
Planning with Explanations for Finding Desired Meeting Points on Graphs

Keisuke Otaki
Toyota Central R&D Labs., Inc.

otaki@mosk.tytlabs.co.jp

Abstract

Combinatorial optimization problems are ubiquitous for deci-
sion making in planning social infrastructures. In real-world
scenarios, a decision-maker needs to solve his/her problem it-
eratively until he/she satisfies solutions, but such an iterative
process remains challenging. This paper studies a new ex-
plainable framework, particularly for finding meeting points,
which is a key optimization problem for designing facil-
ity locations. Our framework automatically fills the gap be-
tween its input instance and instances from which a user
could obtain the desired outcome, where computed solutions
are judged by the user. The framework also provides users
with explanations, representing the difference of instances for
deeply understanding the process and its inside. Explanations
are clues for users to understand their situation and implement
suggested results in practice (e.g., designing a coupon for free
travel). We experimentally demonstrate that our search-based
framework is promising to solve instances with generating
explanations in a sequential decision-making process.

Introduction
Combinatorial optimization problems are ubiquitous for
both personality and society (Korte et al. 2011). A decision-
maker (e.g., a designer, experts, etc.) could discuss his/her
decision via optimization. For example, we could discuss
transportation services using routing problems (e.g., dial-
a-ride problems) (Toth and Vigo 2014). Decision variables
represent options, locations, and things that a planner could
plan or operate from a macroscopic perspective. Different
objective functions (e.g., cost, fairness, etc.) represent in-
dividual purposes. Decision making with optimization con-
sists of various steps such as modeling, solving instances,
evaluations of solutions, and updating models/instances.

Our research question is (RQ1) how to model a crystal
clear decision making process in a computational manner,
and (RQ2) how to make the process useful for decision-
makers by providing explanations about the process itself.
Typical decision making processes should be iterative and
could run as a human-in-the-loop framework (Fisher 1985;
Meignan et al. 2015; Miettinen, Ruiz, and Wierzbicki 2008),
but such iterations and interactions among decision-makers
and systems remain challenging. Relatively little attention

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The interaction for explainable planning from the
input OMP instance P1 to P⋆. After the user accepts the
final instance Pn = P⋆, the system generates an explanation
from the inside trace to implement the output in real-world.

is paid to the whole system and its explanations. That is,
it remains difficult to understand the process itself with
explanations. In applications (e.g., transportation services),
decision-makers often require some explanations on the op-
timization (e.g., why this solutions is selected).

Although we have various problems, we focus on the
problem of finding meeting points (OMP) on graphs (Li
et al. 2015; Yan, Zhao, and Ng 2015; Atzmon et al. 2020), as
its formal definition is given later. This is because 1) trans-
portation is a basic function in cities and residents, 2) it is
along with road networks, and 3) finding a meeting point is
an essential task for designing city functions or trips (Shang
et al. 2015). Better facility locations (e.g., hospitals, bus
stops, etc.) benefit residents, and then decision-makers often
face this problem. Note that we could replace OMPs with
other problems according to applications and targeting sce-
narios. First, we show an example scenario and our approach
to build a decision making process with Fig. 1.

Example 1. A trip planner decides a new meeting spot to in-
stall a bus stop in the target area G; G has 21 vertices and 42
edges, and four customer demands are observed on vertices
as U = {3, 8, 15, 19}. Using OMPs, the planner finds that
Ams(G,U) = 19 and Amm(G,U) = 4. Here, the cost from
8 to 19 is much larger than others, and we assume that the
planner wants to know how to make the two meeting points
the same due to the fairness in terms of travel costs.

Based on this requirement, our system automatically
searches the instance space of OMPs. The beginning of the
search is P1. The space consists of negative and positive in-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

10319

stances, where positive ones are acceptable by the planner
(e.g., in terms of fairness). Our system iteratively generates
and solves instances {Pi} until the two meeting points are
the same. The history of generated instances to trace the
transformation from P1 to P⋆ is stored as clues to under-
stand the process, and know how to get the desired result.
Here the system could say that preparing a free coupon from
19 to 4 on G (i.e., 19 → 1 → 21 → 4) enables the planner
to have a fair meeting point.

Our contributions are summarized below.
• We formulate explainable planning problems, particu-

larly for the case of using OMPs.
• We implement our search-based framework using the

neighboring relation among instances.
• We experimentally demonstrate that our framework is

promising to solve instances and generate explanations
in a decision making process.

The difference between ours and existing methods is that
our method automatically generates instances and explana-
tions to help decision-makers. Explanations represent hints
how the user can obtain the desired result, which increase
the usability and interpretability of optimization. After dis-
cussing experimental evaluations, we discuss related work
and compare our framework with them, and finally conclude
this paper.

Preliminary
Finding Meeting Points on Graphs
Let G = (V,E,w) be an undirected simple weighted graph
with the weight function w : E → R of edges. The neighbor
of v ∈ V is denoted by NG(v). The shortest path distance
on G is denoted as a function d : V × V → R. The problem
of finding min-sum/max optimal meeting points on graphs is
defined as follows.

Problem 1 (based on (Yan, Zhao, and Ng 2015)). Given
G = (V,E,w) and a set of vertices U ⊆ V of
size k, the min-sum optimal meeting point v⋆ms on G
is v⋆ms := arg min

v∈V

∑
u∈U d(u, v). Similarly, the min-

max optimal meeting point v⋆mm on G is v⋆mm :=
arg min

v∈V
maxu∈U d(u, v). The problem of finding min-max

(or min-max) optimal meeting points on G involves of find-
ing v⋆ms (or v⋆mm). Note that we can define the problem when
U is a multi-set. The min-sum meeting point guarantees
that the average travel cost is minimized, while the min-max
meeting point assumes that the maximum cost is minimized.
In this paper, if the min-max and min-sum meeting points are
the same, we say that it is fair.

An instance P of Problem 1 is denoted as a pair (G,U).
Further, A(G,U) = v denotes that an algorithm A inputs
(G,U) and returns the solution v ∈ V . For the min-sum and
min-max problems, we denote algorithms by Ams and Amm,
respectively. The choice of the problem (min-sum, min-max,
or others) depends on the purpose of using meeting points.
Note that we can utilize the existing pruning techniques for
Ams and/or Amm developed in the literature (Yan, Zhao, and
Ng 2015; Atzmon et al. 2020); The worst-case complexity of

the solver is known to be O(|U |2 + |V ||U |). We denote by
T (A) be the complexity of the algorithm.

Overview of Our Framework
Our approach to build a clear decision making process of
OMPs consists of interactions, search-based methods, and
generating explanations. The process, illustrated in Fig. 1
and Example 1, works as follows.
Step 1. The process begins with the input instance P1.
Step 2-3. If A(P1) satisfies the supervision by a user (i.e.,

acceptable by the planner, yes/no); the process just halts
with the output and without explanations. If not, the pro-
cess tries to search for another instance P2.

Step 4. The process solves Pi and displays A(Pi) to the
user. We receive the supervision again.

Step 5. Repeat the process until A(Pn) is acceptable.
Step 6. The process generates an explanation P1 → Pi to

make the user understand the difference from P1 to Pi.
We have the following four key components to implement

the process illustrated in Fig. 1.
(Comp. A) solver A,
(Comp. B) signal to decide whether or not the process halts

(i.e., the solution is acceptable by users),
(Comp. C) way to generate explanations, and
(Comp. D) method to automatically generate instances.
We assume that (Comp. A) is given, but others should be
designed. Note that (Comp. B) is similar to that studied in
the literature (Meignan et al. 2015), but we need to carefully
design both (Comp. C) and (Comp. D).

Explainable OMP Problems
Before getting into the details, we formalize our conceptual
problem behind the process illustrated in Fig. 1, named ex-
plainable optimal meeting point (X-OMP) problem.
Problem 2. Given an OMP instance P1 = (G1, U1), the
X-OMP problem is to find an instance P⋆ = (G⋆, U⋆) sat-
isfying the following constraints:
(C1) The cost C(P1,P⋆) to generate P⋆ from P1 is mini-

mized, and
(C2) The result A(P⋆) satisfies the desired characteristics

given or judged by a decision-maker (in Fig. 1, it means
that P⋆ is positive).

The output of the X-OMP problem is both P⋆ and an expla-
nation representing the sequence from P1 to P⋆. Both the
definition of explanations and evaluation of C(P1,P⋆) are
defined according to the applications.

Our assumption behind (C1) is that the decision-maker
would like to keep his/her own input P1 as similar as possi-
ble. Similar concepts can be found in counterfactual expla-
nations in the XAI research literature (Wachter, Mittelstadt,
and Russell 2017). With respect to (C2), we emphasize that
we would like to clearly explain how we can obtain P⋆ from
P1, and model the output for this purpose as explanations.

Proposed Framework
In this section, we clarify the components of our process.
First, we specify the X-OMP problem, which we tackle in
this paper, based on Example 1.

10320

Problem 3 (X-OMP-MIN-MAX Problem). The X-OMP-
MIN-MAX problem is an X-OMP problem with the fol-
lowing components: (Comp. B) the supervision indicator
I[Ams(P⋆) = Amm(P⋆)], (Comp. C) the combinatorial
objects representing explanations, and (Comp. D) the cost
functions for graphs G and residents U and cost-based
search methods in the instance space of OMPs.
Note that all components are formally described below.

Supervision by Interaction
We assume that a user directly involves the process through
via interactions in (Comp. B) to judge whether or not a so-
lution A(Pi) is positive. We could model such signals in
various ways (e.g., labels in ML) . For example, providing
the desired result directly by indicator functions, or giving
the preference relation of solutions are possible. An exam-
ple for Problem 3, a user says that the meeting point should
be in the set U⋆ ⊆ V (e.g., U⋆ is possible bus stop loca-
tions on G). As another example, let us recap the example in
Example 1; a user requires a fair meeting point v⋆ms = v⋆mm.

We call the signals provided by interactions supervision.
Our process in Fig. 1 automatically generates instances,
solves them, and receives supervision signals of solutions
from the user. We can implement the supervision in vari-
ous ways; an example is a GUI interface (e.g., (Anderson
et al. 2000; Klau et al. 2002; Thiele et al. 2009; Klau et al.
2010)). For the case of using OMPs for designing a new fa-
cility location (e.g., bus stop in Example 1), we write the
supervision with the indicator function I(·) as in Problem 3,
and then automatically judge I[Ams(P⋆) = Amm(P⋆)] in
the process of Fig. 1.

Explanations and Cost-Based Evaluations
We need to systematically generate various instances in the
process. Our idea is to adopt combinatorial objects to gen-
erate instances and explanations. We then define the syntax
of explanations related to (Comp. C), and give how we can
interpret explanations (i.e., the semantics of them).

Syntax Explanations provided to users represent differ-
ences between instances, particularly for P1 and P⋆ as
explained in Example 1. From the syntactical point of
view, we represent such differences with combinatorial ob-
jects. For the set U , we adopt a pair (u1, u2) ∈ V ×
V to represent a difference, and generate a new set U ′

from U and the pair (u1, u2). Further, a length-l sequence
⟨(v1, u1), (v2, u2), . . . , (vl, ul)⟩ can be used as well to rep-
resent l-step differences. An example of this sequence is
⟨(19, 1), (1, 21), (21, 4)⟩ in Fig. 1.

For the difference between graphs, we adopt edit opera-
tions, such as adding or removing vertices or edges, based
on the graph edit distance (Gao et al. 2010). Note that
similar approaches are also adopted in the literature (e.g.
(Böckenhauer and Komm 2010; Festa, Guerriero, and Napo-
letano 2019)). On the meeting point planning viewpoint,
we only adopt the operation of adding edges, correspond-
ing to implementing a new transportation service in a city.
For example, adding a new edge {v1, v2} /∈ E of weight
w(v1, v2) to the graph G = (V,E) induces a new graph

G′ = (V,E ∪ {v1, v2}). Throughout this paper, we assume
that the number of vertices is fixed by preparing a sufficient
number of vertices. Some vertices G are dummy in the sense
that they have no practical importance.

Semantics The semantics of explanations is important to
implement them. In Example 1, ⟨(19, 1), (1, 21), (21, 4)⟩
means the travel from 19 to 4, which takes the balance of res-
ident locations for fairness. The semantics of the sequence
⟨(19, 1), (1, 21), (21, 4)⟩ in the real-world depends on the
situation; If many taxis are in business in the urban area G,
the transportation from 19 to 4 is implemented in the real
world by a free ticket (or coupon) for taxis. In contrast, if
G represents a rural region, a local shuttle bus operated by
a local government is a possible way to implement. Another
example of the semantics of a graph operation {v1, v2} /∈ E
is that we interpret it as a new travel mode between v1
and v2 under assumption that w(v1, v2) < d(v1, v2). If
w(v1, v2) ≥ d(v1, v2), the new travel mode is useless be-
cause w(v1, v2) is not included in the shortest path between
v1 and v2 even if (v1, v2) is added1.

Cost-Based Evaluations Users and citizens could evalu-
ate implementations of decisions to realize P⋆ in terms of
both the cost and benefits. This study systematically evalu-
ates implementations using cost functions.

For operations on U , users can implement the decisions
by some beneficial compensations like coupons or free bus
services. Then, the cost is defined for each user. We simply
assume that the cost is defined by a function of the form:

fresidents(v1, v2) := d(v1, v2)/αu +A (1)

where αu > 0 is the parameter for u ∈ U to control the will
to move for the global optimality and A > 0 is a fixed cost
parameter. The user could select another values like value
of time to define cost functions, or more complex functions
(e.g., exponential, logarithm, etc.) according to the purpose.

The edges on G could be modified as well. This operation
can be implemented by, for example, preparing a rapid bus
lane between v1 and v2, where the bus could skip interme-
diate stops to reduce the travel cost. Again, to simplify the
model, we assume the following functions:

froad(v1, v2) := d(v1, v2)/β +B, (2)

where β > 0 and B > 0 are fixed parameters. Again, we
could adopt more refined cost estimation functions accord-
ing to the targeting scenario.

Search in The Instance Space
We assume that decision-makers could preserve P1 as long
as possible because P1 is carefully designed by experts,
while they would like to know a positive P⋆ that is simi-
lar to P1. Therefore, we search the instance space from P1

using neighboring relations among instances.

1The instance space can be defined in various ways (e.g., adding
meaningless edges), but we focus on a semantically meaningful
space based on the planning perspective.

10321

Algorithm 1: Generate-and-test when G is fixed

Require: Instance (G,U) such that |U | = k and Ams(G,U) ̸=
Amm(G,U)

Ensure: Uans ⊆ V such that Ams(G,Uans) = Amm(G,Uans),
and explanations (i.e., pairs representing travels on U)

1: Initialize Uans = ∅ and cost =∞
2: for U ′ ⊆ V of size |U ′| = k do
3: Compute vms = Ams(G,U ′) and vmm = Amm(G,U ′) ▷

Run an OMP solver (circle arrow in Fig. 1)
4: if vms = vmm and cost > C(U,U ′) then
5: Update Uans by U ′ and cost by C(U,U ′)

6: return Uans together with explanations from U to Uans

For U We start with the neighboring relations of instances.
Given P = (G,U), its direct neighboring instance P ′ =
(G,U ′) is defined as U ′ ̸= U and U ′ ⊆ V with the pair
(v1, v2) ∈ V × V,U ′ := U \ {v1} ∪ {v2}. We define the set
of all possible neighboring instances of U as follows.

Nuser(P) :=
⋃
u∈U

⋃
v∈NG(u)

{v} ∪ (U \ {u}). (3)

Since we assume that we have cost functions, we search
instances which can be generated at a cost as low as possible.
The cost of transforming P into P ′, denoted by C(P,P ′), is
formally defined to realize Problem 3 as follows.
Definition 1. For two neighboring instances P = (G,U =
{u1, . . . , uk}) and P ′ = (G,U ′ = {u′

1, . . . , u
′
k}), the cost

of transforming P into P ′ is defined as follows:

C(P,P ′) := min
σ:[k]→[k]

∑
1≤i≤k

fresidents(ui, u
′
σ(i)), (4)

where [k] := {1, . . . , k} and σ is a permutation on [k].
To solve Problem 3, we propose the following methods.

Naive Generate-and-Test (Alg. 1) Given (G,U), the
naive method to check the possible instances is enumerating
U ′ ∈ 2V , |U ′| = k, and find the minimum cost to transform
U to U ′. Although the number of all subsets of V is 2|V |, if k
is small enough, this approach is applicable as a straw-man

baseline, named GnT. The complexity is O
((

|V |
k

)
T (A)

)
if V is not a multi-set. If we have l < |U | unique elements
in the multiset of U , to consider the replacement in permu-

tations, we should take care of
∑

1≤i≤|U |

(
|V |
i

)
.

Breadth-First Search and Pruning (Alg. 2) To scale up
the naive method, we use Eq. (3) and prune redundant
subtrees. For pruning, the simplest but effective method is
based on the best edition cost so far. Another improve-
ment for pruning like branch-and-bound procedures is pos-
sible by evaluating the upper bound of C. A possible bound
C̄ := maxv∈V

∑
u∈U d(v, u). Furthermore, we can cache

the same sub-trees using the data structure that keeps the set
U and its cost because unless G changes by operations, the
result by A does not change. Note that Alg. 2 always halts
by checking the already computed instances in the cache.

Algorithm 2: Breadth-first-search with pruning (BrFS)

Require: Instance (G,U) such that |U | = k and Ams(G,U) ̸=
Amm(G,U)

Ensure: Uans ⊆ V such that Ams(G,Uans) = Amm(G,Uans),
and explanations (i.e., pairs representing travels on U)

1: Initialize Uans = ∅, cost =∞, and prepare a queue Q← ∅
2: Enqueue a search state (U ′, 0)→ Q
3: while Q is not empty do
4: Dequeue a search state (Uc, costc)← Q
5: Compute vms = Ams(G,Uc) and vmm = Amm(G,Uc)
6: if vms = vmm and costc < cost then
7: Update Uans by U ′ and cost by C(U,Uc)

8: for Un ∈ Nuser(Uc) s.t. C(Uc, Un) + costc < cost and
C(Uc, Un) + costc < C̄ do

9: Enqueue a state (Un, C(Uc, Un) + costc)→ Q

10: return Uans with explanations from U to Uans

The worst branching factor b = |U |∆(G), where ∆(G) de-
notes the maximum degree of G. After traversing the space,
explanations are generated by back-tracking.

Best-First Search and Improvements We could improve
the search-based method further. The standard technique to
implement the informed search or a memory-efficient search
uses priority queues with some heuristic functions (like A⋆

algorithm (Hart, Nilsson, and Raphael 1968), hill-climbing,
beam search, etc.). The simplest update of Alg. 2 is to im-
plement a best-first search, labeled BestFS, using the cost
function in Eq. (4), which reduces the required memory
space as it traverses the instance space in a depth-first man-
ner. States in Alg. 2 correspond to instances U , and stored
with its cost value as (U, cost) based on cost(·) in Eq. (4).
We could adopt a developed heuristic function to (e.g., (Atz-
mon et al. 2020)), although the problem in this paper is dif-
ferent from theirs. Another acceleration method is to prune
redundant vertices when traversing the set V . For example,
the convex hull of given vertices U is a candidate to shrink
the search space in most cases (with some exceptions for the
min-max case, as explained in (Yan, Zhao, and Ng 2015)).

Meta-Heuristics The instance space is complex and no
derivative information is available. Then, only general meta-
heuristics (e.g., local search, hill-climbing, and beam search)
can apply to the problem in the current status. We here
adopt the following methods: beam-search with the size
B, denoted by Bm(B) and local search using the distance
d(vmm, vms), denoted by Local. As another baseline, we
use the random search, denoted by RS.

For G We define the neighbor of G = (V,E,w) when l >
0 is given to search for editing operations on G as follows:

Nroad(G) :=
⋃

(u,v)∈V×V

{G′ = (V,E′, w′)}, (5)

where E′ = E ∪ {{u1, v1}, . . . {ul, vl}}, all of
{u1, v1}, . . . , {ul, vl} are different, and w({u, v}) =
froad(u, v) if {u, v} /∈ E and w({u, v}) otherwise. The cost
of applying the insertions is defined as follows.

10322

Algorithm 3: GnT-with-edit (GnT-Edit)

Require: Instance (G,U) such that |U | = k and Ams(G,U) ̸=
Amm(G,U), function froad, max. number l of edit edges

Ensure: Set Uans ⊆ V and Gans such that Ams(Gans, Uans) =
Amm(Gans, Uans), and explanations (i.e., pairs representing
travels on U and modifications on G)

1: Compute U ′ and cost ′ using some solver for Problem 3
2: Initialize costop ← cost ′, Eans ← ∅
3: for sets Einsert ⊆ (V × V)l such that 1 ≤ |Einsert| ≤ l do
4: Initialize costE′ ← 0
5: for each e ∈ Einsert do
6: costE′ ← costE′ + froad(e)

7: if costcomb < costop then
8: Build a new graph G′ := (V,E ∪ Einsert)
9: Compute vms = Ams(G

′, U), vmm = Amm(G′, U)
10: if vms = vmm then
11: costop ← costE ′ , Eans ← Einsert

12: return Uans and Gans = (V,E ∪ Eans) with explanations

Definition 2. For two instances P = (G,U), G = (V,E)
and P ′ = (G′, U), G′ = (V,E′), E′ \ E = {(vi, vi′), . . . },
the cost from P to P ′ is defined as follows.

C(P,P ′) :=
∑
i

froad(vi, vi′). (6)

Methods We assume that (1) the number of vertices in G
is sufficient and (2) the maximum number l of edges in-
serted into G is given. Therefore, all possible editions on
G with inserting edges up to l can be traversed by O(|V |2l).
We then can build a baseline algorithm as a generalization
of GnT, as shown in Alg. 3, which we label GnT-Edit.
Note that the iteration of l new edges (in Line 5 of Alg. 3)
contains many redundant sets Einsert because most Einsert

do not change the results vms and vmm. Pruning redundant
search branches is again efficient. A possible pruning strat-
egy is ignoring {v, u} to be added if E′ = E ∪ {{v, u}}
does not change the solution obtained by E.

For both G and U Combining the neighborhoods and
search-based methods for G and U is possible according to
the purpose. When the two methods are combined sequen-
tially, a naive pruning method can accelerate the combined
search procedure. Let C be an optimal edit cost only for U
and us assume that froad(u, v) = d(u, v)/β + B. Since
d(u, v) > 0 and β > 0, if B > C we just skip the search
method for graph structures.

To build a combined method, which searches both G and
U labeled Combined, we revise Line 7–11 in Alg. 3 as fol-
lows: Instead of solving the X-OMP-MIN-MAX problem
(i.e., U is fixed), we call an algorithm for Problem 3 (e.g.,
Alg. 2) to search U ′ with pruning based on edited graphs
G′, where pruning with estimated values (e.g., B or other
feasible costs) is implemented. Another approach for both
G and U , named Complete, is defined by using the neigh-
boring relations simultaneously. We implement the BrFS
with pruning/BestFS by defining the neighborhood relation
as Ncombined(P) := Nuser(U)∪Nroad(G) for P = (G,U).
We could prune children if |E′| > |E|, and the pruning with
the best cost so far is also applicable.

(a) BrFS+Pruning (b) BestFS

(c) GnT-Edit (d) Both with (α, β) = (2, 2)

Figure 2: Mean computational times: (a)-(b) fixed G and
methods with GnT, (c) for fixed U using GnT-Edit, and
(d) both G and U with Combined and Complete

Experiments and Discussions
All evaluations are conducted on a machine (Ubuntu 20.04)
with an Intel Core i5-6260U CPU at 1.80GHz and 32GB
memory. All scripts are written in Julia 1.6. Due to the space
constraint, for analyzing the behavior of our framework,
only results using randomly generated road networks (van de
Hoef, Johansson, and Dimarogonas 2015) are reported.
Used graphs are labeled N = 20, 40, and 60. Since this pa-
per does not aim at developing a scalable algorithm, we only
analyze the proposed methods when the size of graphs and
instances increases.

Evaluations of Proposed Methods
We first evaluate our framework only for U . To generate ran-
dom instances, we select up to k ≤ 12 customers on V ran-
domly. For Alg. 1, we set k = 5 (N = 20) and k = 3
(N = 40, 60). Together with GnT, we evaluate BrFS and
BestFS based on Alg. 2. Figure 2a and 2b show the com-
putational times. The x-axes correspond to k and the y-axes
represent the mean computational times on a logarithmic
scale for 10 instances per k. Figure 2a shows the results by
BrFS and Fig. 2b shows the results by BestFS, respec-
tively, where black series represent the results by GnT. In
terms of computational time, both methods run similarly and
are comparable, and trivially GnT is less effective.

Next we evaluate GnT-Edit (Alg. 3) with N =
20, 40, 60 and l = 1, and Combined method. We
simplify two costs as fresidents(u, v) := d(u, v)/α and
froad(u, v) := d(u, v)/β with α = β = 2. In Fig. 2c il-
lustrates mean computational times. Pruning using results
only for U (corresponding to small markers) was faster than
results without pruning (large markers with dashed lines).

10323

(a) Relative scores G (b) Times

Figure 3: Comparison of BrFS and meta-heuristics
(Local, Bm, and RS).

As mentioned, the possible way to select l edges depends on
O(|V |2l), the computational times are almost consistent and
depends on the graph size N . Note that total times for re-
sults with small markers were longer than results with large
markers as they need to first solve instances only for U .

Last, we evaluate the performance of Combined and
Complete. Figure 2d shows the results of compar-
ing Combined (normal lines with small markers) and
Complete (dashed lines with large markers). The re-
sults indicate that Combined was more efficient than
Complete. The difference gets larger when graph becomes
larger. As the branching in a certain node in the search space
is huge as it tries |V |2l children, we confirm that the prun-
ing method is efficient, and further pruning is a promising
direction to develop more efficient search-based methods.

We next compare our methods and meta-heuristics. We
use the N = 20 graph with 2 ≤ k ≤ 12 instances, and
solve them by BrFS and meta-heuristics (Local, Bm(B)
with B = 5, 10, RS) up to the timelimit 60 seconds.
We measured empirical approximation ratios C⋆

CBrFS
, where

⋆ ∈ {Local, Bm(5), Bm(10), RS} and C⋆ indicates the opti-
mal cost by ⋆. Figure 3a shows the evaluate ratios and the
black dashed line means 1. Figure 3b indicates computa-
tional times and the black dashed line is 60 [s]. Note that
a basic search procedure; beam search (Bm(B)) cannot find
better solutions. Local search works efficiently in compu-
tational times, and the result solutions have smaller costs
than other meta-heuristics. We conjecture that finding a up-
per bound of the cost to prune redundant search subtrees is
a possible approach for acceleration.

Visualization of Instance Spaces
We enumerated all instances on each graph, solved them,
and measured the ratio of positive and negative instances to
observe the instance space. We confirmed that 70%-80% in-
stances are negative for Problem 3 with k ≥ 3. This result
indicates the importance of efficient search-based methods.

We next visualize the instance space in Fig. 4 for k = 2
(Fig. 4a) and k = 3 (Fig. 4b). Points in the scatter plots cor-
respond to instances. The x-axes represent the cost C(P1,P)
and the y-axes indicate the sum of two objective values of
the min-sum and min-max OMPs. To compare the proposed
methods from a quantitative point of view, we evaluate RS
with N = 100 iterations from P1 (Fig. 4c) and BestFS

(a) |U | = 2 (b) |U | = 3

(c) Trace of RS (d) Trace of BestFS

Figure 4: (a) and (b): The instance space of N = 20. The x-
axes represent the cost, and y-axes represent the sum of the
min-sum and min-max costs. Points correspond to instances,
where the blue is P1 and the red large circle is P⋆. (c) and
(d): Search traces for |U | = 3 on (c) RS and (d) BestFS.

based on BrFS (Fig. 4d). The trace visualization shows the
efficiency of search-based methods.

Application Scenario
Last we illustrate an example of deciding a tourist meeting
point. We extract a network from Kyoto, Japan from Open-
streetmap and clean up the graph by preprocessing. Note that
weight w({u, v}) is set to be the great-circle distance of two
locations u and v. Now our task is to design a meeting point
among tourists, and provide some benefits to them if needed
for its fairness. We show two example instances randomly
generated in Fig. 5. Once locations or distributions of cus-
tomers are given (or estimated), we can apply OSMs to de-
sign their meeting point. We have two cases; an instance is
easy (see Fig. 5a) in terms of the cost, and in contrary an in-
stance is hard (e.g., many tourists need to be adjust to make
a fair meeting point as in Fig. 5b). We then confirm that our
framework is applicable to the designing process for tourists.

Figure 5c shows the ratios of positive instances based on
randomly generated 10,000 instances. We confirmed that on
real road-networks, it is challenging to reach a positive in-
stance from P1, but our search-based method works cor-
rectly as we intended.

Another application to interact with the user is using all
feasible solutions in a post-hoc evaluation. We use BrFS up
to some time budget (e.g., 60 seconds), and then show all
feasible solutions to the user and receive a feedback from
the user to fix a meeting point. Since different solutions
represent different compensation scenarios for tourists, they
can be evaluated by the two methods; a system cost (i.e.,
C(P1,P⋆)) and travel distances by editions of users (e.g.,
d(Ams(P⋆), u) for u ∈ U). Therefore, using the concept of

10324

(a) Easy instance (b) Hard instance

(c) Ratio of positive in-
stances

(d) Multiple solutions

Figure 5: Two examples on the road network in Kyoto, Japan
(in (a) and (b)). Positive rate of sampled 10,000 instances
on G in (c), meaning that many instances require editions.
Multiple solutions and their dominant regions in (c).

multiobjective optimization (e.g., Pareto-front) is applicable
to this usecase (see Fig. 5d for example). That is, we can
design some interface using these multiple solutions.

Related Work
Meeting Points and Optimization Meeting points have
been studied due to both theoretical and practical interests. A
practical application of using meeting points except for facil-
ity locations involves planning trip plans (Shang et al. 2015;
Ahmadi and Nascimento 2016). Our framework could ap-
ply to their problem and it is beneficial because users would
check and modify their trip plans according to their con-
straints and/or preferences.

Combinatorial (Re-)Optimizations A typical combina-
torial optimization solver is designed as a one-shot method,
but reoptimization problems are similar to ours. The task of
reoptimization involves finding a new solution S ′ when a
previous instance P , its solution S , and a new instance P ′

are given, where P and P ′ are often similar. The hardness of
reoptimization problems has been investigated in the litera-
ture (e.g., (Böckenhauer et al. 2008)). Note that this paper
just focuses on OMPs, althought the combinatorial objects
representing graph editions are following their methodology.

Two related topics are studied in the literature. First, op-
timization with queries (Blum et al. 2015) involves to find
graph matching under the assumption that solvers could
query about the possibility of each decision. Though this
concept is similar to ours, our search-based method uses

a different query scheme for a different purpose. Second,
inverse combinatorial optimization problems are similar to
ours (Heuberger 2004), where problems to find parame-
ters (e.g., Cij between two locations i, j) are considered.
We expect that utilizing these information to accelerate our
framework is promising. Although we adopt the indica-
tor function I(·) for supervisions, developing a preference
model is a possible approach to generalize our search-based
method (Meignan et al. 2015).

Explanations and Planning Explanations have been
studied in various fields (Dev Gupta, Genc, and O’Sullivan
2021; Molnar 2020). From the CSP perspective, our expla-
nation and relaxations could be related to each other, while
we focused on optimization problems and cost-based eval-
uations are applied to edits of instances, and we also need
to find such editions as not explicitly given. To the best of
our knowledge, there is no consensus language to describe
instances (e.g., OMPs (G,U) in our paper). We then formu-
lated the difference on graphs G and sets U as explanations.

Another similar concept on graphs for explanations is
seen at XAI (Lucic et al. 2021; Ying et al. 2019); the per-
tubation on graphs (i.e., edge edit) is important for XAI to
find a minimum difference to get a different predictive class
label. We emphasize that we focus on combinatorial opti-
mization problems, not predictions of labels.

Some papers have mentioned explainable planning (Fox,
Long, and Magazzeni 2017; Cashmore et al. 2019), but there
has seemed no consensus about this word. Existing studies
(e.g., (Fox, Long, and Magazzeni 2017)) focus on answering
background reasons (e.g., why did you do that). In contrast
to them, we formulate a framework based on instance search
to fill the gap between the input and desired instances, where
the supervision from users helps the instance search.

Blackbox Optimization A similar methodology to get the
desired outcome of a system is blackbox optimization if the
outcome is written in some function. Unless our supervision
(in Section) is not in the form of real-valued functions, us-
ing blackbox optimization methods is possible. Note that in
this case, we still need to design neighbors of instances to
prepare trials since the space we consider is discrete. To our
knowledge, studies with combinatorial optimization for in-
teraction, particularly when the input design variables are
discrete, are still challenging (as mentioned in (Meignan
et al. 2015) as well).

Conclusion
We studied the explainable framework by focusing on
the optimal meeting point problems on graphs to support
decision-makers. The key concept is to search the instance
space and provide users explanations between the input and
desired situations. We utilize efficient solvers for the ground
optimization problems (i.e., meeting points) as a component.
In experiments, we confirmed that search-based techniques
can also apply to our problem setting. The results indicate
that search-based method work efficiently to find the desired
instance with explanations. Our future work includes both to
improve the scalability of search-based methods and to in-
vestigate other optimization problem classes.

10325

References
Ahmadi, E.; and Nascimento, M. A. 2016. k-Optimal meet-
ing points based on preferred paths. In Proceedings of the
24th ACM SIGSPATIAL International Conference on Ad-
vances in Geographic Information Systems, 1–4.
Anderson, D.; Anderson, E.; Lesh, N.; Marks, J.; Mirtich,
B.; Ratajczak, D.; and Ryall, K. 2000. Human-guided sim-
ple search. In AAAI/IAAI, 209–216.
Atzmon, D.; Li, J.; Felner, A.; Nachmani, E.; Shperberg,
S.; Sturtevant, N.; and Koenig, S. 2020. Multi-directional
heuristic search. In International Joint Conference on Arti-
ficial Intelligence (IJCAI), volume 2020, 4062–4068.
Blum, A.; Dickerson, J. P.; Haghtalab, N.; Procaccia, A. D.;
Sandholm, T.; and Sharma, A. 2015. Ignorance is almost
bliss: Near-optimal stochastic matching with few queries.
In Proceedings of the Sixteenth ACM Conference on Eco-
nomics and Computation, 325–342.
Böckenhauer, H.-J.; Hromkovič, J.; Mömke, T.; and Wid-
mayer, P. 2008. On the hardness of reoptimization. In Inter-
national Conference on Current Trends in Theory and Prac-
tice of Computer Science, 50–65. Springer.
Böckenhauer, H.-J.; and Komm, D. 2010. Reoptimization
of the metric deadline TSP. Journal of Discrete Algorithms,
8(1): 87–100.
Cashmore, M.; Collins, A.; Krarup, B.; Krivic, S.; Maga-
zzeni, D.; and Smith, D. 2019. Towards explainable AI plan-
ning as a service. arXiv preprint arXiv:1908.05059.
Dev Gupta, S.; Genc, B.; and O’Sullivan, B. 2021. Expla-
nation in Constraint Satisfaction: A Survey. In Zhou, Z.-H.,
ed., Proc. of the IJCAI2021, 4400–4407.
Festa, P.; Guerriero, F.; and Napoletano, A. 2019. An
auction-based approach for the re-optimization shortest path
tree problem. Computational Optimization and Applica-
tions, 74(3): 851–893.
Fisher, M. L. 1985. Interactive optimization. Annals of Op-
erations Research, 5(3): 539–556.
Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
planning. arXiv preprint arXiv:1709.10256.
Gao, X.; Xiao, B.; Tao, D.; and Li, X. 2010. A survey
of graph edit distance. Pattern Analysis and applications,
13(1): 113–129.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernet-
ics, 4(2): 100–107.
Heuberger, C. 2004. Inverse combinatorial optimization: A
survey on problems, methods, and results. Journal of com-
binatorial optimization, 8(3): 329–361.
Klau, G. W.; Lesh, N.; Marks, J.; and Mitzenmacher, M.
2002. Human-guided tabu search. In Proc. of AAAI2002,
41–47.
Klau, G. W.; Lesh, N.; Marks, J.; and Mitzenmacher, M.
2010. Human-guided search. Journal of Heuristics, 16(3):
289–310.
Korte, B. H.; Vygen, J.; Korte, B.; and Vygen, J. 2011. Com-
binatorial optimization, volume 1. Springer.

Li, R.-H.; Qin, L.; Yu, J. X.; and Mao, R. 2015. Optimal
multi-meeting-point route search. IEEE Transactions on
Knowledge and Data Engineering, 28(3): 770–784.
Lucic, A.; ter Hoeve, M.; Tolomei, G.; de Rijke, M.; and
Silvestri, F. 2021. CF-GNNExplainer: Counterfactual Ex-
planations for Graph Neural Networks. arXiv:2102.03322.
Meignan, D.; Knust, S.; Frayret, J.-M.; Pesant, G.; and
Gaud, N. 2015. A Review and Taxonomy of Interactive Op-
timization Methods in Operations Research. ACM Trans.
Interact. Intell. Syst., 5(3).
Miettinen, K.; Ruiz, F.; and Wierzbicki, A. P. 2008. In-
troduction to Multiobjective Optimization: Interactive Ap-
proaches, 27–57. Berlin, Heidelberg: Springer Berlin Hei-
delberg.
Molnar, C. 2020. Interpretable machine learning. https:
//christophm.github.io/interpretable-ml-book/. Accessed:
2022-04-01.
Shang, S.; Chen, L.; Wei, Z.; Jensen, C. S.; Wen, J.-R.; and
Kalnis, P. 2015. Collective travel planning in spatial net-
works. IEEE Trans. on Knowledge and Data Engineering,
28(5): 1132–1146.
Thiele, L.; Miettinen, K.; Korhonen, P. J.; and Molina, J.
2009. A preference-based evolutionary algorithm for multi-
objective optimization. Evolutionary computation, 17(3):
411–436.
Toth, P.; and Vigo, D. 2014. Vehicle routing: problems,
methods, and applications. SIAM.
van de Hoef, S.; Johansson, K. H.; and Dimarogonas, D. V.
2015. Coordinating Truck Platooning by Clustering Pair-
wise Fuel-Optimal Plans. In Proc. of ITSC2015, 408–415.
Wachter, S.; Mittelstadt, B.; and Russell, C. 2017. Counter-
factual explanations without opening the black box: Auto-
mated decisions and the GDPR. Harv. JL & Tech., 31: 841.
Yan, D.; Zhao, Z.; and Ng, W. 2015. Efficient Process-
ing of Optimal Meeting Point Queries in Euclidean Space
and Road Networks. Knowledge and Information Systems,
42(2): 319–351.
Ying, R.; Bourgeois, D.; You, J.; Zitnik, M.; and Leskovec,
J. 2019. Gnnexplainer: Generating explanations for graph
neural networks. In Proc. of the NeurIPS2019.

10326

