The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

On Probabilistic Generalization of Backdoors in Boolean Satisfiability

Alexander Semenov, Artem Pavlenko, Daniil Chivilikhin, Stepan Kochemazov

ITMO University, St. Petersburg, Russia
alex.a.semenov @itmo.ru, alpavlenko @itmo.ru, chivdan @itmo.ru, stepan.kochemazov@itmo.ru

Abstract

The paper proposes a probabilistic generalization of the
well-known Strong Backdoor Set (SBS) concept applied to
the Boolean Satisfiability Problem (SAT). We call a set of
Boolean variables B a p-backdoor, if for a fraction of at least
p of possible assignments of variables from B, assigning their
values to variables in a Boolean formula in Conjunctive Nor-
mal Form (CNF) results in polynomially solvable formulas.
Clearly, a p-backdoor with p = 1 is an SBS. For a given set B
it is possible to efficiently construct an (&, §)-approximation
of parameter p using the Monte Carlo method. Thus, we de-
fine an (e, §)-SBS as such a set B for which the conclusion
“parameter p deviates from 1 by no more than €” is true with
probability no smaller than 1 — §. We consider the problems
of finding the minimum SBS and the minimum (g, §)-SBS.
To solve the former problem, one can use the algorithm de-
scribed by R. Williams, C. Gomes and B. Selman in 2003. In
the paper we propose a new probabilistic algorithm to solve
the latter problem, and show that the asymptotic estimation
of the worst-case complexity of the proposed algorithm is sig-
nificantly smaller than that of the algorithm by Williams et al.
For practical applications, we suggest a metaheuristic opti-
mization algorithm based on the penalty function method to
seek the minimal (e, 0)-SBS. Results of computational ex-
periments show that the use of (g,d)-SBSes found by the
proposed algorithm allows speeding up solving of test prob-
lems related to equivalence checking and hard crafted and
combinatorial benchmarks compared to state-of-the-art SAT
solvers.

Introduction

It is well known that the Boolean satisfiability problem
(SAT) has an extremely wide range of practical applications.
Despite the NP-hardness of SAT, modern SAT solvers suc-
cessfully cope with Boolean formulas of large dimensions
and, as a result, can be used in diverse application areas,
such as symbolic verification, bioinformatics, cryptanalysis,
explainable Al, etc. In view of this, the development of new
and increasing the efficiency of known SAT solving algo-
rithms is an important and relevant area of research.

One of the natural approaches to solving SAT is the one
in which the original SAT instance (hereinafter we will as-
sume that it is in Conjunctive Normal Form, CNF) is split

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

10353

into a family of simpler formulas which differ from the orig-
inal in that the values of some variables are fixed. Some
examples of this approach are the so-called Partitioning
strategy (Hyvirinen, Junttila, and Niemeld 2010; Hyvérinen
2011) and Cube-and-Conquer (Heule et al. 2012). They both
work exceptionally well when combined with parallel com-
puting, because it is possible to solve the simplified prob-
lems independently of each other, making it possible to
tackle even very hard problems, see e.g. (Heule, Kullmann,
and Marek 2016; Heule 2018).

It is clear that we can always decompose a CNF formula
C' into a family of subformulas in such a way that each sub-
formula can be solved by some polynomial algorithm. In
the extreme case, if we use the whole set of variables in C'
for this purpose, then the subformulas will be easily solved
by means of Unit Propagation (UP) rule (Dowling and Gal-
lier 1984; Marques-Silva, Lynce, and Malik 2009). A more
practical class of decompositions which use poly-time algo-
rithms to solve subformulas was introduced in (Williams,
Gomes, and Selman 2003) and relies on the concept of
the so-called backdoor sets or “backdoors”. In particular, a
Strong Backdoor Set (SBS) is such a set of variables from
C that the substitution of any of their assignments into C'
results in a formula for which SAT is solvable by a poly-
nomial algorithm. Clearly, if there exists a small SBS, then
it guarantees a significantly smaller hardness of the formula
compared to p(|C|) - 21X, where X is the set of Boolean
variables occurring in C and p(-) is some polynomial. Non-
trivial SBSes arise in diverse contexts, e.g., they often can
be identified in SAT encodings representing algorithms in
symbolic verification or cryptography. In these cases, the
variables encoding the input of a function specified by the
considered algorithm form an SBS, and their share in the set
X can be as small as tenths of a percent.

A large drawback of SBSes and their variants is that in
the general case, the problem of finding such a backdoor is
computationally hard. A number of results that fit these is-
sues into the context of Structural Complexity can be found
in (Kilby et al. 2005; Hemaspaandra and Narvaez 2017,
2019, 2021). The works (Fichte and Szeider 2011; Gaspers
and Szeider 2012a,b,c; Misra et al. 2013) demonstrate the
relationship between backdoors and basic concepts of Pa-
rameterized Complexity. The article (Ansétegui et al. 2008)
notes that backdoors can be naturally used to measure the

hardness of CNF formulas, and also shows the relationship
between “backdoor-hardness” and other hardness measures
for SAT.

In the article (Semenov et al. 2021), based on the ideas
from (Ansétegui et al. 2008), a new measure of hardness
for CNF formulas was proposed w.r.t. an arbitrary complete
deterministic SAT solver: the so-called decomposition hard-
ness. The problem of evaluating the decomposition hardness
in (Semenov et al. 2021) was reduced to the optimization
of the pseudo-Boolean black-box function, which was car-
ried out using evolutionary algorithms. In (Semenov et al.
2018), a special class of backdoor sets was introduced that
enables one to estimate the hardness of cryptographic guess-
and-determine attacks (Bard 2009).

Unfortunately, even if a CNF formula has a relatively
small SBS, from (Williams, Gomes, and Selman 2003) it fol-
lows that finding such an SBS may take a colossal amount
of time. On the other hand, the approaches which employ
metaheuristic optimization to search for good decomposi-
tions (see e.g. (Semenov et al. 2021)) suffer from the fact
that the fitness functions that are used in such schemes are
quite costly. In the present paper we make an attempt to al-
leviate both listed drawbacks by introducing a probabilistic
generalization of SBS. Let us briefly list the main contribu-
tions of the paper.

I. We introduce the probabilistic generalization of SBS. In
particular, we define a p-backdoor for C' w.r.t. a polynomial
algorithm A as such a subset of variables B C X that the
fraction p € [0, 1] of 2/Z| subformulas resulting from fixing
values of variables from B in C can be solved by algorithm
A. The main attractiveness of this notion lies in the fact that
the parameter p can be efficiently estimated via the Monte
Carlo method. Clearly, an SBS in the sense of (Williams,
Gomes, and Selman 2003) is a p-backdoor with p = 1. We
define a special Monte Carlo test that allows constructing an
interval estimation of the parameter p. For fixede,d € (0,1)
we define an (e, d)-SBS as a set that passes the aforemen-
tioned Monte Carlo test, and thus for this set the value of p
deviates from 1 by no more than € with probability no less
than 1 — 6.

II. We define an (e, d)-analogue of minimum SBS to
which we refer to as the minimum (g,)-SBS with a proba-
bility of at least 1 —0*, where k € N is a constant which does
not depend on the size of the CNF formula C'. We propose an
algorithm which constructs such an (e, §)-analogue of min-

imum SBS in time O (p(|C|) k- %9/5) : Z‘X‘). At the

same time, it is easy to see that the time complexity of the
algorithm from (Williams, Gomes, and Selman 2003) when
it is used for finding the minimum SBS is O(p(|C|) - 31X1),
where p(-) is some polynomial.

III. For practical applications we propose a computational
algorithm for finding p-backdoors, which are similar to min-
imum (g, 0)-SBSes, and we refer to such backdoors as to
minimal (e,0)-SBSes. The algorithm is based on the ideas
used in metaheuristic black-box optimization. In particular,
we consider the problem of finding a minimal (&, 0)-SBS as
the problem of minimization of a special pseudo-Boolean
black-box function (fitness function). When defining this

10354

fitness function, we used the well-known penalty function
method (Nocedal and Wright 2006). We use evolutionary
algorithms to minimize this function.

IV. In the computational experiments we demonstrate the
practical effectiveness of the developed black-box optimiza-
tion algorithm in application to searching for minimal (&, §)-
SBSes. Also, we show that by exploiting the found sets
it is possible to significantly speed up state-of-the-art SAT
solvers on hard SAT instances.

Preliminaries

The SAT problem consists in determining the satisfiability
of an arbitrary Boolean formula. In the context of SAT it
is usually convenient to consider Boolean formulas in CNF.
A CNF is a conjunction of clauses, clauses are disjunctions
of literals, and literals are formulas x and —x, where z is
a Boolean variable. For an arbitrary CNF formula C' over
the set of Boolean variables X we will refer to an arbitrary
mapping «: X — {0,1} as to an assignment of variables
from X. An assignment « that makes C true is called a sat-
isfying assignment. If there exists a satisfying assignment
for C, then C is called satisfiable, otherwise it is called un-
satisfiable. SAT w.r.t. an arbitrary CNF formula consists in
answering the question whether C'is satisfiable or not.
Consider an arbitrary CNF formula C' over the set of
Boolean variables X . For an arbitrary B C X denote the set
of all assignments of variables from B by {0, 1}/7!. Next,
denote by C[3/B] the CNF formula obtained from C' by
substituting the values 3 € {0, 1}/ to variables from B.

It may turn out that for some B and 8 € {0,1}/5], SAT
for C[/B] is decidable by some polynomial algorithm A.
For example, this is the case if C[3/B] belongs to some
Schaefer’s class (Schaefer 1978). In the general case, it is a
very rare situation when A is able to solve SAT for C'[3/B]
for any possible 5. For example, consider the iterative appli-
cation of UP as A. For some 3-s, UP may output a satisfying
assignment for C or prove unsatisfiability of C[3/ B], but for
other (3-s the result will be “Unknown”, indicating that UP
is not powerful enough for the considered CNF formula and
cannot decide the satisfiability of corresponding C'[3/B].

Hereinafter, C[3/B] € S(A) denotes that SAT for
C[B/B] is solvable by some polynomial algorithm (often
referred to as subsolver) A. The basic ideas used below go
back to the article (Williams, Gomes, and Selman 2003)
which introduced the concept of backdoors to Constraint
Satisfaction Problems.

Definition 1 ((Williams, Gomes, and Selman 2003)). Let C
be an arbitrary CNF formula over the set of Boolean vari-
ables X. We call the subset B C X a strong backdoor
set (SBS) for C' w.r.t. polynomial algorithm A, if for any
B € {0,1}B! the following holds: C[3/B] € S(A).

The article (Williams, Gomes, and Selman 2003) pro-
posed an algorithm for finding SBSes that can be used to
solve SAT for an arbitrary CNF formula. This algorithm pro-
cesses the subsets of the set of variables X of increasing car-
dinality. For each such subset B C X it checks whether B
is an SBS. In the worst case, the corresponding procedure

needs to check if C[3/B] € S(A) for all 3 € {0,1}IBl,
The complexity of solving SAT using the Williams et al. al-
gorithm under the assumption that C has an SBS B: |B| <

|B|
|X'|/2 is bounded from above by p(|C|) (2\X|/\/ \B\) ,

where p(-) is some polynomial.

In the paper (Ansétegui et al. 2008) it was noted that a
particular SBS can be used to construct an estimate of CNF
formula hardness. The following definition directly follows
from the results of (Ansétegui et al. 2008).

Definition 2 (backdoor-hardness). Let C' be an arbitrary
unsatisfiable CNF formula and B be an arbitrary SBS for
C w.rt. a polynomial algorithm A. Denote the total run-
time of A on CNF formulas {C[3/B]| 8 € {0,1}/ZI} by
78,4(C). The backdoor hardness of C w.r.t. A is specified as
T4(C) = mingeox 7p, 4(C'), where the minimum is taken
among all possible SBSes for C' w.r.t. A.

In the next section we describe the proposed probabilistic
generalization of the SBS and its theoretical properties.

Probabilistic Backdoors
Let us start by introducing the notion of p-backdoors.

Definition 3 (p-backdoor). Let C' be a CNF formula over
Boolean variables X and let A be some polynomial algo-
rithm. The set B C X is called a p-backdoor (p € [0, 1])
w.r.t. A if the fraction of CNF formulas C'[3/B] that belong
to S(A) over all possible 5 € {0, 1}!Bl is at least p.

It is easy to see that a p-backdoor with p = 1 is an SBS
in the sense of (Williams, Gomes, and Selman 2003). The
issue with p is that to compute its value it is necessary to
process all 2|51 CNF formulas C[3/B]. However, below we
show that to estimate this parameter, we can use the Monte
Carlo method (Metropolis and Ulam 1949). More precisely,
we build the so-called (&, §)-approximations of p by observ-
ing realizations of independent probabilistic experiments.

On (g, §)-approximations for p-backdoors

The approach developed further is conceptually close to the
one used in (Karp and Luby 1983; Karp, Luby, and Madras
1989) for solving the Counting SAT (namely, #DNF) prob-
lem. In the latter paper, the term “probabilistic (g,d)-
approximation algorithm” was used. Assume that we ob-
serve a random variable &, and want to estimate its charac-
teristic 6 (e.g. expected value). Suppose that § is estimated
using the value 6, constructed on the basis of observations of
¢ in independent probabilistic experiments. Then, for given
g,0 € (0, 1), the value 0 is called an (&, §)-approximation of
0 if the following relation holds:

Pr [(1—5)-9§§§ (1+5)-9} >1-06, (1)
or, equivalently, Pr {\5 -0 <e- 9} > 1 — 6. Values € and
1 — ¢ are called tolerance and confidence level, respectively.

In some cases, for relating 6 and @ it is convenient to use
a condition that is, in general, weaker than (1):

Pr[\§—9|§5}21—5. @)

10355

If (2) holds for some fixed €, € (0, 1), then we will call ¢
the weak (e, 0)-approximation of 6.

As we will see later, the random variables for which we
estimate parameters are Bernoulli variables: they take values
from {0, 1}. In this case, to construct specific estimates of
the form (1) and (2), we will use the well-known Chernoff’s
inequality (Motwani and Raghavan 1995; Goldreich 2008;
Arora and Barak 2009). It should be noted that the form of
this inequality varies greatly from source to source. Further,
we use Chernoff’s inequality in a form that is close to the
one considered in (Karp, Luby, and Madras 1989).

Theorem 1 (simple forms of Chernoff’s bound!). Let
&1, ..., EN be independent, identically distributed Bernoulli
random variables with success probability p. Then, for any
€:0 < e £ 2, the following inequalities hold:

N
1 —Npe? /4
Pr N_Zgjip <e-p| >1—2.eNrs /4,
Jj=1
1 & 2
—Ne?/4
Pr Nj;fj—p <e|>1—2.eNe/4,

Thus, the mean value over a series of independent obser-
vations of a Bernoulli random variable can be used as an
(e, d)-approximation or a weak (g, §)-approximation of the
probability of success (expected value) of this random vari-
able.

A basic observation used below is that we can efficiently
construct weak (g, 0)-approximations for parameter p. In-
deed, consider SAT for an arbitrary CNF formula C' over
the set of variables X and let B, B C X, be some p-
backdoor w.r.t. some polynomial algorithm A. Let us define
on {0, 1}!BI a uniform distribution and associate with each
B € {0, 1}!5! the value of the following random variable &

(1, ifC[B/B] € S(A);
¢s(B) = {07 if C[3/B] ¢ S(A).

Clearly, {5 is a Bernoulli random variable with success
probability p = FE[{g]. Further we will use the following
fact which directly follows from Theorem 1: if we fix ar-
bitrary £,0 € (0, 1), then the runtime of the algorithm that
calculates the value p for which Pr{|p — p| <¢/2] > 1 -4

will be bounded from above by poly(|C|) - %22/5).

It should be noted that one can attempt to use a p-
backdoor B with p close to 1 in a similar fashion to an or-
dinary SBS: indeed, in this case, to solve SAT for the over-
whelming majority of CNF formulas of the form C[5/B] €
S(A) it is sufficient to use the polynomial algorithm A, and
tackle the remaining “hard” CNF formulas C[3/B] ¢ S(A)
by a complete SAT solving algorithm.

Thus, from a practical point of view, p-backdoors with p
close to 1 appear to be the most useful, and below we fo-
cus on ways to construct them. Our first goal is to define an

"For proof, see https:/github.com/ctlab/evoguess/releases/
download/v2.0.0/AAAI22_Technical_appendix.pdf

(€, d)-analogue of SBS. From the above it appears sensible
to define an (e, §)-SBS as such a p-backdoor B, B C X, for
which the conclusion that p € [1 — &, 1] is valid with high
probability.

Definition 4. For fixed B € 2% let us define the follow-
ing Monte Carlo test: fix £,0 € (0,1) and conduct N in-
dependent observations of random variable £5: &1, ..., &N,

where N = {M—‘ Let us calculate the value p =

2
% Z;\Ll &;. We will say that B passes the Monte Carlo test
ifpe(l—e/2,1].
Directly from Theorem 1 we have the following fact.

Corollary 1. If B passes the Monte Carlo test described
above, then the conclusion that p € [1 — ¢,1] is true with
probability no smaller than 1 — § (accordingly, the probabil-
ity of it being wrong does not exceed §).

Using the introduced notions let us give the definition of
an (g,9)-SBS.

Definition 5. For fixed €, € (0,1) let us say that set B,
B C X is an (g,0)-SBS if B passes the Monte Carlo test
described above and thus the conclusion that p € [1 — ¢, 1]
is true with probability no smaller than 1 — 4.

Below we consider the problem of searching for the mini-
mum SBS which plays the crucial role in the definition of
backdoor-hardness (see Definition 2), and the problem of
searching for an (e, §)-approximation of such an SBS.

Finding the Minimum SBS

Let us refer to an SBS with minimum cardinality as to the
minimum SBS. Although the problem of finding the mini-
mum SBS was not considered directly in (Williams, Gomes,
and Selman 2003), the algorithm described in that paper can
be used to solve it. This algorithm sequentially iterates over
all subsets in X of increasing cardinality: first, sets of one
variable, then of two variables, etc. For each subset, the al-
gorithm checks whether it is an SBS or not. Clearly, the first
SBS to pass this check is the minimum SBS. The following
fact holds.

Theorem 2. The time complexity of the algorithm for find-
ing the minimum SBS from (Williams, Gomes, and Selman
2003) is O(p(|C|) - 3X1) for some polynomial p(-).

Proof. The worst case corresponds to the situation when the
whole set X is the only SBS. In this case, the algorithm se-
quentially enumerates all sets with cardinality from 1 to | X|.
Suppose that for each set B of cardinality ¢,¢ < | X/, the al-
gorithm checks almost all vectors in {0, 1}? before verifying
that B is not an SBS. In this case, the number of performed
operations will be close to the following value:

|X|

p(IC) Y

i=1

(") -2 =0 (sticn-),

where p(-) is a polynomial that bounds the complexity of
substituting an assignment of variables from B into C. [J

10356

At first glance it is not clear how to define an (g,0)-
analogue of a minimum SBS. Intuitively, it should be an
(e,0)-SBS for which there are some arguments that justify
the nonexistence of a smaller (¢,4)-SBS. In order to con-
struct such arguments we require the following auxiliary no-
tion.

o
=

Definition 6. Let us refer to a set B, B
(€,0)-SBS candidate if for fixed €,6 € (

[%—‘ the following condition holds:

C X, as to
0,1) N

N
1
Pril-5-> &<e/2[21-0.

j=1

Now let us consider the following algorithm which is
essentially an analogue of the algorithm from (Williams,
Gomes, and Selman 2003). Consider the subsets of X of in-
creasing cardinality in the role of B: first all subsets of size
1, then the subsets of size 2, etc.

Let us fix £,6 € (0,1) and N = {%(22/5)—‘ If for

B € 2X we have N > 2!Bl then we check if for every
B € {0,1}/Bl it holds that C[3/B] € S(A). If in the first
run the algorithm found an SBS B such that 218l < N, then
it terminates and outputs B as an answer. This is the trivial
case.

Next, suppose that an SBS B : 2/l < N does not exist.
For each B : 2/Bl > N we conduct the Monte Carlo test
described in Definition 4. If B passes this test, i.e. B is an
(,6)-SBS, then the algorithm outputs B as an answer and
terminates.

Let us perform £ runs of the described algorithm. Assume
that By,..., By are the constructed (e, 5)-SBSes. Choose
among them an SBS of minimum cardinality and denote it
as B,. We can make the following conclusion: that there
are no (g,0)-SBS candidates with cardinality smaller than
| B.|. Assume that this conclusion is wrong and there exists
an (e, 0)-SBS candidate B': |B'| < |B,|. However, in this
case the probability that the set B’ does not pass the Monte
Carlo test is smaller than ¢, and the probability that B’ does
not pass k independent tests of this kind is smaller than &*.
This is exactly the probability that the conclusion is wrong.
Thus the set B, has the following properties: it is an (e, §)-
SBS and with probability no smaller than 1 — 6* there are
no (e, §)-SBS candidates with cardinality smaller than | B.|.

Definition 7. Let us say that the set B, found by the al-
gorithm described above is a minimum (g, §)-SBS with a
probability of at least 1 — §%.

Since the total number of Monte Carlo tests within a sin-
gle run of the described algorithm does not exceed 2!/, the
following theorem holds.

Theorem 3. The time complexity of the algorithm
for constructing a set B, which is a minimum
(¢,6)-SBS with a probability of at least 1 — &% is

@] (p(|C|) k- %(f/é) . 2|X|> for some polynomial p(-).

Using Several p-Backdoors to Solve SAT

If B is some p-backdoor with p close to 1, e.g. an (g, d)-
SBS, then a natural way of using B to increase the efficiency
of solving SAT for formula C is the following: we solve
most of the problems C[3/B] (for which C[8/B] € S(4))
using a polynomial algorithm A, and to the remaining small
number of “hard” problems C[5/B] ¢ S(A) we apply some
complete SAT solver. However, we do not know anything in
advance about the “hard” problems. They may well turn out
to be too difficult and then the use of the backdoor may not
be beneficial.

Imagine now that we have a set of several different (¢, §)-
SBSes: A = {By,...,Bs}. Foreachi € {1,...,s} we
can solve SAT using the polynomial algorithm A for CNF
formulas C[5/B;] € S(A). Denote by T'; the set of all
B € {0,1}/B:l such that C[3/B;] ¢ S(A). Construct the
Cartesian product of all such sets I';: I' = I'y x ... x Iy,
and consider an arbitrary CNF formula C[~], v € T', derived
from C by substituting the values ~y of variables from A.

Note that, in general, much more information is sub-
stituted into C[y] than into each formula C[3/B;], i €
{1,...,s}:indeed, if B;,NB; = P foranyi,j € {1,...,s},
1 # j, then each CNF formula C[y], v € T, is derived from
C by substituting values of >.°_, | B;| variables. It is not
hard to see that C' is unsatisfiable if and only if all formulas
C[B/B;] € S(A) for all i € {1,...,s} are unsatisfiable,
and also all formulas C'[], v € T, are unsatisfiable. If |T'| is
relatively small (for small €), the total complexity of check-
ing all of the above cases can be significantly smaller than
the SAT solving time for the original CNF formula.

Also note that in practice backdoors may intersect: there
may exist such B; and B, that B; N B; # () for some
1,7 €{1,...,s},7 # j.Inthis case, I" will contain some as-
signments y with contradictory literals of the common vari-
ables. However, these cases are almost instantly processed
by a SAT solver and do not require any special treatment.

In fact, one can view the set of variables B = | J;_, B; as
some p-backdoor, for which we construct the set of problems
C[B/B] € S(A) in a compound fashion because the size of
B is too large to do it the usual way.

Searching for Probabilistic Backdoors via
Black-Box Optimization

In this section, we formulate the basic ideas behind the al-
gorithms for seeking (&, d)-SBSes which can be applied to
practical SAT instances. The algorithm for finding the min-
imum (g,0)-SBS described above is of mostly theoretical
interest. For practical applications of the probabilistic gen-
eralization of SBS introduced above, we need to make the
following steps. First, instead of enumerating all possible
backdoors of increasing size, we will employ the strategies
used in metaheuristic optimization (Luke 2015). Second, we
introduce a special fitness function which uses the statisti-
cal estimation of p. Then, we can minimize this function
over a Boolean hypercube using metaheuristic optimization
algorithms. This process can be interrupted once the num-
ber of iterations exceeds some limit. Finally, we refer to a

10357

set B (viewing it as a point of a hypercube) with the mini-
mal value of the fitness function w.r.t fixed £,0 € (0,1) and

N = [%—‘ as to a minimal (e, 0)-SBS.

Consider 2%, the set of all subsets of X. Each B € 2%
can be represented as a Boolean vector A\p of length |X|.
Thus, the search space {0, 1}/X! consisting of all such vec-
tors is formed. If some x; € X belongs to B, then the i-th
coordinate in vector \p equals 1, otherwise it equals 0.

Fitness Function

In our case, the fitness function takes as input the CNF for-
mula C, the polynomial algorithm A, and the vector A rep-
resenting a p-backdoor, for which we can estimate the value
of p. In the problem of finding a minimal (g, 0)-SBS, we
have two optimization criteria of equal importance, the size
of the set and the (estimated) value of p (p): the smaller the
size of the set and the larger the value of p, the better. In
addition, for backdoors of equal size we want to introduce a
heavy penalty for the ones with lower estimated values of p.

Summing up, our fitness function is computed in the fol-
lowing way. For an arbitrary Ap we first construct the set
B specified by this vector, and generate the random sample
Bi,...,Bn € {0,1}/Bl w.rt. the uniform distribution de-
fined on {0, 1}B]. Next, we calculate jp = (X1, &)/N
using algorithm A. The fitness function has the form:

Foan(Og) =pp - 28+ Goan(Op). 3)

Here, Gc.a n(Ap) is a penalty function (Nocedal and
Wright 2006) whose value sharply increases if the random
sample 1, ..., By contains at least one 5 € {0, 1}‘B| such
that C[5/B] ¢ S(A). When pp = 1, i.e. when B is an
SBS, the value of (3) must be equal to the number of all
possible assignments of variables from this SBS. Also, if for
all B1,...,0n we have C[B/B;] ¢ S(A),j € {1,...,N},
then it is reasonable to consider the corresponding A as un-
promising. Taking this into account, in the experiments we
used penalty functions of the following form:

(1—pp)-2¢Xl if pg > 0;

4
o0, if[)B:O.’ ()

Geoan(A) = {

where w € [0,1] is a parameter which can be heuristically
selected for each specific CNF formula.

Additionally note that (3) is a multivalued function: for
Ap we can generate different random samples and the cor-
responding values of (3) may differ.

Used Black-Box Optimization Algorithms

The fitness function (3) is a pseudo-Boolean black-box func-
tion for which no analytical properties are known. Thus, to
minimize it, one can apply any algorithms used in meta-
heuristic optimization (Luke 2015). In our experiments, we
used the well-known (1+1)-evolutionary algorithm ((1+1)-
EA) (Miihlenbein 1992; Droste, Jansen, and Wegener 2002)
and also one variation of the genetic algorithm (GA).

(1 + 1)-EA is based on the idea of random mutation.
The mutated individual is an arbitrary Boolean vector o €

{0,1}™, in which each bit is independently flipped with a
fixed probability. Usually, the probability of mutation is set
top = % In this case, the expected value of the number of
bits flipped during a single mutation of « is 1, and thus, on
average, the (1 + 1)-EA performs in a similar fashion to the
Hill Climbing local search algorithm (Russell and Norvig
2010). However, unlike Hill Climbing, (1 + 1)-EA has a
non-zero probability of moving to an arbitrary point from
{0,1}" in one step.

(1 + 1)-EA is extremely inefficient in the worst-case
scenario (Droste, Jansen, and Wegener 2002). However, in
many practical cases it can work surprisingly well. There are
a number of modifications of (1 + 1)-EA which have sig-
nificantly better worst-case estimations. One of such well-
known modifications is the (1 + 1)-Fast Evolutionary Algo-
rithm ((1 + 1)-FEA) described in (Doerr et al. 2017).

In our computational experiments, the best results were
obtained using one variant of a GA, which used a mu-
tation operator proposed in (Doerr et al. 2017). The GA
works with a population consisting of several vectors Ag €
{0,1}1X" representing some p-backdoors. Let Puy =
{)\Bl, ..+ ABg } be the current population of the GA. The
next population P, such that | Peyy| = |Prew| = @ is con-
structed in the following way. The population Py, is asso-
ciated with a distribution Dy = {p1,...,p0Q}:

_ 1/Fo an(AB;)
> (1/Fean(As,))

The algorithm selects individuals from P, randomly and
independently according to the distribution Dy, and ap-
plies the standard two-point crossover (Luke 2015) to each
selected pair, producing a pair of child individuals. After-
wards, a mutation operator is applied to both children. Then,
the constructed set of individuals is extended with H indi-
viduals from P, which have the best values of the fitness
function. This step corresponds to the elitism concept (Luke
2015). At the same time, we need to guarantee that the fol-
lowing condition holds: G + H = Q. As a result, we have
a new population P . In the experiments, we used) = 8§,
H =2

Di ,iE{l,...,Q}.

Computational Experiments

In all computational experiments, we used the Unit Prop-
agation rule as the polynomial algorithm A for identifying
subproblems C|[3/B] such that C[3/B] € S(A), and used
modern CDCL SAT solvers to solve SAT for CNF formulas
C[B/B] ¢ S(A). To find good (e, §)-SBSes (p-backdoors
with p close to 1), we minimized the function (3) using the
algorithm described in the previous section.

We experimented with two approaches to selecting the
initial candidate solution: 1) start the search from the set
B = X, and 2) start the search from an empty set B = ().
In the first case, the algorithm always starts discarding some
variables, lowering the cardinality of B (during a series of
initial iterations, p = 1). In the second case, on the contrary,
the algorithm starts adding new variables to the current back-
door, and thus, for some initial iterations we have p = 0.

10358

The strategy 2 is well-adapted to cases when a small
(e,8)-SBS exists: such a backdoor can be found quite
rapidly. The other strategy requires more computational re-
sources, but sometimes allows finding backdoors with p
much closer to 1 than in the case of strategy 2.

Note that the use of weak (e, §)-approximation allows one
to a priori guarantee any level of estimation accuracy for p,
regardless of the size of the considered backdoor. Indeed,
e.g., for making probabilistic conclusions of the mentioned
form with parameters ¢ = 0.01 and § = 0.1, it is sufficient to
use a random sample size of at least 10*-16-1n 20 ~ 4.8-10°.
In the reported experiments we started the search from the
empty backdoor (strategy 2), and initially used random sam-
ples of size of N = 4000: for small backdoors B (|B| < 11)
that are generated in the early stages of the algorithm, this
value provides an exact computation of p. We also doubled
the value of N if for the current value we had pp 1, at
the same time keeping N within the theoretical bound cal-
culated above. When the algorithm terminated, we ensured
the exact calculation of p for any constructed backdoor B by
solving all 217! subformulas with a UP solver (in the exper-
iments, the resulting | B| was quite small).

Note that a considerable advantage of the proposed ap-
proach over other conceptually similar ones, e.g. (Semenov
and Zaikin 2016; Kochemazov and Zaikin 2018; Semenov
et al. 2021), is that computing functions (3) is cheap: in the
experiments, strategy 2 gave good results even for formulas
with several thousand variables.

Implementation Details

The proposed approach was implemented in Python in
the form of a multi-threaded application EvoGuess?, us-
ing PySAT (Ignatiev, Morgado, and Marques-Silva 2018)
for interfacing with SAT solvers. We used incremental SAT
solvers that are available in PySAT: namely, we mainly ran
Glucose 3.0 (g3), Glucose 4.1 (g4), and CaDiCaL 1.0.3 (cd),
though we also used Minisat 2.2 (m22) in one experiment.
Preliminary experiments were done using one node of the
HPC-cluster “Academician V.M. Matrosov” (with two 18-
core Intel Xeon E5-2695 CPUs). For main experiments, we
used one node of a computing cluster in ITMO University
equipped with an Intel Xeon Gold 6248R CPU @ 3.00 GHz.

Benchmarks

In the experiments, we considered several classes of unsat-
isfiable CNF formulas. This choice is motivated by the fact
that for satisfiable formulas the behavior of SAT solvers
is highly irregular: in some cases, the algorithm can get
“lucky” and find a satisfying assignment very quickly, and in
other ones can run much longer. The first set of benchmarks
belongs to the general class of equivalence checking in-
stances (Kuehlmann and Krohm 1997; Molitor and Mohnke
2007). Essentially, they consist in the following. Two dis-
crete functions are considered: f : {0,1}" — {0,1}" and
g : {0,1}" — {0,1}™. Assume that they are defined by
Boolean circuits Sy and S,. The goal is to prove either that

2https://github.com/ctlab/EvoGuess/releases/tag/v2.0.0
*Irkutsk Supercomputer Center of SB RAS, http://hpc.icc.ru

Instance |X| g3 g4 cd
PvS,, 1213 936 1440 736
BvPyg 1315 3232 3325 1287
BvPs7 1558 1225 1533 526
BvS;7 2007 2342 1621 606
pmgl2 190 > 72h > T72h 41915
par9 162 > 24h > 24h 39541

sgenldy 150 11365 2365 3139

PHPi31, 156 8496 14196 164

PHPi514 210 > 24h > 24h 2543

Table 1: Solving times in seconds of the considered CNF
formulas by SAT solvers g3, g4, cd

f and g implement the same function, i.e. that f 2 g (point-
wise equality is implied), or to refute this assumption. In
the first case, Sy and S, are called equivalent. We consid-
ered the equivalence checking problem for circuits Sy, S,
where f and g are different algorithms for sorting d arbi-
trary [-bit natural numbers, i.e. f,g : {0,1}* — {0,1}*,
where £ = d - [. In the role of f and g, we used the func-
tions defined by sorting algorithms: Bubble sorting, Selec-
tion sorting (Cormen, Leiserson, and Rivest 1990), and Pan-
cake sorting (Gates and Papadimitriou 1979). The corre-
sponding circuits were constructed in form of And-Inverter
Graphs (over the basis {—, A}). Below, we refer to the con-
structed instances as to PvS4 ; when the considered problem
encodes the equivalence of Pancake sorting and Selection
sorting, BvP4; for Bubble sorting vs Pancake sorting, and
BvS4,1 in case of Bubble sorting vs Selection sorting.

We also considered some crafted tests: sgen (Spence
2015, 2017), Pigeonhole Principle formulas (PHP), Parity
principle (par9), and pmg12 from SAT competition. Table 1
shows solving times of the considered CNF formulas with
selected SAT solvers.

Finding Probabilistic Backdoors

In this section, we report the main experimental results on
finding p-backdoors with p close to 1. In each experiment,
for each CNF formula we 1) simplified the formula with
SatELite/Minisat, 2) ran the backdoor search using the pro-
posed metaheuristic algorithm (initializing with the empty
backdoor, i.e. strategy 2), and then 3) solved the weakened
subformulas C[3/B] for the best found (according to p) p-
backdoor B using different SAT solvers.

As a result of the last step, we calculated for each SAT
solver A and each p-backdoor B the ratio rp_4 further re-
ferred to as the decomposition rate: the time used to solve
the formula with the backdoor B (via solving all weak-
ened formulas C[S/B] with solver A) divided by the the
time used to solve the original CNF formula with the same
solver. Cases when g 4 < 1 indicate situations when solv-
ing with the backdoor is faster than solving the original for-
mula with a conventional SAT solver. Note that since the
backdoor search does not depend on the used SAT solver,
we may search for a backdoor once and then use it to solve
the original CNF formula with any available SAT solver.

As a preliminary experiment, we ran the GA and (1 4 1)-

10359

Instance |X| |B| p Solver rpa
12 09960 g3 0.45
13 0.9968 g4 0.30
PvSir 1213 15 09960 cd 0.68
12 09941 m22 0.39
12 09987 ¢3 081
BvPyg 1315 12 0.9987 g4 0.98
11 09926 cd 0.77
12 09970 g3 0.74
BvPg 7 1558 12 0.9970 g4 0.69
12 09970 cd 0.91
pmgl2 190 13 0.9882 «cd 0.23
13 09816 g3 0.25
sgenld 150 13 09824 g4 0.27
13 09648 cd 0.38
PHPi34, 156 9 09804 cd 0.34
PHPi544 210 9 09804 cd 0.91

Table 2: Decomposition rates of p-backdoors

EA on the PvS, 7 instance, which is the simplest (in terms of
SAT solving time) formula considered. Each algorithm was
independently run five times, each run was limited to 2 h us-
ing 16 threads. For each run of each algorithm, we selected
the p-backdoor with the best value of p and calculated the ra-
tio rp 4. We observed that rg 4 of backdoors generated by
the GA were about two times smaller than of the ones gener-
ated by the (14 1)-EA. Therefore, in all further experiments
we only used the GA.

As it was mentioned above, the value of w|X| should
be empirically selected for each particular problem. Com-
mon sense suggests: if we want to find a p-backdoor B with
|B| close to a € N and with p close to 1, then the value
w| X | should be close to a. Otherwise, the rapidly growing
value of penalty will drive the search from the points with
values close to 2¢. Taking this into account, in our exper-
iments we used w|X| € {15,20}, so that the size of the
found p-backdoors allowed to solve all weakened subfor-
mulas C[8/B] and C[y].

Experimental results are summarized in Table 2: for each
SAT instance, it shows its number of variables after simpli-
fication, the size |B| of the found p-backdoor, its p value,
and the ratio 7p, 4 for different SAT solvers. Each GA run
was allotted 0.5-6 hours of cluster time (depending on the
formula) using 16 threads. Data shown in Table 2 indicates
that the proposed approach allows finding p-backdoors with
p very close to 1, and that these backdoors allow speeding
up state-of-the-art SAT solvers.

Solving SAT with Several p-backdoors

In this section, we describe the experiments on solving SAT
using several p-backdoors with the method proposed above.
For a given CNF formula, we launched s searches for p-
backdoors, each for the same 0.5-6 hours. As a result, we
got a set of s different p-backdoors A = { By, ..., Bs}.
For each resulting set of s backdoors, we 1) determined
all hard problems C[3/B;] ¢ S(A),i € {1,...,s} (by ap-

g3
g4
1034 . » «d
:’5 > E m22
E 1o B
|_ »
> .
- < i 4 >
102 T T T : . .
0 1 2 3 4 5

Number of backdoors

Figure 1: Solving PvS,; with combinations of several p-
backdoors using solvers g3, g4, cd, m22

Instance |X| s IT| Solver 7a 4
4 6x10° g3 019
5 1x10 g4 0.11
PuSer 235 1510 e« 027
5 1x105 m22 006
3 2x10° g3 0.59
BuSzz 2005 5 T35 a4 054
4 31x107 g3 <0.01
4 31x107 g4 <0.1
pugl2 190 4 0 %107 od 034
2 4536 od 021
8 1x10° g3 <0.77
pard 162 5 07 «d 036
2 2x10° g3 020
150
sgenioo 150 5 5905 @4 026
7 1x107 g3 0.74
6 1x10°5 g3 054
PHPiziz 156 ¢) g0 g4 012
5 1x10° od 012
PHP;s 14 210 6 1x105 od 036

Table 3: Decomposition rates for sets of p-backdoors

plying a UP solver), 2) built the Cartesian product I', and
3) solved all formulas C[v] using a SAT solver. The plot in
Fig. 1 shows results of experiments with PvS, 7, where we
did s = 5 runs of the backdoor search, and then consid-
ered all possible k-combinations (1 < k < 5) of these 5
backdoors. The plot shows the time used to solve SAT with
different solvers for PvS, 7: each point corresponds to the
solving time with a specific set A. Results indicate that com-
binations of backdoors provide a significant advantage over
using individual backdoors in terms of total solving time.

Table 3 shows the results on solving other formulas using
several p-backdoors. To represent the efficiency gain from
using several backdoors A, we introduce the ratio ra 4.
For each instance, the table shows the number of combined
backdoors s, the cardinality of the set I', and the resulting
ratio ra 4 for different solvers.

Most notably, in some cases we found sets A that al-
lowed solving very hard SAT instances. In particular, for

10360

pmg12 neither g3 nor g4 found a solution in more than 72 h,
whereas a set of four p-backdoors allowed finding a solution
in a matter of minutes for g4 and hours for g3, despite that
the corresponding set I' contained more than 3.1 x 107 as-
signments. The same goes for par9 with g3. This inspiring
result allows one to expect that the proposed method may
extend the area of applicability of SAT solvers, at least in
some domains involving very hard unsatisfiable formulas.

Discussion & Conclusion

In this paper, we defined and studied a new form of back-
door set in the context of the Boolean Satisfiability problem.
We defined a p-backdoor as such a subset of the set of vari-
ables of the formula that a fraction of at least p of assign-
ments of variables from B, when substituted to the original
formula, result in formulas solvable by a polynomial algo-
rithm. We also proposed an efficient (£, §)-approximation
algorithm to estimate p, and also an algorithm for finding
(e, d)-approximations of Strong Backdoor Sets in the sense
of (Williams, Gomes, and Selman 2003) of minimum car-
dinality. The proposed algorithm has a significantly better
upper bound compared to the algorithm by Williams et al.,
if we use the latter to search for the minimum SBS. To find
backdoors in practice, we proposed to use metaheuristic al-
gorithms that minimize a specially formulated fitness func-
tion. Experiments showed that the proposed algorithm al-
lows finding p-backdoors with p close to 1 for hard unsat-
isfiable SAT instances in several hours of runtime of a sin-
gle cluster node. We used the found p-backdoors to solve
the original SAT instance by first processing all possible as-
signments of variables via Unit Propagation rule to identify
the hard subproblems, to which we then applied CDCL SAT
solvers. In the majority of cases, the total runtime of a solver
when using such a backdoor to produce and solve subfor-
mulas C[3/B] is significantly smaller than its runtime on
the original formula. We also described a method that al-
lows using several found backdoors simultaneously to gain
an even larger speedup.

In the future, one could replace the UP rule by a com-
plete SAT solver in a limited setting, e.g. so that the number
of conflicts does not exceed some constant. The concepts
of SBS, p-backdoors, and other theoretical results from the
paper can easily be transferred to this case. In particular,
we can analyze the problem of finding a minimum (g, ¢)-
approximation of a backdoor in such a form and prove a re-
sult similar to Theorem 3. The proposed metaheuristics can
also be adapted to finding backdoors of this type.

Acknowledgements

This work was supported by the Analytical Cen-
ter for the Government of the Russian Federation
(IGK 000000D730321P5Q0002), agreement No. 70-2021-
00141.

References

Ansétegui, C.; Bonet, M. L.; Levy, J.; and Manya, F.
2008. Measuring the Hardness of SAT Instances. In AAAI,
222-228.

Arora, S.; and Barak, B. 2009. Computational Complexity:
A Modern Approach. Cambridge University Press.

Bard, G. V. 2009. Algebraic Cryptanalysis. Springer Pub-
lishing Company, Incorporated, 1st edition.

Cormen, T.; Leiserson, C.; and Rivest, R. 1990. Introduction
to Algorithms. MIT Press.

Doerr, B.; Le, H. P.; Makhmara, R.; and Nguyen, T. D. 2017.
Fast Genetic Algorithms. In GECCO, 777-784.

Dowling, W. E.; and Gallier, J. H. 1984. Linear-time algo-
rithms for testing the satisfiability of propositional Horn for-
mulae. The Journal of Logic Programming, 1(3): 267 — 284.

Droste, S.; Jansen, T.; and Wegener, 1. 2002. On the Analysis
of the (1+1) Evolutionary Algorithm. Theor. Comput. Sci.,
276(1-2): 51-81.

Fichte, J. K.; and Szeider, S. 2011. Backdoors to Tractable
Answer-Set Programming. In IJCAI, 863-868.

Gaspers, S.; and Szeider, S. 2012a. Backdoors to Acyclic
SAT. In ICALP, 363-374.

Gaspers, S.; and Szeider, S. 2012b. Backdoors to Satisfac-
tion. In The Multivariate Algorithmic Revolution and Be-
yond, 287-317.

Gaspers, S.; and Szeider, S. 2012c. Strong Backdoors to
Nested Satisfiability. In SAT, 72-85.

Gates, W. H.; and Papadimitriou, C. H. 1979. Bounds for
sorting by prefix reversal. Discrete Mathematics, 27(1): 47—

Goldreich, O. 2008. Computational Complexity: A Concep-
tual Perspective. Cambridge University Press.

Hemaspaandra, L. A.; and Narvdez, D. E. 2017. The Opacity
of Backbones. In AAAI, 3900-3906.

Hemaspaandra, L. A.; and Narvaez, D. E. 2019. Existence
Versus Exploitation: The Opacity of Backdoors and Back-
bones Under a Weak Assumption. In SOFSEM, 247-259.

Hemaspaandra, L. A.; and Narvdez, D. E. 2021. Existence
versus exploitation: the opacity of backdoors and backbones.
Progress in Artificial Intelligence, 10: 297-308.

Heule, M. J. H. 2018. Schur Number Five. In AAAI, 6598—
6606.

Heule, M. J. H.; Kullmann, O.; and Marek, V. W. 2016.
Solving and Verifying the Boolean Pythagorean Triples
Problem via Cube-and-Conquer. In SAT, 228-245.

Heule, M. J. H.; Kullmann, O.; Wieringa, S.; and Biere, A.
2012. Cube and Conquer: Guiding CDCL SAT Solvers by
Lookaheads. In Hardware and Software: Verification and
Testing, 5S0-65.

Hyvérinen, A. E. J. 2011. Grid Based Propositional Satis-
fiability Solving. PhD thesis. Aalto University publication
series.

Hyvirinen, A. E. J.; Junttila, T.; and Niemel4, 1. 2010. Par-
titioning SAT Instances for Distributed Solving. In LPAR,
372-386.

Ignatiev, A.; Morgado, A.; and Marques-Silva, J. 2018.
PySAT: A Python Toolkit for Prototyping with SAT Oracles.
In SAT, 428-437.

10361

Karp, R. M.; and Luby, M. 1983. Monte-Carlo algorithms
for enumeration and reliability problems. In FOCS, 56-64.
Karp, R. M.; Luby, M.; and Madras, N. 1989. Monte-Carlo
approximation algorithms for enumeration problems. Jour-
nal of Algorithms, 10(3): 429-448.

Kilby, P.; Slaney, J.; Thiébaux, S.; and Walsh, T. 2005. Back-
bones and Backdoors in Satisfiability. In AAAI, 1368-1373.
Kochemazov, S.; and Zaikin, O. 2018. ALIAS: A Modular
Tool for Finding Backdoors for SAT. In SAT, 419-427.
Kuehlmann, A.; and Krohm, F. 1997. Equivalence Checking
Using Cuts and Heaps. In DAC, 263-268.

Luke, S. 2015. Essentials of Metaheuristics. 2 edition.
Marques-Silva, J.; Lynce, I.; and Malik, S. 2009. Conflict-
Driven Clause Learning SAT Solvers. In Handbook of sat-
isfiability, volume 185 of Frontiers in Artificial Intelligence
and Applications, 131-153.

Metropolis, N.; and Ulam, S. 1949. The Monte Carlo
Method. Journal of the American Statistical Association,
44(247): 335-341.

Misra, N.; Ordyniak, S.; Raman, V.; and Szeider, S. 2013.
Upper and Lower Bounds for Weak Backdoor Set Detection.
In SAT, volume 7962 of LNCS, 394-402.

Molitor, P.; and Mohnke, J. 2007. Equivalence check-
ing of digital circuits: fundamentals, principles, methods.
Springer.

Motwani, R.; and Raghavan, P. 1995. Randomized Algo-
rithms. Cambridge University Press.

Miihlenbein, H. 1992. How Genetic Algorithms Really
Work: Mutation and Hillclimbing. In PPSN, 15-26.
Nocedal, J.; and Wright, S. 2006. Numerical Optimization.
Springer.

Russell, S.; and Norvig, P. 2010. Artificial Intelligence — A
Modern Approach. Pearson Education, 3 edition.

Schaefer, T. J. 1978. The Complexity of Satisfiability Prob-
lems. In STOC, 216-226.

Semenov, A.; Chivilikhin, D.; Pavlenko, A.; Otpuschen-
nikov, L.; Ulyantsev, V.; and Ignatiev, A. 2021. Evaluating
the Hardness of SAT Instances Using Evolutionary Opti-
mization Algorithms. In CP, 47:1-47:18.

Semenov, A.; and Zaikin, O. 2016. Algorithm for find-
ing partitionings of hard variants of boolean satisfiability
problem with application to inversion of some cryptographic
functions. SpringerPlus, 5(1). Article no. 554.

Semenov, A.; Zaikin, O.; Otpuschennikov, I.; Kochemazov,
S.; and Ignatiev, A. 2018. On cryptographic attacks using
backdoors for SAT. In AAAI, 6641-6648.

Spence, 1. 2015. Weakening Cardinality Constraints Creates
Harder Satisfiability Benchmarks. ACM J. Exp. Algorith-
mics, 20.

Spence, 1. 2017. Balanced random SAT benchmarks. In SAT
Competition 2017, volume B-2017-1, 53-54.

Williams, R.; Gomes, C. P.; and Selman, B. 2003. Backdoors
to Typical Case Complexity. In IJCAI 1173-1178.

