Thompson approach.

Table 1 illustrates a more nuanced comparison between
the best Thompson variants and Degroote, where the best
value for each scenario is printed in bold and the second best
is underlined.

Overall, one can verify that Thompson sampling is a much
more successful strategy than both ε-greedy and LinUCB
in OAS. Moreover, directly optimizing the expected PAR10
score (_rev variants) and thereby incorporating the right-
censoring of the data often proves beneficial, yielding one
of the best OAS approaches in this work in the form of
Thompson_rev. Nevertheless, as the large rePAR10 scores
indicate, there is still room for improvement.

8 Conclusion And Future Work
In this paper, we revisited several well-known contextual
bandit algorithms and discussed their suitability for dealing
with the OAS problem under censored feedback. As a result
of the discussion, we adapted them towards runtime-oriented
losses, assuming partially censored data while keeping a
space- and time-complexity independent of the time horizon.
Our extensive experimental study shows that the combination
of considering right-censored data in the selection process
and an appropriate choice of the exploration strategy leads to
better performance.

As future work, we plan to investigate whether online adap-
tations of non-parametric survival analysis methods (such

as Cox-regression) are possible. Furthermore, results from
offline algorithm selection suggest that an extension of our
approaches to non-linear models, random forests in particu-
lar, seems useful to further improve performance. Moreover,
motivated by the recent success of meta algorithm selec-
tion (Tornede et al. 2021a; Tornede, Wever, and Hüllermeier
2020), we plan to investigate, whether exploiting a possi-
ble heterogeneity across the different OAS approaches we
presented is beneficial.

Environmental Impact Of Experiments
In the spirit of Green AutoML (Tornede et al. 2021b), we
acknowledge the environmental footprint left by the work on
this paper. In total, all experiments executed for this paper
consumed roughly 5376 CPU hours, which corresponds to an
estimate of about 38.64 kWh or 10.43 kg CO2e (computed
at Paderborn University), when considering only the energy
consumption of the CPU. The final evaluation presented in
this work caused about 384 CPU hours, i.e. 2.76 kWh / 0.75
kg CO2e of the aforementioned consumption.

Acknowledgments
This work was partially supported by the German Research
Foundation (DFG) within the Collaborative Research Center
“On-The-Fly Computing” (SFB 901/3 project no. 160364472).
The authors gratefully acknowledge support of this project
through computing time provided by the Paderborn Center
for Parallel Computing (PC2).

References
Agrawal, S.; and Goyal, N. 2013. Thompson sampling for
contextual bandits with linear payoffs. In Proceedings of the
30th International Conference on Machine Learning, ICML
2013, 127–135.
Armstrong, W.; Christen, P.; McCreath, E.; and Rendell, A. P.
2006. Dynamic algorithm selection using reinforcement
learning. In 2006 International Workshop on Integrating AI
and Data Mining, 18–25. IEEE.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
Learning, 47(2-3): 235–256.
Biedenkapp, A.; Bozkurt, H. F.; Eimer, T.; Hutter, F.; and
Lindauer, M. 2020. Dynamic algorithm configuration: Foun-
dation of a new meta-algorithmic framework. In ECAI 2020
- 24th European Conference on Artificial Intelligence, 427–
434.
Biedenkapp, A.; Bozkurt, H. F.; Hutter, F.; and Lindauer, M.
2019. Towards white-box benchmarks for algorithm control.
CoRR, abs/1906.07644.
Bischl, B.; Kerschke, P.; Kotthoff, L.; Lindauer, M.; Malitsky,
Y.; Fréchette, A.; Hoos, H. H.; Hutter, F.; Leyton-Brown, K.;
Tierney, K.; and Vanschoren, J. 2016. ASlib: A benchmark
library for algorithm selection. Artificial Intelligence, 237:
41–58.
Breslow, N. E. 1972. Contribution to discussion of paper
by DR Cox. Journal of the Royal Statistical Society, 34:
216–217.

10378

Buckley, J.; and James, I. 1979. Linear regression with cen-
sored data. Biometrika, 66(3): 429–436.
Chu, W.; Li, L.; Reyzin, L.; and Schapire, R. E. 2011. Con-
textual bandits with linear payoff dunctions. In Proceedings
of the Fourteenth International Conference on Artificial In-
telligence and Statistics, AISTATS 2011, 208–214.
Cicirello, V. A.; and Smith, S. F. 2005. The max K-armed ban-
dit: A new model of exploration applied to search heuristic
selection. In Proceedings of The Twentieth National Confer-
ence on Artificial Intelligence, 1355–1361.
Cox, D. R. 1972. Regression models and life tables (with
discussion). Journal of the Royal Statistical Society, 34(2):
187–220.
Degroote, H. 2017. Online algorithm selection. In Proceed-
ings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI 2017, 5173–5174.
Degroote, H.; Bischl, B.; Kotthoff, L.; and Causmaecker, P. D.
2016. Reinforcement learning for automatic online algorithm
selection - an empirical study. In Proceedings of the 16th
ITAT Conference Information Technologies - Applications
and Theory, 93–101.
Degroote, H.; Causmaecker, P. D.; Bischl, B.; and Kotthoff,
L. 2018. A regression-based methodology for online algo-
rithm selection. In Proceedings of the Eleventh International
Symposium on Combinatorial Search, SOCS 2018, 37–45.
Dimakopoulou, M.; Zhou, Z.; Athey, S.; and Imbens, G.
2019. Balanced linear contextual bandits. In Proceedings of
the Thirty-Third AAAI Conference on Artificial Intelligence,
AAAI 2019, 3445–3453.
Eggensperger, K.; Haase, K.; Müller, P.; Lindauer, M.; and
Hutter, F. 2020. Neural model-based optimization with right-
censored observations. CoRR, abs/2009.13828.
Eggensperger, K.; Lindauer, M.; Hoos, H. H.; Hutter, F.; and
Leyton-Brown, K. 2018. Efficient benchmarking of algorithm
configurators via model-based surrogates. Machine Learning,
107(1): 15–41.
El Mesaoudi-Paul, A.; Weiß, D.; Bengs, V.; Hüllermeier, E.;
and Tierney, K. 2020. Pool-based realtime algorithm con-
figuration: A preselection bandit approach. In International
Conference on Learning and Intelligent Optimization , LION
2020, 216–232. Springer.
Fitzgerald, T.; Malitsky, Y.; and O’Sullivan, B. 2015. Re-
ACTR: Realtime algorithm configuration through tournament
rankings. In Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI 2015, 304–
310. AAAI Press.
Fitzgerald, T.; Malitsky, Y.; O’Sullivan, B.; and Tierney, K.
2014. ReACT: Real-time algorithm configuration through
tournaments. In Proceedings of the Seventh Annual Sympo-
sium on Combinatorial Search, SOCS 2014. AAAI Press.
Gagliolo, M.; and Legrand, C. 2010. Algorithm survival
analysis. In Experimental Methods for the Analysis of Opti-
mization Algorithms, 161–184. Springer.
Gagliolo, M.; and Schmidhuber, J. 2006. Learning dynamic
algorithm portfolios. Annals of Mathematics Artificial Intelli-
gence, 47(3-4): 295–328.

Gagliolo, M.; and Schmidhuber, J. 2010. Algorithm selection
as a bandit problem with unbounded losses. In International
Conference on Learning and Intelligent Optimization, LION
2010, 82–96.
Gama, J. 2012. A survey on learning from data streams:
Current and future trends. Progress in Artificial Intelligence,
1(1): 45–55.
Gomes, C. P.; Selman, B.; and Crato, N. 1997. Heavy-tailed
distributions in combinatorial search. In International Confer-
ence on Principles and Practice of Constraint Programming,
121–135.
Greene, W. H. 2005. Censored data and truncated distribu-
tions. NYU Working Paper.
Gupta, R.; and Roughgarden, T. 2017. A PAC approach to
application-specific algorithm selection. SIAM Journal on
Computing, 46(3): 992–1017.
Hanselle, J.; Tornede, A.; Wever, M.; and Hüllermeier, E.
2020. Hybrid ranking and regression for algorithm selection.
In KI 2020: Advances in Artificial Intelligence - 43rd German
Conference on AI, 59–72.
Hanselle, J.; Tornede, A.; Wever, M.; and Hüllermeier, E.
2021. Algorithm selection as superset learning: Constructing
algorithm selectors from imprecise performance data. In
Advances in Knowledge Discovery and Data Mining - 25th
Pacific-Asia Conference, PAKDD 2021, 152–163.
Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2011.
Bayesian optimization with censored response data. In NIPS
workshop on Bayesian Optimization, Sequential Experimen-
tal Design and Bandits.
Kaplan, E. L.; and Meier, P. 1958. Nonparametric estima-
tion from incomplete observations. Journal of the American
Statistical Association, 53(282): 457–481.
Kerschke, P.; Hoos, H. H.; Neumann, F.; and Trautmann, H.
2019. Automated algorithm selection: Survey and perspec-
tives. Evolutionary Computation, 27(1): 3–45.
Kleinbaum, D. G.; and Klein, M. 2010. Survival Analysis,
volume 3. Springer.
Lagoudakis, M. G.; and Littman, M. L. 2000. Algorithm
selection using reinforcement learning. In Proceedings of the
Seventeenth International Conference on Machine Learning,
ICML 2000, 511–518.
Laroche, R.; and Féraud, R. 2017. Algorithm selection
of off-policy reinforcement learning algorithm. CoRR,
abs/1701.08810.
Lattimore, T.; and Szepesvári, C. 2020. Bandit Algorithms.
Cambridge University Press.
Lindauer, M.; Bergdoll, R.; and Hutter, F. 2016. An empirical
study of per-instance algorithm scheduling. In International
Conference on Learning and Intelligent, LION 2016, 253–
259.
Lissovoi, A.; Oliveto, P. S.; and Warwicker, J. A. 2020. Sim-
ple hyper-heuristics control the neighbourhood size of ran-
domised local search optimally for LeadingOnes*. Evolu-
tionary Computation, 28(3): 437–461.
Miller, R.; and Halpern, J. 1982. Regression with censored
data. Biometrika, 69(3): 521–531.

10379

Pimpalkhare, N.; Mora, F.; Polgreen, E.; and Seshia, S. A.
2021. MedleySolver: Online SMT algorithm selection. In
International Conference on Theory and Applications of Sat-
isfiability Testing, SAT 2021, 453–470.
Rossi, A. L. D.; de Carvalho, A. C. P. L. F.; and Soares,
C. 2012. Meta-learning for periodic algorithm selection in
time-changing data. In 2012 Brazilian Symposium on Neural
Networks, 7–12.
Russo, D.; Roy, B. V.; Kazerouni, A.; Osband, I.; and Wen, Z.
2018. A tutorial on Thompson sampling. Foundations and
Trends in Machine Learning, 11(1): 1–96.
Schmee, J.; and Hahn, G. J. 1979. A simple method for
regression analysis with censored data. Technometrics, 21(4).
Schölkopf, B.; and Smola, A. 2001. Learning with Kernels:
Support Vector Machines, Regularization, Optimization, and
Beyond. MIT Press.
Sexton, J.; and Laake, P. 2009. Standard errors for bagged
and random forest estimators. Computational Statistics &
Data Analysis, 53(3): 801–811.
Shaker, A.; and Hüllermeier, E. 2014. Survival analysis
on data streams: Analyzing temporal events in dynamically
changing environments. International Journal of Applied
Mathematics and Computer Science, 24(1): 199–212.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement Learning:
An Introduction. MIT press.
Thompson, W. R. 1933. On the likelihood that one unknown
probability exceeds another in view of the evidence of two
samples. Biometrika, 25(3/4): 285–294.
Tornede, A.; Gehring, L.; Tornede, T.; Wever, M.; and Hüller-
meier, E. 2021a. Algorithm selection on a meta level. CoRR,
abs/2107.09414.
Tornede, A.; Wever, M.; and Hüllermeier, E. 2019. Algorithm
selection as recommendation: From collaborative filtering to
dyad ranking. In 29th Workshop Computational Intelligence,
Dortmund 2019.
Tornede, A.; Wever, M.; and Hüllermeier, E. 2020. Extreme
algorithm selection with dyadic feature representation. In
International Conference on Discovery Science, DS 2020,
309–324.
Tornede, A.; Wever, M.; and Hüllermeier, E. 2020. Towards
meta-algorithm selection. In Workshop on Meta-Learning
(MetaLearn 2020) @ NeurIPS 2020.
Tornede, A.; Wever, M.; Werner, S.; Mohr, F.; and Hüller-
meier, E. 2020. Run2Survive: A decision-theoretic approach
to algorithm selection based on survival analysis. In Pro-
ceedings of the 12th Asian Conference on Machine Learning,
ACML 2020, 737–752.
Tornede, T.; Tornede, A.; Hanselle, J.; Wever, M.; Mohr,
F.; and Hüllermeier, E. 2021b. Towards green automated
machine learning: Status quo and future directions. CoRR,
abs/2111.05850.
van Rijn, J. N.; Holmes, G.; Pfahringer, B.; and Vanschoren, J.
2014. Algorithm selection on data streams. In International
Conference on Discovery Science, DS 2014, 325–336.

van Rijn, J. N.; Holmes, G.; Pfahringer, B.; and Vanschoren,
J. 2015. Having a blast: Meta-learning and heterogeneous
ensembles for data streams. In 2015 IEEE International
Conference on Data Mining, ICDM 2015, 1003–1008.
van Rijn, S.; Doerr, C.; and Bäck, T. 2018. Towards an
adaptive CMA-ES configurator. In Parallel Problem Solving
from Nature - PPSN XV, 54–65.
Vaswani, S.; Mehrabian, A.; Durand, A.; and Kveton, B.
2020. Old dog learns new tricks: Randomized UCB for
bandit problems. In Proceedings of the 23rd International
Conference on Artificial Intelligence and Statistics, AISTATS
2020, 1988–1998.
Wolpert, D. H.; and Macready, W. G. 1997. No free lunch the-
orems for optimization. IEEE Transactions on Evolutionary
Computation, 1(1): 67–82.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2007.
SATzilla-07: The design and analysis of an algorithm portfo-
lio for SAT. In International Conference on Principles and
Practice of Constraint Programming, 712–727. Springer.

10380

