
A Novel Approach to Solving Goal-Achieving Problems for Board Games

Chung-Chin Shih1,2*, Ti-Rong Wu1*, Ting Han Wei3, and I-Chen Wu1,2†

1Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
2Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan

3Department of Computing Science, University of Alberta, Edmonton, Canada
{rockmanray,kds285}@aigames.nctu.edu.tw, tinghan@ualberta.ca, icwu@cs.nctu.edu.tw

Abstract

Goal-achieving problems are puzzles that set up a specific
situation with a clear objective. An example that is well-
studied is the category of life-and-death (L&D) problems for
Go, which helps players hone their skill of identifying region
safety. Many previous methods like lambda search try null
moves first, then derive so-called relevance zones (RZs), out-
side of which the opponent does not need to search. This pa-
per first proposes a novel RZ-based approach, called the RZ-
Based Search (RZS), to solving L&D problems for Go. RZS
tries moves before determining whether they are null moves
post-hoc. This means we do not need to rely on null move
heuristics, resulting in a more elegant algorithm, so that it
can also be seamlessly incorporated into AlphaZero’s super-
human level play in our solver. To repurpose AlphaZero for
solving, we also propose a new training method called Faster
to Life (FTL), which modifies AlphaZero to entice it to win
more quickly. We use RZS and FTL to solve L&D prob-
lems on Go, namely solving 68 among 106 problems from a
professional L&D book while a previous state-of-the-art pro-
gram TSUMEGO-EXPLORER solves 11 only. Finally, we
discuss that the approach is generic in the sense that RZS is
applicable to solving many other goal-achieving problems for
board games.

Introduction
Traditional board games such as Go and Hex have played an
important role in the development of artificial intelligence.
Goal-achieving problems are puzzles that challenge players
to achieve specific goals under given board configurations.

Life-and-death (L&D) problems in Go is a typical goal-
achieving problem. In Go, where the goal for both players
is to hold more territory on the game board than their op-
ponent, a critical skill is to identify safety for stone groups.
A safe (live) stone group holds territory on the board indef-
initely, thereby giving an advantage to the player that owns
it. To build this skill, Go players have been creating and
solving L&D problems, also called tsumego, for centuries.
Many of these problems are challenging even for profes-
sional players. A straightforward method of solving L&D

*These authors contributed equally.
†Corresponding author.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

problems using computer programs involves finding a so-
lution tree (Stockman 1979; Pijls and de Bruin 2001) that
represents a full strategy of answering moves. As a compu-
tational problem, one of the main challenges is that the large
branching factor in Go tends to lead to a prohibitively large
solution tree. To cut down on the search size, Kishimoto and
Müller (2003; 2005a; 2005b) manually designated a specific
search space to prevent searching irrelevant spaces.

An elegant way to reduce the branching factor is to take
advantage of threats (Allis 1994), which are moves that force
the opponent to respond in a specific way. When threats are
involved, not all opponent moves need to be explored to en-
sure correctness when solving L&D problems, especially
moves that do not answer the threat. In this vein, Thom-
sen (2000) proposed a threat-based search algorithm named
lambda search, by trying null moves first (usually by pass-
ing), then deriving a so-called relevance zone (RZ), outside
of which the opponent does not need to search.

This paper proposes a novel approach called RZ-Based
Search (RZS) to solving L&D problems. We illustrate the
basic concepts of RZS with examples in Go and Hex. RZS it-
self is then described in detail with Go examples. With RZS,
moves are searched first, before they are determined to be
null moves post-hoc. This allows our approach to be seam-
lessly incorporated into most search algorithms. Specifically
for this paper, we applied RZS into an AlphaZero-like pro-
gram (Silver et al. 2018), well-known for playing at super-
human levels.

A straightforward way of leveraging AlphaZero methods
for goal-achieving problems is to use it in the construction
of solution trees, by adding Boolean AND-OR tree logic for
wins and losses into the AlphaZero MCTS procedure. How-
ever, AlphaZero is fundamentally trained for the task of win-
ning the game, rather than proving it exhaustively. This leads
to a discrepancy in behaviour between a strong player and a
solver. Namely, AlphaZero picks any winning move, rather
than the move that leads to the shortest distance to win, as
also mentioned in (Agostinelli et al. 2019).

In order to reduce the solution tree size (with shorter paths
to prove), we also propose a new AlphaZero-like training
method called Faster to Life (FTL), by modifying the goal
of the AlphaZero algorithm so that it prefers winning in
fewer moves. In our experiments, among a collection of
20 7x7 L&D problems, all are solved with RZS integrated

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

10362



into AlphaZero with FTL; with RZS without FTL, 5 can be
solved; without RZS nor FTL, none can be solved. Further-
more, among 106 19x19 Go problems selected from a well-
known L&D book, written by a Go master, we solve 68 with
both FTL and RZS, while solving 36 with RZS but without
FTL. In contrast, a previous solver by Kishimoto and Müller
(2005b) that does not use FTL and RZS solves 11 problems.

Background
Solution Trees for Achieving Goals
For two-player games, a solution tree (Stockman 1979; Pijls
and de Bruin 2001) is a kind of AND-OR search tree repre-
senting a full strategy of answering moves to achieve a given
goal, e.g., safety of pieces for Go or connectivity of pieces
for Hex, as described in next subsections. Both AND and OR
nodes represent game positions, and edges represent moves
from one position to another. In this paper, for a position p,
let β(p) denote the corresponding board configuration and
π(p) the player to play. The player to play at an OR node
is called the OR-player, denoted by π�, whose objective is
to achieve the given goal, while the other player, called the
AND-player, denoted by π#, tries to prevent the same goal
from happening. Achieving the goal in this context is equiv-
alent to winning from the OR-player’s perspective.

A solution tree, rooted at n, is a part of a search tree that
satisfies the following properties.

1. If n is a leaf, the goal is achieved for π� at n.
2. If n is an internal OR-node, there exists at least one child

whose subtree is a solution tree. For simplicity, we usu-
ally consider the case where there is exactly one child.

3. If n is an internal AND-node, all legal moves from n
must be included in the solution tree, and all subtrees
rooted from n’s children are solution trees.

L&D Problems for Go
We first quickly review the game of Go and then define the
goal for L&D problems. The game of Go is a game played
by two players, Black and White, usually on a n× n square
board, where at most one stone, either black or white, can be
placed on each intersection of the board, called a cell in this
paper. A set of stones of the same color that are connected
via adjacency to one another in four directions is called a
block. Unoccupied cells adjacent to a block are called liber-
ties of that block. A block is captured if an opponent stone
is placed in the block’s last liberty. Following the rules of
Go, each block has at least one liberty, and players are not
allowed to make suicidal moves that deprives the last liberty
of their own blocks, unless that move also captures oppo-
nent stones. Safety refers to a situation where blocks cannot
be captured by the opponent under optimal play.

A L&D problem is defined as follows. Given a position
and some stones of π� designated as crucial, as (Kishimoto
and Müller 2005b), π� is said to achieve the goal if safety
can be guaranteed for any of these crucial stones, or fail if
all crucial stones are captured.

A set of blocks is said to be unconditionally alive (UCA)
by Benson (1976) if the opponent cannot capture it even

(a) pa (b) pb (c) pc (d) pd

Figure 1: An example for Go. For position pa, if Black plays
at 1 as in pb′ , pc′ , and pd′ , White replies to win at 2 as in pb,
pc, and pd respectively. Since positions pb, pc, and pd satisfy
UCA, we obtain RZs as the shaded cells, denoted by zb, zc,
and zd respectively. For their previous positions pb′ , pc′ , and
pd′ , White wins by playing 2 and it is not hard to see that
their corresponding RZs are also zb, zc, and zd respectively.
Furthermore, consider pa. For all moves outside za, denoting
the shaded zone of pa, White can simply play at E2 to win.
Thus, pa wins. Note that G1 is illegal for Black since suicide
is prohibited. In addition, za is its RZ, a union of zb, zc, and
zd, since White follows the same strategy as above to win
for all Black moves outside of it.

when unlimited consecutive moves are allowed. Namely,
each of these blocks can sustain at least two liberties for un-
limited consecutive moves by the opponent. By illustrating
the seven positions in Figure 1, the white blocks satisfy UCA
in pb, pc, and pd, illustrated in the bottom row of (b), (c), and
(d), but not for others. The details of UCA are specified by
Benson (1976). Achieving UCA for any crucial stones is a
valid solution to a L&D problem.

In addition to UCA, safety can be achieved through other
ways, such as seki (Niu, Kishimoto, and Müller 2005), ko,
or situational super-ko (SSK) (van der Werf, Van Den Herik,
and Uiterwijk 2003). Coexistence in seki is also considered a
win for π�, since the crucial stones are safe from being cap-
tured. Lastly, the rules of ko or SSK are used to prohibit po-
sition repetition, i.e., any move that repeats a previous board
position with the same player to play is illegal. In this pa-
per, we limit our goal to achieving safety via UCA only for
simplicity. L&D problems in which the only solution is via
seki and ko (SSK) are left as open problems. For simplicity,
achieving safety via UCA is referred to as a win, or winning
for the rest of this paper.

A specific instance of the more general L&D definition
above is the so-called 7x7 kill-all Go game, in which Black,
the first player, plays two stones initially, then both players
play one stone per turn alternately on a 7x7 Go board. The
goal of White, playing as π�, is to achieve safety for any set
of white stones via UCA, while Black (playing as π#) must
kill all white stones. Note that for this specific problem, there
is no need to mark crucial stones for White; any safe white
stone is sufficient. For simplicity, the rest of this paper is

10363



written with 7x7 kill-all Go in mind, i.e., π� wins when any
white stones are UCA, unless specified otherwise.

Connectivity for Hex
For generality, we also discuss another goal-achieving prob-
lem for Hex. We first review Hex, then define the goal of
achieving connectivity. Hex is a two-player game commonly
played on a board with n× n hexagonal cells in a parallelo-
gram shape as illustrated in Figure 3 below. The two players,
Black and White, are each assigned two opposite sides of the
four boundaries of the board, and take turns to place stones
of their own color. Similarly, a set of stones of the same
color that are connected via adjacency to one another in a
hexagonal way is called a block, and each side of the board
can be viewed as a block of the same color for simplicity.
A board configuration consists of four sides and all cells,
each of which is unoccupied or occupied by either Black
or White. The player who has a block of their own color
connecting the two correspondingly colored sides wins the
game. The rules of Hex are relatively simple in the sense
that there are no stone capturing (i.e., any changes to stones
that are already on the board) and no prohibited moves like
suicides.

A goal-achieving problem for Hex is defined as follows.
Given a position p and some stones of π� designated as cru-
cial, π� is said to achieve the goal if they can connect these
crucial stones together, or fail otherwise. For example, in
Figure 3 (a), a problem may specify that with Black (π#)
playing first, C3 is a crucial stone and White must connect it
to the lower side of the board. Figure 3 (c) shows a case of
achieving the goal.

Our Approach
This section first defines relevance zones (RZs), and then
reviews null moves and must-play regions (Hayward et al.
2003; Hayward and Van Rijswijck 2006; Hayward 2009)
with illustrations. Next, we define RZ-based solution trees
(RZSTs) and present Consistent Replay Conditions, un-
der which π� can replay and therefore reuse previously
searched solution trees to win. The final subsection proposes
a novel approach, called RZ-based Search (RZS), which can
be incorporated with other depth-first or best-first search for
solving goal-achieving problems.

Relevance Zones
A zone z is a set of cells on the board. Given a position p and
a zone z, let β(p) � z denote the board configuration β(p)
inside the zone z, also called a zone pattern. Let z̄ denote the
zone outside of z. Thus, β(p)� z̄ is the zone pattern outside
the mask z.

A zone z is called a relevance-zone (RZ) with respect to a
winning position p, if the following property is satisfied.
RZ-1 For all positions p∗ with β(p∗) � z = β(p) � z (the

same zone pattern) and π(p∗) = π(p) (the same player
turn), p∗ are also wins.

In general, there exists some RZ with respect to a winning
position. For positions that achieve UCA for Go, their RZs
include all cells of the safe blocks and their regions (Benson

(a) The solution tree of Figure 1 (a). (b) The RZST for (a).

Figure 2: Solution trees.

1976), since these blocks are safe regardless of any moves
or changes outside the zone. Examples are given in Figure 1.
Thus, a solution tree for pa is shown in Figure 2 (a), and the
zone za is clearly an RZ for pa. From RZ-1, we can easily
obtain the following property.
ZX-1 If z is an RZ with respect to p, any bigger zone z′ ⊇ z

is an RZ for p as well.
For example, the RZ for pa in Figure 1 (a) can be expanded,
say, by adding the black blocks or any number of unoccupied
cells. Taken to the extreme, as long as p is a win, the entire
board can serve as an RZ.

Null Moves and Must-Play Regions
Relevance zones can be derived based on null moves, as
in lambda search (Thomsen 2000; Wu and Lin 2010), and
must-play regions (Hayward et al. 2003; Hayward and
Van Rijswijck 2006; Hayward 2009). For example, in Figure
1, if Black makes a null move on pa (in this case any move
outside of za, including passes), White simply plays at E2 to
reach UCA, obtaining in the process an RZ, zb, like pb. That
is, it is a win for White regardless of any moves or changes
outside zb. Thus, back to pa, to prevent White from winning
directly, Black must play (or try) at unoccupied cells inside
zb, including moves E2, F2 and G1; zb is conceptually equiv-
alent to must-play regions in Hex by Hayward et al. (2003).
By ignoring moves outside zb, the search space is greatly re-
duced; we refer to this branch reduction as relevance-zone
pruning. Since G1 is illegal in Go, only E2 and F2 actually
need to be tried. For Hex, all the unoccupied cells inside an
RZ are legal and are required to be tried.

For RZ pruning, previous lambda-based search methods
tried null moves first, then derived RZs as above (Thomsen
2000; Yoshizoe, Kishimoto, and Müller 2007; Wu and Lin
2010). However, the decision on when and how to play null
moves is itself a heuristic that requires deliberate thought.
Usually, a null move consists of passing with the hope of re-
ducing the branching factor. Since giving up one’s turn tends
to be one of the weakest moves to consider in most games,
this runs counter to the general intuition that strong moves
should be searched first. In addition, when the null move
does not result in pruning, the extra effort spent to search the
null move may be entirely wasted. Note that many previous
researches employed some lightweight heuristics (Kishi-
moto and Müller 2003; Yoshizoe, Kishimoto, and Müller
2007) for forced moves to prevent from incurring too much
overhead.

10364



(a) (b) (c)

(d) (e) (f)

Figure 3: An illustration of achieving connection between
C3 to the bottom side in Hex. For Black B2 in (b), White
replies at C2, then wins by either B1 or C1. The RZ is the
shaded cells in (b), since the goal can be achieved regardless
of any moves outside of the RZ. Similar to the example in
Figure 1, B2 is viewed as a null move, and the must-play
region for Black is reduced to include only the unoccupied
cells, C2, B1, and C1. Next, if Black plays at C2 as in (d),
White replies at B2 and wins due to symmetry to (b). Again,
since Black C2 is a null move, the RZ is the shaded cells as
in (d) and the must-play region is reduced to B1 only, from
the intersection of the two RZs in (b) and (d). Now, we only
need to search Black B1, in which case White replies at D2
for a win as in (e), since C3 is guaranteed to be connected to
D2, and D2 is guaranteed to be connected to the lower side
independently. Since all unoccupied cells in the must-play
region have been searched, the goal can be achieved, and the
RZ for the position in (a) is the shaded area in (f), which is
the union of the above RZs, denoted by zf . Namely, C3 can
be connected to the lower side, regardless of any moves or
changes outside of zf .

In this paper, we propose searching promising moves di-
rectly without needing to try null moves first, then determin-
ing which moves are null moves post-hoc. For example, in
Figure 1 (a), let Black attempt to kill White’s blocks by play-
ing at D1 as in (b), leading to White responding at E2 with
UCA achieved and the RZ zb, which encompasses the cells
with UCA white stones. If we now look back at Black’s de-
cision of playing at D1, it is outside the RZ zb, which makes
it in effect a null move. According to Property RZ-1, White
wins regardless of any moves and changes (including the
move D1) outside zb.

In this case, the must-play region that initially includes all
unoccupied cells is reduced to E2 and F2 (note that G1 is
illegal). If Black plays at E2 as in (c), it is a win with RZ
zc for White’s reply at D1. Since E2 is inside zc, it is not a
null move and only E2 can be removed from the must-play
region. It is similar for Black at F2 in (d) with an RZ zd.
After searching E2 and F2, the must-play region becomes
empty, which implies a win for White for the position pa in
(a). The RZ za for pa is therefore the union of zb, zc, and
zd. The power of relevance zones and must-play regions are
illustrated in more examples for Hex and Go as follows.

Illustrations We first illustrate an example for the game of
Hex to facilitate to understand. Previously, (Hayward et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: A 7x7 kill-all Go example. First, Black tries to
prevent White from achieving UCA by playing at, say, D2
as in (b). In this case, White replies at F4 in order to achieve
UCA by making a second region at G3 (the first is at G1). If
Black counters with F5, then White achieves UCA with G4,
where the set of shaded cells is its RZ, denoted by zb. Since
F5 is outside of zb, it is a null-move, so the must-play re-
gion includes the two legal moves G3 and G4 that Black can
try. For G3, it is trivial to win at G4. Black now considers
playing at G4 instead, leading to the position in (c). In this
variation, White plays at F5 in response to Black’s move at
G4. Again, if Black counters with F6, then White achieves
UCA at G5. This search continues with Black being forced
to consider G5, and again White at F6 forces Black to play
at G6 as in (d). Finally, White plays at F7 to achieve UCA.
Thus, for the Black move at D2, we can conclude that White
wins and the RZ ze is the union of the RZs as in (e). Inter-
estingly, since D2 is outside of ze, it is a null move and all of
Black’s moves outside ze can be disregarded. The must-play
region is therefore the unoccupied cells in ze. Now, let Black
choose to play F4 (inside ze) as in (f). Similarly, White wins
with an RZ zf as in (f) due to symmetry to (e). Since we
can disregard Black moves outside ze and zf , the must-play
region becomes the intersection of the two RZs as shown in
(g), which contains no legal moves for Black. Thus we have
proved White wins in (a), with large reductions to the search
space. Note that the corresponding RZ for the position in (a)
is the union of the two RZs, shaded in (h).

2003) has used the above notion of null moves and must-
play regions to solve Hex problems. An example for Hex is
given in Figure 3 (a), modified from (Hayward et al. 2003),
where its goal is to connect C3 to the lower side, and can be
achieved through Figure 3 (b)-(f).

Now, we want to illustrate another example to demon-
strate the power of RZ pruning for the game of Go using
the above approach. The position in Figure 4 (a) can be de-
rived as a win for White as shown in (b)-(h). Thus, we can
prove White wins in (a) by only searching two moves at D2
and F4 as shown in (e) and (f) respectively.

Comparison with Previous Null Move Methods Other
than Hex, most traditional RZ approaches need to search

10365



null moves in advance to facilitate pruning, e.g. null-move
pruning in chess (Donninger 1993; Heinz 1999; Campbell,
Hoane Jr, and Hsu 2002) and lambda search (Thomsen 2000;
Yoshizoe, Kishimoto, and Müller 2007; Wu and Lin 2010).
For example, for the position in Figure 4 (a), if we want to
make another region, say at G3, two consecutive null moves
for Black need to be searched first (say, two passes) for
White to play consecutively at F4 and G4, as in second order
lambda search (Thomsen 2000). Null moves tend to be weak
choices for π# (Black in this case), which runs counter to the
intuition that strong moves should be searched first. Con-
sequently, heuristics are usually used to determine whether
and how π# makes null moves. During this process, incor-
rect guesses for null moves may incur additional overhead.

In contrast, with our approach, π# searches ahead, then
retroactively handles null moves after solving them. In most
cases of winning, π# gradually search those moves far away
from the fighting regions, that is, it is likely to play null
moves which are located outside of RZs. This allows our
method to be seamlessly and elegantly incorporated into
search algorithms such as MCTS (Coulom 2006) or alpha-
beta search (Knuth and Moore 1975); namely, the algorithm
can prioritize strong moves as usual, and exploit RZ pruning
simultaneously.

Relevance-Zone Based Solution Trees (RZSTs)
The previous subsection illustrates the power of using rel-
evance zones. We now incorporate the notion of relevance
zones into solution trees recursively, which we refer to as
Relevance-Zone Based Solution Trees (RZSTs). Since Hex
is relatively straight-forward compared to Go, we will focus
on Go in the rest of this section.

For a node n, let p(n) be its corresponding position of
n. For simplicity, let β(p(n)) be simplified as β(n), and
π(p(n)) as π(n). If p(n) is a win, let z be an RZ for n,
where z is guaranteed to exist as described above. From the
definition of RZs, since the conditions of the win are satis-
fied entirely by the zone pattern within z, and the pattern in
z̄ are irrelevant, the solution tree rooted at n does not need
to include any children in z̄ if n is an AND-node. As an ex-
ample, the solution tree in Figure 2 (a) can be reduced to in-
clude the first three children only, as shown in (b), where the
thicker arrow for the move D1 indicates a null move whose
RZ zb is used to prune all moves other than E2 and F2. More
specifically, all the moves outside zb lead node a to b′.

The above definition for RZSTs leaves out how RZs are
derived for the winning node n. A key to justifying the cor-
rectness of RZs is to replay RZSTs rooted at null moves.
For the example in Figure 1 (a), if Black plays anywhere
outside za, White can win by simply ”replaying” the strat-
egy depicted by the solution tree at b′, which is simply E2.
Similarly, for another example in Figure 4 (e): if Black plays
anywhere outside the shaded RZ (say C2), White can win by
simply ”replaying” F4, as shown in (b)-(d).

Before discussing this in more detail in later subsections,
we first describe a common principle of deriving RZs.
ZZ-1 For parent-child pairs n and n′ in RZSTs, let z and z′

be their RZs respectively. We derive both RZs such that
z′ ⊆ z.

Intuitively, since the cells in z̄ are irrelevant for n, moves in
z̄ should also be irrelevant to n’s descendants. We can see
this from many examples in the previous subsection, where
the RZ is a union of their children’s RZs.

Consistent-Replay (CR) Conditions
This subsection presents some sufficient conditions for RZs
such that replay is always legal, which in turn justifies the
correctness for RZSTs. An important notion of RZs, which
originates from threat-space search (Thomsen 2000; Wu and
Lin 2010), is that π# moves played outside the zone do not
interfere with the winning strategy of π� inside the zone,
which is represented by RZSTs.

Let a winning node n be the root of an RZST, and z be
an RZ for n. From Property RZ-1, all positions p∗ with
β(p∗) � z = β(n) � z and π(p∗) = π(n) are wins too. In
addition to UCA, one way to justify the correctness for p∗ is
to verify that the winning strategy of p∗ consists of simply
following (or replaying) the RZST to win. In order to re-
play consistently for all p∗ based on the RZST, we propose
the following sufficient conditions, called Consistent Replay
(CR) Conditions.
CR-1 Suppose it is π#’s turn. Consider all π#’s legal moves

at unoccupied cells m inside z on p∗. Then, playing at m
on p(n) must be legal for π# as well, and must lead to
the same zone pattern. Namely, β(p′) � z = β(p′∗) � z,
where p′ and p′∗ are the next positions of p(n) and p∗
respectively after the move at m.

CR-2 Suppose it is π#’s turn. For any π#’s move outside
z on p∗, the zone pattern inside z remains unchanged,
namely, β(p)� z = β(p∗)� z = β(p′∗)� z, where p′∗ is
the next position of p∗ after the move.

CR-3 Suppose it is π�’s turn and the winning move is at an
unoccupied cell m inside z on p(n). Then, the move at
m must be legal on p∗ for π� as well, and must lead to
the same zone pattern. Namely, like CR-1, β(p′) � z =
β(p′∗)� z, where p′ and p′∗ are the next positions of p(n)
and p∗ respectively after the move at m.

The conditions CR-1 and CR-3 ensure that π� can replay
the same winning responses to all π# moves inside z on p∗,
while maintaining identical RZ patterns. This can be illus-
trated by the winning position pa with the RZ za in Figure 1
(a). For all positions p∗ with the same RZ pattern as pa, all
π# legal moves inside the zone on p∗ (e.g., D1, E2, and F2)
are also legal on pa, so π� can play winning responses in p∗
as those in Figure 1 (b), (c) and (d), and the resulting zone
patterns remains the same.

CR-2 ensures that for π# moves outside z, the zone pat-
tern inside z remains unchanged. In this case, π� simply
follows the same winning strategy as that for n. From ZZ-1,
there must exist some null move with a zone z′ ⊆ z in n, so
White can simply respond by replaying the same strategy as
that for n′. For example, in Figure 1 (a), for all moves out-
side the RZ za, π� simply chooses a null move, D1 in this
case, and then uses its reply at E2 to reply in p∗. From the
above, we obtain the following lemma.
Lemma 1. Assume that node n is a win with an RZ z, and
that all RZs in the RZST rooted at n are derived following the

10366



three CR conditions. Then, for all positions p∗ with β(p∗)�
z = β(n) � z (the same zone pattern) and π(p∗) = π(n)
(the same player turn), p∗ is a win by following the winning
strategy of the RZST.

Proof. It suffices to show that π� can replay the winning
strategy of the RZST rooted at n by induction. If the goal is
reached for p(n) with an RZ z, then the goal is reached for
p∗ too.

Now, assume that the goal has not been reached for p(n)
yet. Consider the case of π� to play. Let π� win by playing
a winning move m, leading to a new node n′. From CR-3,
π� can play the same winning move atm on p∗ and to a new
position p′∗. Also from CR-3, the resulting zone patterns are
identical, i.e., β(p′∗)� z = β(n′)� z. Since n′ is also a win,
there exists an RZ z′ for it, where z′ ⊆ z from ZZ-1. This
implies that β(n′)� z′ = β(p′∗)� z′. From RZ-1, it is a win
for p′∗ too.

For the case of π# to play, we need to consider all legal
moves m on p∗ by π#. First, assume m to be inside z. From
CR-1, π# can play at the same m on p(n), resulting in the
same zone pattern, i.e., β(n′) � z = β(p′∗) � z where n′ is
the next node of n and p′∗ is the next position of p∗. Since n′
is also a win, there exists an RZ z′, with z′ ⊆ z from ZZ-1,
such that β(n′) � z′ = β(p′∗) � z′. Thus, it is a win for p′∗
by following the RZST rooted at n′.

Second, assume m to be outside of z. From CR-2, the
zone pattern inside z remains unchanged, namely, β(n) �
z = β(p∗) � z = β(p′∗) � z, where p′∗ is the next position
of p∗ after the move. π� can win by simply following the
RZST rooted at n.

In order to satisfy the above CR conditions, we first de-
rive RZs from leaf nodes (e.g. by including all cells that
contain the UCA blocks). For internal nodes, we dilate (ex-
pand) children RZs based on ZX-1 such that all CR condi-
tions hold. In the worst case z is dilated to include the whole
board, in which case z̄ is empty. Note that smaller RZs lead
to smaller trees, so for a winning position, it is preferable to
choose as small an RZ as possible for more RZ pruning. For
the game of Go, dilation requires some thought for capturing
stones and prohibiting suicidal moves. A heuristic zone dila-
tion method for Go, referred to as the function dilate(z) be-
low, is presented in (Shih et al. 2021). In contrast, the game
of Hex needs no dilation, since there are no stone capturing
(or moving) and no prohibited moves like suicides.

Relevance Zone Based Search
In this subsection, we propose a goal-achieving search ap-
proach, called RZ-based Search (RZS), which can be em-
bedded into other search algorithms using best-first search
or depth-first search. In this approach, we propose a method
to derive more efficient RZSTs, called replayable RZSTs,
which are defined recursively. Namely, replayable RZSTs
rooted at n as well as their RZs z will be constructed and
derived, starting from leaf nodes, in a bottom-up manner.
The three CR conditions need to be satisfied if the node n
is a win with an RZ z. Our approach RZS can be incorpo-
rated into best-first search, such as MCTS, as described in

the rest of this subsection, which is used in our experiments
later. Actually, RZS can also be incorporated into depth-first
search (e.g. alpha-beta search) as presented in (Shih et al.
2021), which behaves similarly to the must-play-based Hex
solver by Hayward (2009).

Leaf Nodes Suppose that position p(n) for generated node
n achieves the goal, e.g., UCA, and wins. Then, n is an
RZST (consisting of a single leaf node), and their RZ is de-
rived accordingly.

Internal Nodes Suppose in p(n), no π� blocks are UCA
yet (i.e., the position is not immediately winning). These in-
ternal nodes n will be recursively updated from their chil-
dren n′ (in a bottom-up manner), e.g., during the backprop-
agation phase of MCTS. Since n is an internal node, it can
either be an OR-node or an AND-node, described as follows.

Internal OR-Nodes Suppose it is π�’s turn (n is an OR-
node). Assume that the child n′ via a legal move m1 is
proven to be a win, and that the subtree rooted at n′ is a
replayable RZST. Let z′ be the associated RZ for n′. The
RZ z associated with n is derived from dilate(z ∪ {m}).
Thus, n together with the RZST rooted at n′ forms a re-
playable RZST. From Lemma 1, for all positions p∗ with
β(p∗) � z = β(n) � z, π� is allowed to replay m with the
RZST rooted at n′ to win p∗ with the same next RZ z′.

Internal AND-Nodes Suppose it is π#’s turn. Let n main-
tain a must-play region M that is initialized to all the le-
gal moves in p(n). Assume that a child n′ via a legal move
m ∈ M is proven as a win with the associated RZ z′, and
that the subtree rooted at n′ is a replayable RZST. The node
n is updated as follows.
1. Consider the case that m /∈ z′ and the move m does

not change the zone pattern inside z′, that is, m is a null
move. Then, shrink the must-play region byM = M∩z′.

2. Consider the case where m ∈ z′, that is, m is not a null
move. Then, simply remove m from M .

When the must-play region becomes empty, the node n is a
win with an RZ z, derived by dilate(zunion), where zunion
is the union of all the children’s RZs. Then, n, together
with all of its child RZSTs, forms a replayable RZST. From
Lemma 1, for all positions p∗ with β(p∗)�z = β(n)�z, π�
is allowed to replay with the same winning strategy based on
these child RZSTs.

Faster to Life
This section proposes an AlphaZero-like method, named
Faster to Life (FTL), so that the search prefers choosing
moves that win with the least number of moves. Consider
7x7 kill-all Go, where White wins as long as any white
stones are UCA. When using unaltered AlphaZero, we can
simply set a komi2 of 48.

1In this context, m is both a conceptual construct representing
an edge in the tree, and also a cell point signifying where the player
places their stone. In this way we may add m into some zone z,
which is itself a set of cells.

2In Go, komi is a number of compensation points for White
since Black has the advantage of playing the first move.

10367



w/o RZS w/ RZS

7x7 w/o FTL 0/20 5/20
w/ FTL 3/20 20/20

19x19
w/o FTL (ELF) 0/106 36/106

w/ FTL 6/106 68/106
T-EXP 11/106 -

Table 1: Number of solved problems under different settings.

With FTL, we defined the winning condition to be White
achieving UCA for any number of stones within d moves
from the current position. For example, with d = 20, White
wins only if it is able to reach UCA within 20 moves. Given
multiple values of d, the problem setting is similar to de-
termining win/loss with multiple komi values, which can be
handled with multi-labelled value networks (Wu et al. 2018).

Given a position p, the value network head outputs a set of
additional d-win rates (the rates of winning within dmoves),
where d ranges from 1 to a sufficiently large number (set to
30 in our experiments). Namely, for all positions p during
the self-play portion of AlphaZero training, if White lives by
UCA at the d-th move from the current position, we count
one more d′-win for all d′ ≥ d, but not for all d′ < d. These
d′-wins are used to update the set of d-win rates of p. Hence,
White tends to win faster if their d-win rates are high for low
values of d.

To ensure self-play plays reasonably well under multiple
values of d, we apply a concept similar to dynamic komi
for multiple win rates (Baudiš 2011; Wu et al. 2018), where
we set the winning condition to dw-win, and dw is adjusted
dynamically during self-play. Usually, dw is adjusted such
that the win rate is close to 50% for balancing (Baudiš 2011).
The above can be applied to 19x19 L&D problems, with the
difference that a win is defined as achieving UCA for any
crucial stones.

Experiments
To demonstrate our RZ solver, we solve a collection of L&D
problems on 7x7 kill-all Go and 19x19 Go.

7x7 Kill-All Go L&D Problems
First, based on our program CGI (Wu, Wei, and Wu 2020),
we train two AlphaZero programs for 7x7 kill-all Go, one
with FTL and the other without FTL method, and chose
20 problems for 7x7 kill-all Go for analysis. A problem is
marked as proven if a program can prove it within 500,000
simulations. In addition, a transposition table is used to
record proven positions to prevent redundant search.

In this experiment, we compare versions with and without
FTL and RZS. The results, shown in Table 1, indicate that
RZS together with FTL solves all 20 problems.

19x19 Go L&D Problems
Next, we apply the RZS method to 19x19 Go L&D prob-
lems, which are widely-studied in the Go community. We
select problems from a well-known L&D problems book,
aptly named the ”Life and Death Dictionary”, written by

Cho Chikun [1987], a Go grandmaster; problem difficulties
range from beginner to professional levels. A total of 106
problems, where the goal is to keep any crucial stones alive
with UCA, were chosen. For simplicity, these problems do
not require seki or ko (SSK) to achieve safety.

We first incorporated our approach into a 19x19 Go
MCTS program that uses a pre-trained network with 20
residual blocks from the open-source program ELF OpenGo
(Tian et al. 2019). Second, we trained a 19x19 AlphaZero
Go program with the FTL method by using the problems
from the tsumego book The Training of Life and Death Prob-
lems in Go (Shao, Ding, and Liu 1991). The game ends im-
mediately if Black/White solves the L&D problems. We also
added two additional feature planes to represent the crucial
stones of each problem for both players.

We set up programs in a similar manner to those in 7x7
kill-all Go. The baseline is the program TSUMEGO EX-
PLORER (Kishimoto and Müller 2005b) (abbr. T-EXP),
which is a DF-PN based program with Go specific knowl-
edge, for which the search space needs to be manually des-
ignated. Since the problems cannot be used directly for ELF
OpenGo (the network is trained to play with a komi of 7.5)
and T-EXP (it requires limited regions surrounded by π#’s
stones), we modified the problems such that they satisfy the
requirements of these two programs. The time budget for
each move is limited to 5 minutes, the same as the setting
in (Kishimoto and Müller 2005b). Note that in 5 minutes,
about 150,000 simulations are performed using ELF and the
one trained with FTL. Results are shown in Table 1. Most
notably, our program can solve 68 problems with RZS and
FTL, 36 with RZS only (not FTL), and none without these
methods (ELF). In comparison, T-EXP can only solve 11
problems due to the large search space in the 19x19 board;
it outperforms ELF (without RZS nor FTL), most likely due
to its stronger domain knowledge.

The above L&D problems, statistics, and training details
can be accessed via the Github repository (Shih et al. 2021).

Discussion
Our approach RZS is general in the sense that it is applicable
to many other goal-achieving problems, in addition to Go
and Hex. A list of open issues worthy of further investigation
is as follows.
• Extend RZS to other goal-achieving problems for Go,

such as seki and SSK, to solve more L&D problems. In-
cidentally, many experts expect a win for White for 7x7
kill-all Go. If so, the success of this work will make it
more likely to solve 7x7 kill-all Go entirely.

• Apply RZS to other goal-achieving problems for other
games, such as Gomoku, Connect6 and Slither (Bonnet,
Jamain, and Saffidine 2015), and even other domain of
applications.

• Incorporate RZS into other search algorithms, such as
proof-number search (Allis 1994; Nagai 2002) or alpha-
beta search (Knuth and Moore 1975).

• Finally, it is worth investigating whether zone patterns
can act as features in pattern recognition to facilitate ex-
plainability in deep neural network training.

10368



Acknowledgements
This research is partially supported by the Ministry of
Science and Technology (MOST) of Taiwan under Grant
Numbers 110-2634-F-009-022, 110-2634-F-A49-004 and
110-2221-E-A49-067-MY3, and the computing resources
are partially supported by National Center for High-
performance Computing (NCHC) of Taiwan. The authors
also thank Professor Martin Müller and anonymous review-
ers for their valuable comments.

References
Agostinelli, F.; McAleer, S.; Shmakov, A.; and Baldi, P.
2019. Solving the Rubik’s cube with deep reinforcement
learning and search. Nature Machine Intelligence, 1(8):
356–363.
Allis, L. V. 1994. Searching for Solutions in Games and
Artificial Intelligence. Ph.D. thesis, University of Limburg,
Maastricht, The Netherlands.
Baudiš, P. 2011. Balancing MCTS by dynamically adjusting
the komi value. ICGA Journal, 34(3): 131–139.
Benson, D. B. 1976. Life in the game of Go. Information
Sciences, 10(2): 17–29.
Bonnet, É.; Jamain, F.; and Saffidine, A. 2015. Draws,
zugzwangs, and PSPACE-completeness in the slither con-
nection game. In Advances in Computer Games, 160–176.
Springer.
Campbell, M.; Hoane Jr, A. J.; and Hsu, F.-h. 2002. Deep
Blue. Artificial Intelligence, 134(1-2): 57–83.
Cho, C. 1987. Life and Death Dictionary, volume 1-2. Mer-
cury Publishing House. ISBN 9575611411,957561142X.
Coulom, R. 2006. Efficient selectivity and backup operators
in Monte-Carlo tree search. In 5th International Conference
on Computers and Games, 72–83.
Donninger, C. 1993. Null move and deep search: Selective
search heuristics for obtuse chess programs. ICGA Journal,
16(3): 137–143.
Hayward, R.; Björnsson, Y.; Johanson, M.; Kan, M.; Po, N.;
and van Rijswijck, J. 2003. Solving 7× 7 Hex: Virtual con-
nections and game-state reduction. In Advances in Com-
puter Games, 261–278. Kluwer Academic Publishers.
Hayward, R. B. 2009. A puzzling Hex primer. In Games
of No Chance 3, Proc. BIRS Workshop on Combinatorial
Games, 151–161.
Hayward, R. B.; and Van Rijswijck, J. 2006. Hex and com-
binatorics. Discrete Mathematics, 306(19-20): 2515–2528.
Heinz, E. A. 1999. Adaptive null-move pruning. ICCA Jour-
nal, 22(3): 123–132.
Kishimoto, A.; and Müller, M. 2003. Df-pn in Go: An ap-
plication to the one-eye problem. In Advances in Computer
Games 10, 125–141. Kluwer Academic Publishers.
Kishimoto, A.; and Müller, M. 2005a. Dynamic Decomposi-
tion Search: A Divide and Conquer Approach and its Appli-
cation to the One-Eye Problem in Go. In IEEE Symposium
on Computational Intelligence and Games (CIG’05), 164–
170. IEEE Press.

Kishimoto, A.; and Müller, M. 2005b. Search versus knowl-
edge for solving life and death problems in Go. In Twen-
tieth National Conference on Artificial Intelligence (AAAI-
05), 1374–1379. AAAI Press.
Knuth, D. E.; and Moore, R. W. 1975. An analysis of alpha-
beta pruning. Artificial Intelligence, 6(4): 293–326.
Nagai, A. 2002. Df-pn Algorithm for Searching AND/OR
Trees and Its Applications. Ph.D. thesis, University of
Tokyo, Tokyo, Japan.
Niu, X.; Kishimoto, A.; and Müller, M. 2005. Recognizing
seki in computer Go. In Advances in Computer Games, 88–
103. Springer.
Pijls, W.; and de Bruin, A. 2001. Game tree algorithms
and solution trees. Theoretical Computer Science, 252(1-2):
197–215.
Shao, Z.-Z.; Ding, B.; and Liu, Q.-Q. 1991. The Training
of Life and Death Problems in Go, volume 1-3. Chengdu
Times Press. ISBN 7805488444,7805488525,7805488533.
Shih, C.-C.; Wu, T.-R.; Wei, T. H.; and Wu, I.-C. 2021. Our
Approach. https://github.com/rockmanray/rzone. Accessed:
2021-12-09.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science,
362(6419): 1140–1144.
Stockman, G. C. 1979. A minimax algorithm better than
alpha-beta? Artificial Intelligence, 12(2): 179–196.
Thomsen, T. 2000. Lambda-Search in Game Trees—With
Application to Go. ICGA Journal, 23(4): 203–217.
Tian, Y.; Ma, J.; Gong, Q.; Sengupta, S.; Chen, Z.; Pinker-
ton, J.; and Zitnick, L. 2019. ELF OpenGo: an analysis and
open reimplementation of AlphaZero. In Proceedings of the
36th International Conference on Machine Learning, 6244–
6253.
van der Werf, E. C.; Van Den Herik, H. J.; and Uiterwijk,
J. W. 2003. Solving Go on small boards. ICGA Journal,
26(2): 92–107.
Wu, I.-C.; and Lin, P.-H. 2010. Relevance-Zone-Oriented
Proof Search for Connect6. IEEE Transactions on Compu-
tational Intelligence and AI in Games, 2(3): 191–207.
Wu, T.-R.; Wei, T.-H.; and Wu, I.-C. 2020. Accelerating
and improving alphazero using population based training.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, 1046–1053.
Wu, T.-R.; Wu, I.-C.; Chen, G.-W.; Wei, T.-h.; Wu, H.-C.;
Lai, T.-Y.; and Lan, L.-C. 2018. Multi-labelled value net-
works for computer Go. IEEE Transactions on Games,
10(4): 378–389.
Yoshizoe, K.; Kishimoto, A.; and Müller, M. 2007. Lambda
Depth-First Proof Number Search and Its Application to Go.
In Proc. of the 20th International Joint Conference on Arti-
ficial Intelligence (IJCAI-07), 2404–2409.

10369


