
Subset Approximation of Pareto Regions with Bi-objective A*

Nicolás Rivera1, Jorge A. Baier2,3, Carlos Hernández4

1Instituto de Ingenierı́a Matemática, Universidad de Valparaı́so, Valparaı́so, Chile
2Departamento de Ciencia de la Computación, Pontificia Universidad Católica de Chile, Santiago, Chile

3Instituto Milenio Fundamentos de los Datos, Santiago, Chile
4Facultad de Ingenierı́a y Tecnologı́a, Universidad San Sebastián, Bellavista 7, 84205254, Santiago, Chile

n.a.rivera.aburto@gmail.com, jabaier@ing.puc.cl, carlos.hernandez@uss.cl,

Abstract

In bi-objective search, we are given a graph in which each di-
rected arc is associated with a pair of non-negative weights,
and the objective is to find the Pareto-optimal solution set.
Unfortunately, in many practical settings, this set is too large,
and therefore its computation is very time-consuming. In ad-
dition, even though bi-objective search algorithms generate
the Pareto set incrementally, they do so exhaustively. This
means that early during search the solution set covered is not
diverse, being concentrated in a small region. To address this
issue, we present a new approach to subset approximation of
the solution set, that can be used as the basis for an anytime
bi-objective search algorithm. Our approach transforms the
given task into a target bi-objective search task using two real
parameters. For each particular parameter setting, the solu-
tions to the target task is a subset of the solution set of the
original task. Depending on the parameters used, the solu-
tion set of the target task may be computed very quickly. This
allows us to obtain, in challenging road map benchmarks, a
rich variety of solutions in times that may be orders of mag-
nitude smaller than the time needed to compute the solution
set. We show that by running the algorithm with an appro-
priate sequence of parameters, we obtain a growing sequence
of solutions that converges to the full solution set. We prove
that our approach is correct and that Bi-Objective A* prunes
at least as many nodes when run over the target task.

1 Introduction
In bi-objective search we are given a graph G in which each
arc, and thus each path, is associated with a pair of non-
negative costs, which represent meaningful objective func-
tions. For example, in transportation, one function could re-
fer to the time required to traverse an edge while the other
could refer to fuel consumption. To compare two paths, a
dominance relation is used. Path π1 dominates path π2 if
both components of the cost of π1 are less than or equal to
the respective components of the cost of π2 and their costs
are not equal. Given a start vertex and a goal vertex in G,
the problem consists of finding a Pareto-optimal solution set
which contains all paths from start to goal which are not
dominated by another path from start to goal.

Bi-objective search is required for several real-world ap-
plications; notably in transportation and logistics when time

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and cost (e.g., fare) are minimized (e.g., Pallottino and
Scutella 1998; Bronfman et al. 2015; Müller-Hannemann
and Weihe 2006), or when time and risk are minimized
for cycling (Ehrgott et al. 2012). Recently, it has also been
used in AI problems like robot planning (Davoodi 2017) and
multi-agent path finding (Ren, Rathinam, and Choset 2021).

An important hurdle to bi-objective search is the size of
the solution set, which can be exponential on the size of the
graph (Hansen 1980). As a consequence, bi-objective search
algorithms may only compute a handful of solutions before
running out of time. Worse even, because of the exhaustive
nature of their search, such solutions may not represent the
diversity of the solution set. To address this problem, ap-
proaches to approximating the solution set have been pro-
posed. One line of work proposes algorithms that reduce
high runtimes by computing a solution set with approxi-
mate solutions whose suboptimality is bounded (e.g., War-
burton 1987; Perny and Spanjaard 2008; Goldin and Salz-
man 2021). Another less explored line of work computes
subset approximations (e.g., Cohon 1978; Henig 1986), in
which a subset of the solution set is computed. A limitation
of the former approach is that even though approximate so-
lutions may be faster to compute still a large number of so-
lutions may have to be computed. The main limitation of the
latter approach is that the maximum number of computable
solutions is fixed and task-dependent. This does not allow
returning more solutions if more search time is available.

In this paper we present a new approach to bi-objective
subset approximation. Our approach transforms the original
bi-objective search instance into another (target) bi-objective
instance such that each solution to the target problem is a so-
lution to the original problem. If a heuristic h is available for
the original task our simple transformation is also applicable
to the heuristic of the original problem, which allows solv-
ing the target task with existing bi-objective heuristic search
algorithms. We prove that implicit to the target instance is a
stricter dominance relation in the sense that a path π in the
target instance may dominate a path π′ in the target instance
while the converse is not necessarily true. To generate the
transformed instance we use two real parameters, α and β in
(0, 1]. By varying these parameters we obtain different sub-
set approximations. When both parameters are equal to 1,
we recover the original solution set.

While the target problem can be solved with any bi-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

10345



objective search algorithm, we test our approach by com-
bining it with Bi-Objective A* (BOA*) (Hernndez et al.
2020), a recently proposed bi-objective heuristic search al-
gorithm that was shown to outperform other algorithms as it
scales better on large maps. We show that good synergy be-
tween the target problem(s) and BOA* exists; indeed, BOA*
prunes more nodes as α and β decrease their values. Empir-
ically, we use standard roadmap benchmarks to show that,
depending on the chosen parameters, BOA* can compute
about 10–20% of the solutions in about one order of mag-
nitude less time. In addition, we show that the solutions ob-
tained are, on average, very diverse. As such, our approach
shows promise for applications in which a few optimal but
diverse solutions are required quickly by end users.

2 Background
2.1 Notation
A bi-objective search graph is a triple (S,E, c), where S is a
finite set of states,E ⊆ S×S is a finite set of directed edges,
and c : E → R≥0 × R≥0 is a non-negative cost function.
For each s ∈ S we denote by Succ(s) = {t ∈ S | (s, t) ∈
E} the successors of state s. A path π from s1 to sn is a
sequence of states s1, s2, . . . , sn such that (si, si+1) ∈ E
for all i ∈ {1, . . . , n− 1}.

Boldface lower case letters indicate column vectors in
R2. The first and second component of p are denoted by
p1 and p2, respectively. We consider standard addition and
multiplication by scalar of vectors. We say that p � q, iff
p1 ≤ q1 and p2 ≤ q2; in addition, p ≺ q iff p � q and
p 6= q. We say that p dominates q when p ≺ q, and that p
weakly dominates q when p � q

Given a path π = s1, . . . , sn, its cost is given by∑n−1
i=1 c(si, si+1) and denoted by c(π). Path π dominates

path π′ if and only if c(π) ≺ c(π′).
A bi-objective search instance is as a tuple

(S,E, c, s0, sg), where (S,E, c) is a search graph, s0
and sg are, respectively, the start state and the goal
state. A start-to-goal path is a path from s0 to sg . The
Pareto-optimal solution set, denoted by solsP , contains all
start-to-goal paths that are not dominated by another one.

Bi-objective search algorithms exploit heuristic functions.
The h-value of a state is given by a function h : S → R≥0×
R≥0. For every s ∈ S, h(s) estimates the cost of a path from
state s to the goal state sg . h is admissible if and only if for
every state s, h(s) � c(π), where π is any path from s to
sg . Similarly, h is consistent if and only if, first, h(sg) = 0,
and second, h(s) � c(s, t) + h(t) for all (s, t) ∈ E.

2.2 Bi-Objective A*
In this section we introduce Bi-Objective A* (BOA*) (Hern-
ndez et al. 2020). BOA* is a recent algorithm for solving bi-
objective search instances, which was empirically shown to
scale better to larger instances than other bi-objective search
algorithms. One of the main advantages of BOA*, at least
for our approach, is that it has the same algorithmic struc-
ture of A*, ensuring desirable theoretical properties (see for
example Theorem 4 and Corollary 1 in Section Section 4.2
below).

Similar to A*, BOA* has a priority queue Open, which
will allow us to decide which element shall be expanded in
the implicit search tree. Open contain nodes, which shall not
be confused with the states S. A state s is an element of S
in the search graph (which may represent a city in a map),
whereas a node x in Open contains a state s(x) ∈ S and
a parent node parent(x). Therefore, a node x represent the
state s(x), and the path that goes from s0 to s(x), which can
be recovered by successive queries to parents nodes until we
reach a node y with s(y) = s0 which has parent(y) = null.
We denote the path associated with node x by πx. Addition-
ally, each node contains g, h and f -values as in the standard
A* algorithm, whoever, these are bivariate functions. g(x)
is the cost of the path πx, i.e, g(x) = c(πx), h(s(x)) is the
heuristic value of state s(x) (recall the heuristic is defined
on the set of states S), and f(x) = g(x) + h(s(x)).

BOA* starts the algorithm by initializing Open, with a
node associated with the initial state s0, which we some-
times refer to as the root node. The priority queue Open is
sorted lexicographically with respect to the f -values of the
nodes, meaning that we prefer elements with smaller value
in the first component, break ties using the second compo-
nent. BOA* iterates by extracting the best candidates from
Open, and expanding them, potentially including new el-
ements to Open. The main difference between BOA* and
A* with a consistent heuristic are: i) since in BOA* there
are several non-dominated optimal solutions, states s ∈ S
may appear in several nodes in the open list with different
non-dominated values of f , ii) Since there are several non-
dominated start-to-goal paths that we are interested on, when
BOA* extracts sg from Open, it does not return (and end
the execution), since there may be other solutions. Finally,
iii) BOA* prunes the search tree to avoid consideration of
paths that are dominated by others. Pruning of a node may
occur right after its generation (i.e. before inserting it into
Open), or right after its extraction from Open. To check for
domination, BOA* exploits the fact that the heuristics used
are consistent and that the open list is ordered lexicograph-
ically by f -value. This implies that if a state is discovered
by BOA* via several nodes, i.e. by different paths, the f1-
values of such nodes are non-decreasing. This allows BOA*
to implement dominance checks in constant time.

Now we go over the details of BOA*. Algorithm 1 shows
its pseudo-code. In the initialization (Lines 1–8), the prior-
ity queue Open consists of a node associated with state s0,
with a g-value equal to 0, and an f -value given by its heuris-
tic h(s0). Such a node also has a parent pointer initialized
to null to indicate that the path towards s0 is empty. Later,
in the code parent pointers are used to define paths towards
each node. In its main loop (Lines 9–24), like standard A*,
BOA* extracts a node from Open (Line 10), and then ex-
pands it (Lines 17–24). Unlike A*, when a new solution is
found, BOA* does not return but stores the newly found so-
lution in sols (Lines 14–16).

Another aspect distinguishing BOA* from A* is its prun-
ing. BOA*’s pruning is constant-time and it is key to its per-
formance. To do so, for each state s ∈ S it keeps a gmin

2
value, corresponding to the minimum g2-value of a path to s
previously extracted from Open. Given that Open is sorted

10346



Algorithm 1: Bi-Objective A* (BOA*)
Input : A search problem (S,E, c, s0, sg) and a

consistent heuristic function h
Output: A cost-unique Pareto-optimal solution set

1 sols← ∅
2 for each s ∈ S do
3 gmin

2 (s)←∞
4 x← new node with s(x) = s0
5 g(x)← (0, 0)
6 parent(x)← null
7 f(x)← h(s0)
8 Initialize Open and add x to it
9 while Open 6= ∅ do

10 Remove a node x from Open with the
lexicographically smallest f -value

11 if g2(x) ≥ gmin
2 (s(x)) or f2(x) ≥ gmin

2 (sg) then
12 continue

13 gmin
2 (s(x))← g2(x)

14 if s(x) = sg then
15 Add the path defined by x to sols
16 continue
17 for each t ∈ Succ(s(x)) do
18 y ← new node with s(y) = t
19 g(y)← g(x) + c(s(x), t)
20 parent(y)← x
21 f(y)← g(y) + h(t)

22 if g2(y) ≥ gmin
2 (t) or f2(y) ≥ gmin

2 (sg) then
23 continue
24 Add y to Open

25 return sols

lexicographically, each time a node x (associated to state
s(x) ∈ S) is extracted from Open, it is associated with a
path whose g1-value is greater than or equal to the g1-value
of any other path towards s(x) previously extracted. This al-
lows to focus pruning after extraction only on the second di-
mension, g2. Indeed, if g2(x) ≥ gmin

2 (s(x)), it means node
x is either dominated by a previously found path or it has
the same cost of a previously extracted path to s(x). Thus,
it is pruned in Line 11. The pruning condition of Line 11
is also made stronger by adding f2(x) ≥ gmin

2 (sg), which if
violated would mean that the current path is dominated by
a path towards the goal which has been previously extracted
from Open. An analogous pruning condition is considered
in Line 22, whose objective is to prune dominated nodes be-
fore they are added to Open.

3 Related Work: Subset Approximation
Now we focus on the problem of finding a subset of so-
lutions. A well-known (Cohon 1978; Henig 1986) sim-
ple approach to obtain a reduced subset of solutions con-
sists of mapping our given bi-objective search task P =
(S,E, c, s0, sg) into a single-objective search problem Pα
in which the (scalar) cost function is defined as c = αc1 +
(1 − α)c2, where α ∈ [0, 1]. An interesting property is that
a solution to Pα belongs to the Pareto-optimal solution set.

Figure 1: Black dots and blue dots represent a Pareto-
optimal set of solutions of a bi-objective search instance.
The red lines represent lines of the form αx+(1−α)y = K
for three different values ofK. WhenK = 0 the line crosses
the origin, and by increasing K the line moves closer to the
Pareto region until it hits it. Solving the problem Pα is equiv-
alent to finding the minimum value K that makes the line
tangent to the Pareto region. Only blue points can be found
by using this method.

Theorem 1 (Henig (1986)). Let P = (S,E, c, s0, sg) be a
bi-objective search task. Let α ∈ [0, 1] and let Pα be the
single-objective problem (S,E, c, s0, sg), where c = αc1 +
(1 − α)c2 is a univariate cost function. If π is a minimum-
cost path for Pα then π ∈ solsP .

Perhaps the most interesting fact about this approach is its
geometric interpretation. Indeed, finding a path with mini-
mum cost given by αc1 + (1 − α)c2 can be interpreted as
finding the smallest value K such that the line given by the
equation αx+ (1− α)y = K contains a point in the Pareto
set. In other words, finding a solution to Pα corresponds to
finding a line parallel to αx+(1−α)y = 1 which is tangent
to the Pareto set. See Figure 1 for an illustration.

To find a subset of solutions one may try various values of
α. But since the approach is limited to finding points which
intersect with tangents to the solution set, it is limited to find-
ing at most points in the convex hull of the solution set.

4 Solution Subsets via Bi-Objective Search
In this section we describe our approach to obtain a subset
of the Pareto-optimal solution set. The approach can be used
along with any bi-objective search algorithm. Our idea is to
map the problem P into another search problem Pα,β where
α and β are two parameters that control the precision of our
approximation.

4.1 The problem Pα,β

We shall assume that α, β ∈ (0, 1] with α+ β > 1. To build
Pα,β we define the matrix Mα,β given by:

Mα,β =

(
α 1− α

1− β β

)
,

10347



Figure 2: On the left we have the standard way to prune
paths. Any path whose cost is inside the dotted region is
pruned.

and define Pα,β = (S,E, cα,β , s0, sg), where for each e ∈
E, we define cα,β(e) as the result of applying the matrix
Mα,β to c(e) that is

Mα,β (c(e)) = (αc1(e)+(1−α)c2(e), (1−β)c1+βc2(e)).

Essentially, Pα,β is the same problem as P but with its
cost function multiplied by matrix Mα,β . This new instance
Pα,β has two important properties. The first property is that
it defines a dominance relation �α,β in which u is domi-
nated by v if and only if αu1+(1−α)u2 ≤ αv1+(1−α)v2

and (1 − β)u1 + βu2 ≤ (1 − β)v1 + βv2, and u 6= v, or
much shorter, Mα,βu � Mα,βv. (See Figure 2 for a graph-
ical representation of the new dominance relation and for a
formal geometrical interpretation see Proposition 1 below).
Notice that when α = β = 1 we recover the usual dom-
inance relation. The second important property is that the
solution set of Pα,β is contained in the solution set of P , as
stated in Theorem 2 below. As a consequence, all solutions
found when solving Pα,β can be reported as solution of P .

Proposition 1. Let L1 and L2 be two lines defined by:

L1 : αx+ (1− α)y = αc1(π) + (1− α)c2(π), (1)
L2 : (1− β)x+ βy = (1− β)c1(π) + βc2(π). (2)

Let π and π′ be two paths such that c(π) 6= c(π′). Then
π ≺α,β π′ iff c(π′) is in the intersection of the semi-plane
above L1 and the semi-plane above L2.

Theorem 2. Let P = (S,E, c, s0, sg) be a bi-objective
search instance and let Pα,β be defined as above with α, β ∈
(0, 1] and α+ β > 1. Then solsPα,β ⊆ solsP .

To focus our presentation on the main ideas, we defer all
proofs to Section 7.

4.2 Using Pα,β with BOA*
Theorem 2 states that solutions to Pα,β are solutions to P ,
and thus we can search solutions on the former problem to
find solutions of the latter. In this search we will show that
this idea works particularly well in combination with BOA*
because the way BOA* navigates the search tree allow us not
only to get results like Theorem 2 but also results ensuring

that BOA* solving Pα,β will prune strictly more than BOA*
solving P .

Before analyzing BOA* on the problem Pα,β we need to
recall that BOA* is a heuristic-search algorithm, and so we
need to find an heuristic. We start by assuming that we al-
ready have a heuristic function h for the original problem
P . Then, we can obtain a heuristic for the new problem by
applying Mα,β to the original heuristic h. Henceforth, we
denote by hα,β the result of applying Mα,β to h, i.e. the bi-
variate function (αh1+(1−α)h2, βh1+(1−β)h2). Sim-
ilarly, we denote gα,β , fα,β , and cα,β the results of applying
Mα,β to g, f and c, respectively. Note that by linearity of
matrix multiplication fα,β = gα,β + hα,β

Theorem 3. Let P be a search instance, and h be a heuristic
function for P . Then (i) if h is admissible for P , then so is
hα,β for Pα,β , and (ii) if h is consistent for P , then so is
hα,β for Pα,β .

As previously mentioned, another important property is
that BOA* performs more pruning on Pα,β than on the orig-
inal problem P . To understand this notion precisely recall
that the problem Pα,β have the same underlying graph struc-
ture, independently of the value of α and β, and so they have
the same search trees (with different edge-cost). In particu-
lar, all the problems Pα,β share the same set of paths from
s0, and so, since every node x is uniquely characterized by
the path πx leading to it from s0, we conclude that node x
can also appear in the other problem (with different value
of f , g, and h) represented by the same path πx. Therefore,
we can refer to the same nodes for different problems Pα,β
(using different α and β) by means of the path leading to
them, and so we can talk about the same nodes in different
problems.

To distinguish between executions of BOA* on P or
Pα,β , we write BOA*(P,h) and BOA*(Pα,β ,hα,β) to
make clear what problem is solved and what is the input
heuristic.

Additionally, we index all possible nodes in the search
trees (before any prunes) with a unique natural number,
which is used as tie-breaking mechanism in case two nodes
have exactly the same f value in Open (preferring the node
with less index for extraction). This is done so extraction of
nodes is consistent in different problems Pα,β . One way to
implement this is to enumerate states in S, then we break f -
ties between nodes x and y by comparing πx and πy , first by
the number of states in the path, and if they have the same
number of states we use the lexicographic order of the path
given by the enumeration of the states in it.

Finally, in the following results we say that a node z
is directly pruned if such node satisfies the conditions of
Line 22 or Line 11 in the respective query, and we say that
a node z is pruned if z is directly pruned, or parent(z) is
pruned (if parent(z) = null, then parent(z) is not pruned).
Essentially, a vertex is pruned if it is directly pruned or a
node in the backwards path to the root node is pruned.

Theorem 4. Let α, β ∈ (0, 1] be such that α+β > 1. Let h
be a consistent heuristic. Then, if node y is directly pruned
in the execution of BOA*(P,h), we have that y is pruned in
the execution of BOA*(Pα,β ,hα,β),

10348



7 7.25 7.50 7.75 8
8.5

9

9.5

10

c 2

192294-127143

(α ,β )
0.8,0.8 0.84,0.84 0.88,0.88 0.92,0.92 0.96,0.96 1.0,1.0

10 10.5

12

13

14

15
635035-38955

9.9 10.2 10.5 10.8
c1

11.5

12

12.5

13

13.5

643062-593488

Figure 3: Pareto-optimal solutions of the three problems considered in our experiments. Reddish points are solutions that appear
for small values of α and β, whereas bluish points are solutions that only appear for large values. Recall that for increasing
values of α and β solution sets grow. The title of each graph indicates the start and goal node. Values of c1 and c2 are in millions.

This theorem essentially tells us that after all the prun-
ing performed in Line 22 and Line 11, the search tree
of BOA*(P,h) contains the search tree (after prunes) of
BOA*(Pα,β ,hα,β) when h is consistent. This ensures that
no more search is required in BOA*(Pα,β ,hα,β), and in-
deed, in the experimental section we will see that these new
instances take much less time to be solved compared with
the original problem, even when α and β are very close to 1.

Corollary 1. Let α1, α2, β1, β2 ∈ (0, 1] be such that 1 ≤
α1 + β1, and α1 ≤ α2, and β1 ≤ β2. Also, suppose that
h is a consistent heuristic for problem P . Then, if node y is
directly pruned by BOA*(Pα2,β2 ,hα2,β2), we have that y is
pruned in the execution of BOA*(Pα1,β1 ,hα1,β1).

5 Towards Anytime Bi-Objective Search
Our theoretical analysis implies that when using small val-
ues of α and β more pruning is performed, and thus we shall
expect faster executions. As a consequence, we propose a
simple approach leading to an anytime bi-objective search
algorithm, which is used later in Section 6. The main idea
is to solve the target task for an initial pair of values, e.g.
α = β = 0.8, to then increase both parameters, and repeat
until we reach α = β = 1.

In general, different values of α and β generate different
solution sets, and the geometry of such sets depends not only
on α and β but also on the geometry of the original frontier
(when α = β = 1). Therefore, we are interested on measur-
ing how many solutions of solsP are captured by Pα,β , and
whether or not these solutions are well-distributed. For this,
we consider three different instances of the FL benchmark
set (described in Section 6), whose frontiers are illustrated
in Figure 3. The heatmap of Figure 4 shows, as expected,
that for larger values of α and β we cover more solutions,
however, interestingly, increasing α has a greater impact on
the number of solutions. This may be a consequence of the
fact that BOA* finds solutions in increasing c1 order.

Regarding the distribution of the solutions, we observe
it strongly depends on the structure of the solution costs.

Figure 3 shows the distribution of the solutions for some
values of (α, β). We observe that for the instance on the left,
where the frontier is more balanced, solutions are produced
in an even way, even for small values of α and β, whereas
for the other two instances, the region of the solution set in
which the first coordinate is small is not generated until the
values of α and β equal to 1.

This analysis illustrates that the way we vary α and β has
an important impact on solution diversity. Moreover, how
diverse the solution set is given specific α and β values is
instance-specific. Below, in our experimental section, we use
a general rule to increase α and β that, we show, generates
diverse solutions on average. We leave the problem of de-
vising a sequence of α-β values for maximizing diversity at
an instance level out of the scope of this paper.

6 Experimental Evaluation
Our experimental evaluation had the objective of evaluat-
ing the performance of BOA* run over Pα,β using differ-
ent (α, β) values over a large number of instances in several
standard road maps.

We evaluated our approach, implemented in C, on maps of
the 9th DIMACS Implementation Challenge: Shortest Path1;
specifically, 50 random instances for each of four USA road
maps used by Machuca and Mandow (2012). We ran all
experiments on a 3.80GHz Intel(R) Core(TM) i7-10700K
CPU Linux machine with 64GB of RAM. The cost compo-
nents represent travel distances (c1) and times (c2). The in-
put heuristic h corresponds to the exact travel distances and
times to the goal state, computed with Dijkstra’s algorithm.
Dividing the Pareto Frontier in Buckets To report the di-
versity of solutions, imagine that we divide the upper-right
quadrant of the plane (i.e. when both coordinates are pos-
itive) into five slices by drawing rays starting at the origin
forming 18, 36, 54, and 72 degrees with the x-axis. We call
each 18-degree slice a “bucket”. By counting how many so-

1http://users.diag.uniroma1.it/challenge9/download.shtml

10349



0.80 0.85 0.90 0.95 1

0.80

0.85

0.90

0.95

1

β

192295-127144

% covered

25 50 75 100

0.80 0.85 0.90 0.95 1

635036-38956

0.80 0.85 0.90 0.95 1
α

643063-593489

Figure 4: Heatmap for the three instances of the FL map. The color represents the solutions of P covered by Pα,β . In all
instances we observe that increasing α has much more impact in the region we find, and indeed, choosing β = 1 while keeping
a small value of α does not increase much the number of solutions. The title of each figure indicates the start and goal node.

lutions are in each bucket we obtain a measure of diversity
of the solution set. However, to apply this idea it is neces-
sary to adjust scales. Indeed each cost function may have a
different scale and between different problems the solution
sets may have different height and width2. Intuitively the ob-
jective is to “scale” the solution set such that its width and
height are both equal to 1; as such, the extreme solutions are
always (0, 1) and (1, 0). Now let (x, y) be a scaled solution
cost and θ be the angle between the origin and (x, y). We
count this solution in the bucket given by θ.

Table 1 reports our results for 50 random instances for
each road map. In each run we consider the same value for α
and β. The table reports the total runtime in seconds required
to compute the solution set for Pα,β for each (α, β) pair, and
the percentage of solutions that appear in each bucket. In
addition, the table reports the total number of solutions in
each bucket. We have the following observations:

• We obtain solutions that are diverse on average. The max-
imum percentage difference between two buckets is 13%,
which is observed in the BAY map with α = β = 0.84

• A reasonable number of solutions can be obtained very
quickly. For example, around 10% of solutions are ob-
tained in about one order of magnitude less time than
that required to find all solutions.
• When (α, β) values increase, the runtime increases and

the number of solutions found in each bucket increases.
• The relation between computation time and percentage

of solutions does not appear to be proportional as one
would expect. For example in the FL map we compute
approximately 8% of the solutions in about 9.7/210.9 =
4.6% of the time that is needed to compute 100% of so-
lutions. Likewise, to compute around 15% of the solu-

2Where one can imagine the width as the first component of the
solution that has the largest first component, and the height can be
defined analogously for the second component.

tions we require 16.8/210.9 = 8% of the time required
to compute 100% of the solutions.

7 Proofs
In this section we provide a proof for each of our theoret-
ical results. We begin with a simple lemma that is used in
different proofs across this section.

Lemma 1. Let α, β ∈ (0, 1], and v,u ∈ R≥0 × R≥0. If
v � u, then Mα,βv � Mα,βu, and the same holds if we
replace ≤ by ≺.

Proof. We just prove the result for� since for the other case
the same proof works.

Note that u1 − v1 ≥ 0 and u2 − v2 ≥ 0. Therefore
α(u1 − v1) + (1 − α)(u2 − v2) ≥ 0, since α > 0. Hence
αv1 + (1− α)v2 ≤ αu1 + (1− α)u2. The same applies if
we replace α by 1− β, concluding the result.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Assume π 6∈ solsP . Since π is a start-
to-goal path, there must be another path π′ ∈ solsP such that
c(π′) ≺ c(π), so Lemma 1 yields

αc1(π
′) + (1− α)c2(π′) < αc1(π) + (1− α)c2(π)

implying that π is not a solution of Pα, a contradiction.

Proof of Section 4.1.

Proof of Theorem 2. For a contradiction, assume that there
is a path π ∈ solsPα,β such that π 6∈ solsP . Since π is a
start-to-goal path in P but not a solution, there must be start-
to-goal path π′ such that c(π′) ≺ c(π). Then by Lemma 1,
we have that cα,β(π′) ≺ cα,β(π) which contradicts the fact
that π ∈ solsPα,β .

10350



Bucket
α = β t(s) 1 2 3 4 5

New York City (NY): 264,346 states, 730,100 edges
0.80 0.5 15% 19% 18% 18% 21%
0.84 0.7 22% 25% 25% 27% 32%
0.88 1.1 34% 37% 36% 36% 42%
0.92 1.7 53% 54% 57% 60% 65%
0.96 2.5 68% 67% 73% 74% 76%
1 3.9 100% 100% 100% 100% 100%
# solutions: 1,924 2,744 3,370 2,001 1,931

San Francisco Bay (BAY): 321,270 states, 794,830 edges
0.80 0.5 4% 7% 11% 13% 17%
0.84 0.8 8% 12% 17% 16% 21%
0.88 1.4 16% 20% 26% 22% 26%
0.92 2.4 28% 33% 38% 32% 39%
0.96 4.0 48% 54% 59% 49% 56%
1 8.5 100% 100% 100% 100% 100%
# solutions: 3,509 2,989 3,343 2,230 2,245

Colorado (COL): 435,666 states, 1,042,400 edges
0.80 1.3 5% 5% 4% 6% 15%
0.84 2.1 9% 10% 6% 8% 18%
0.88 3.7 15% 15% 9% 13% 24%
0.92 7.2 27% 26% 20% 23% 31%
0.96 15.6 45% 44% 36% 41% 45%
1 46.5 100% 100% 100% 100% 100%
# solutions: 8,272 8,140 6,946 4,937 6,431

Florida (FL): 1,070,376 states, 2,712,798 edges.
0.80 9.7 7% 6% 9% 8% 11%
0.84 16.8 13% 11% 15% 18% 20%
0.88 32.2 22% 20% 26% 32% 31%
0.92 50.8 35% 36% 40% 46% 45%
0.96 85.4 60% 61% 66% 71% 68%
1 210.9 100% 100% 100% 100% 100%
# solutions: 13,019 16,817 17,143 8,689 11,009

Table 1: Results on 50 random instances for different road
maps. In all these experiments we set α = β. The table
shows the α (and β), and the total runtime to solve all the
instances, and the percentage of solutions in each bucket.

Proofs of Section 4.2 We omit the proof of Theorem 3
as it is a straightforward consequence of Lemma 1, and the
definition of admissible and consistent. For the proof of The-
orem 4 we require the following lemmas.
Lemma 2. [(Hernndez et al. 2020, Lemma 2)] The se-
quences of extracted nodes and of expanded nodes have
monotonically non-decreasing f1-values.

Lemma 3. Consider BOA*(P,h). Let y be a node such that
it satisfies the condition of Line 11 or Line 22 during the
execution of BOA*(P,h), i.e. y was directly pruned after
removing it from the open list, or after expanding its parent
(preventing y from being inserted in Open). Then there ex-
ists a node z such that s(y) = s(z) or s(z) = sg , and such
that f(z) � f(y)

Proof. We analyze the case that y is directly pruned in
Line 22, as the case of Line 11 is essentially the same. Sup-
pose that y is directly pruned in Line 22. If y is directly
pruned because the first clause of the if statement, then let
t = s(y) be the state associated to node y, and so we have

that some node z with s(z) = t was expanded in Line 13
before y giving that current value of gmin

2 (t), i.e. g2(y) ≥
g2(z), and thus, f2(y) ≥ f2(z) since s(y) = s(z) = t (as
both nodes share the same heuristic value h(y)). Since node
z was extracted before y, by Lemma 2, f1(z) ≤ f2(y), con-
cluding that f(z) � f(y). If y is directly pruned because
of the second clause of the if statement, the argument is the
same but in this case s(z) = sg and so h(s(z)) = 0.

Proof of Theorem 4. We proceed by contradiction: sup-
pose it exists a node y which is directly pruned in
BOA*(P,h) in Line 11 or Line 22, but it is not pruned in
BOA*(Pα,β ,hα,β), i.e. y is included in the open list, and
then extracted, and expanded in BOA*(Pα,β ,hα,β).

Since y is directly pruned in BOA*(P,h), by Lemma 3,
there exists a node z such that s(y) = s(z) or s(z) = sg ,
and such that f(z) ≤ f(y). By Lemma 1, fα,β(z) ≺ fα,β(y)
or fα,β(z) = fα,β(y), and thus it has smaller (or equal) first-
coordinate in fα,β . In case z and y have the same f -value,
by the tie-breaking mechanism implemented z will be ex-
tracted before from Open than y, so we can assume that
fα,β(z) ≺ fα,β(y). From now on, we shall focus on the
behavior of node z in the execution of BOA*(Pα,β ,hα,β).
In the execution, node z either i) enters to the open list of
BOA*(Pα,β ,hα,β) and it is successfully removed (and ex-
panded), or ii) not. If it does (case i), then node z is ex-
tracted and expanded before node y due to Lemma 2, and
hence y will be directly pruned in Line 11 since we would
have observed that z have smaller second-component value
in gα,β(z) (assuming y is not pruned before), hence y is
pruned. If z is pruned in either Line 11 or Line 22 (case ii),
then it was pruned due to another node x that was extracted
from the open (i.e. BOA* read Line 13 with this node) and
moreover fα,β(x) � fα,β(z) ≺ fα,β(y). Hence, x is ex-
tracted from Open before y, and thus y is pruned.

Proof of Corollary 1. Let α and β be defined as

α =
α1 + β2 − 1

α2 + β2 − 1
and β =

β1 + α2 − 1

α2 + β2 − 1
,

and note that α, β ∈ (0, 1] and α + β > 1, due to the con-
strains on α1, α2, β1 and β2. Then, a straightforward com-
putation shows that Mα,βMα2,β2 =Mα1,β1 .

Now we can assume that Pα2,β2 was the original problem,
and that we are applying the transformation Mα,β to it, ob-
taining Pα1,β1

. The result follows then from Theorem 4.

8 Conclusions and Future Work
We presented a new approach for generating subset approxi-
mations of Pareto-optimal solution sets. Our approach trans-
forms the given task into another bi-objective task which so-
lution set is a subset of the Pareto-optimal solution set. This
allows us to obtain a diverse solution set containing around
10% of solutions in one order of magnitude less time than
what is needed to compute the whole Pareto-optimal set.

There are many future directions for research. Search so-
lutions on average are diverse but we know that an instance
level a more fine-grained approach to set α and β is needed.
Our approach also seems compatible with parallelization,
which could yield very efficient anytime algorithms.

10351



Acknowledgements
Nicols Rivera was supported by ANID FONDECYT grant
number 3210805. Jorge Baier and Carlos Hernndez are
grateful to the Centro Nacional de Inteligencia Artificial CE-
NIA, FB210017, BASAL, ANID.

References
Bronfman, A.; Marianov, V.; Paredes-Belmar, G.; and Lüer-
Villagra, A. 2015. The maximin HAZMAT routing problem.
European Journal of Operational Research, 241(1): 15–27.
Cohon, J. L. 1978. Multiobjective Programming and Plan-
ning, volume 140 of. Mathematics in Science and Engineer-
ing.
Davoodi, M. 2017. Bi-objective path planning using deter-
ministic algorithms. Robotics and Autonomous Systems, 93:
105–115.
Ehrgott, M.; Wang, J. Y.; Raith, A.; and Van Houtte, C. 2012.
A bi-objective cyclist route choice model. Transportation
research part A: policy and practice, 46(4): 652–663.
Goldin, B.; and Salzman, O. 2021. Approximate Bi-Criteria
Search by Efficient Representation of Subsets of the Pareto-
Optimal Frontier. In Biundo, S.; Do, M.; Goldman, R.; Katz,
M.; Yang, Q.; and Zhuo, H. H., eds., Proceedings of the
31st International Conference on Automated Planning and
Scheduling (ICAPS), 149–158. AAAI Press.
Hansen, P. 1980. Bicriterion path problems. In Multiple
criteria decision making theory and application, 109–127.
Springer.
Henig, M. I. 1986. The shortest path problem with two
objective functions. European Journal of Operational Re-
search, 25(2): 281–291.
Hernndez, C.; Yeoh, W.; Baier, J.; Zhang, H.; Suazo, L.; and
Koenig, S. 2020. A simple and fast bi-objective search algo-
rithm. In Proceedings of the 30th International Conference
on Automated Planning and Scheduling (ICAPS), 143–151.
Machuca, E.; and Mandow, L. 2012. Multiobjective heuris-
tic search in road maps. Expert Systems with Applications,
39(7): 6435–6445.
Müller-Hannemann, M.; and Weihe, K. 2006. On the cardi-
nality of the Pareto set in bicriteria shortest path problems.
Annals of Operations Research, 147(1): 269–286.
Pallottino, S.; and Scutella, M. G. 1998. Shortest path al-
gorithms in transportation models: classical and innovative
aspects. In Equilibrium and advanced transportation mod-
elling, 245–281. Springer.
Perny, P.; and Spanjaard, O. 2008. Near Admissible Algo-
rithms for Multiobjective Search. In Proceedings of the 20th
European Conference on Artificial Intelligence (ECAI), vol-
ume 178, 490–494.
Ren, Z.; Rathinam, S.; and Choset, H. 2021. Multi-objective
Conflict-based Search for Multi-agent Path Finding. CoRR,
abs/2101.03805.
Warburton, A. 1987. Approximation of Pareto optima in
multiple-objective, shortest-path problems. Operations Re-
search, 35(1): 70–79.

10352


