
PEA∗+IDA∗: An Improved Hybrid Memory-Restricted Algorithm

Frederico Messa, André Grahl Pereira
Federal University of Rio Grande do Sul, Brazil

{frederico.messa, agpereira}@inf.ufrgs.br

Abstract

It is well-known that the search algorithms A∗ and Iterative
Deepening A∗ (IDA∗) can fail to solve state-space tasks op-
timally due to time and memory limits. The former typically
fails in memory-restricted scenarios and the latter in time-
restricted scenarios. Therefore, several algorithms were pro-
posed to solve state-space tasks optimally using less mem-
ory than A∗ and less time than IDA∗, such as A∗+IDA∗, a
hybrid memory-restricted algorithm that combines A∗ and
IDA∗. In this paper, we present a hybrid memory-restricted
algorithm that combines Partial Expansion A∗ (PEA∗) and
IDA∗. This new algorithm has two phases, the same structure
as the A∗+IDA∗ algorithm. The first phase of PEA∗+IDA∗

runs PEA∗ until it reaches a memory limit, and the second
phase runs IDA∗ without duplicate detection on each node
of PEA∗’s Open. First, we present a model that shows how
PEA∗+IDA∗ can perform better than A∗+IDA∗ although pure
PEA∗ usually makes more expansions than pure A∗. Later,
we perform an experimental evaluation using three mem-
ory limits and show that, compared to A∗+IDA∗ on classical
planning domains, PEA∗+IDA∗ has higher coverage and ex-
pands fewer nodes. Finally, we experimentally analyze both
algorithms and show that having higher F -limits and better
priority-queue composition given by PEA∗ have a consider-
able impact on the performance of the algorithms.

Introduction
A∗ (Hart, Nilsson, and Raphael 1968) is one of the most
popular best-first heuristic search algorithms due to its ca-
pability to time-efficiently solve state-space tasks optimally
while being intuitive and simple to understand. It expands
first nodes with better estimates and stores all generated
nodes until expanding and replacing the stored nodes with
their children. Since the node estimates given by efficient
heuristic functions are imperfect, A∗ often fails to solve
challenging state-space tasks, even in scenarios with large
memory limits. Iterative Deepening A∗ (IDA∗) overcomes
the memory limitations of A∗ (Korf 1985), as it is a heuris-
tic search algorithm with low memory requirement, linear in
the depth of the search. However, IDA∗ has no duplicate de-
tection without using extra memory. Thus, it may frequently
expand nodes with the same states. Also, it requires multiple

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

re-expansions of the same nodes due to its iterative behav-
ior, especially those close to the root node. Thus, pure IDA∗

needs, frequently, orders of magnitude more expansions than
A∗ to solve optimality challenging state-space tasks.

Many algorithms were proposed to solve state-space tasks
optimally using less memory than A∗ and making fewer
node expansions than IDA∗, such as MREC (Sen and Bagchi
1989), MA∗ (Chakrabarti et al. 1989), SMA∗ (Russell
1992), SMAG∗ (Kaindl and Khorsand 1994), BAI (Kaindl
et al. 1995), BIDA∗ (Manzini 1995), AL∗ (Stern et al. 2010;
Bu et al. 2014), and PEA∗ (Yoshizumi, Miura, and Ishida
2000). Some of them have a high polynomial-time over-
head per node expansion or generation compared to A∗,
such as MA∗, SMA∗, and SMAG∗. Some have the perfor-
mance depending on the quality of hyper-parameter values
that are hard to define, such as the AL∗ algorithm. Others
like PEA∗ (Yoshizumi, Miura, and Ishida 2000) cannot be
restricted to a specific memory limit. Finally, many are rela-
tively difficult to understand or implement. Because of these
issues, these algorithms are less frequently used in practice.

Bu and Korf (2019) presented a new algorithm combining
A∗ and IDA∗ in a hybrid algorithm with two phases called
A∗+IDA∗. Their new approach does not have the mentioned
disadvantages since it is simple to understand, easy to im-
plement, has low overhead per node, and limits the mem-
ory required. A∗+IDA∗ can achieve speed-ups around five
times over IDA∗ for specific domains. Bu and Korf explain
that the main advantage of A∗+IDA∗ is that it starts per-
forming IDA∗ iterations from nodes with higher depth than
the pure IDA∗ algorithm (which starts from the root node).
They assert that avoiding some IDA∗ iteration is less impact-
ful since the last two layers of IDA∗ iterations dominate the
search. Although the A∗+IDA∗ algorithm avoids failing due
to memory limits, its second phase still has the drawbacks
of the pure IDA∗ algorithm.

In this paper, we propose the use of the Partial Expansion
A∗ (PEA∗) as the first phase algorithm (instead of A∗), cre-
ating the PEA∗+IDA∗ algorithm. Partial Expansion A∗ is an
algorithm based on A∗ that avoids storing all generated chil-
dren of expanded nodes, thus reducing its memory require-
ments. PEA∗+IDA∗ is a new hybrid algorithm that is as sim-
ple and intuitive as A∗+IDA∗. With the trade-off of possibly
having more expansions in the first phase, PEA∗+IDA∗ gen-
erally reduces the number of IDA∗ iterations and expansions

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

10291

in the second phase. We present a model that shows how
PEA∗+IDA∗ can perform better than A∗+IDA∗. We com-
pare the PEA∗+IDA∗ algorithm with the A∗+IDA∗ algo-
rithm on several domains of the International Planning Com-
petition (IPC) at three different memory limits. The exper-
iments show a reduction in the total number of expansions
and an increase in coverage. We also analyze which aspects
can yield speed-ups of PEA∗+IDA∗ over A∗+IDA∗ and we
found that the F -values of the nodes in Open and its node
composition are important aspects. Our analysis generally
improves the understanding of hybrid memory-restricted al-
gorithms and presents new research directions for efficient
hybrid algorithms.

Background
State-Space Search A state-space task is a tuple Θ =
⟨S,A, T, c, s0, SG⟩ (Sturtevant and Helmert 2019), where
S is a finite set of states, A is a finite set of actions, T :
S×A ⇀ S is a partial function of transitions between states,
c : A → R≥0 is a cost function that maps actions to non-
negative real costs, s0 ∈ S is the initial state and SG ⊆ S
is the set of goal states. A solution of Θ is a path of transi-
tions π = ⟨⟨s0, a0, s1⟩, ⟨s1, a1, s2⟩, . . . , ⟨sn−1, an−1, sn⟩⟩
with sn ∈ SG and T (si, ai) = si+1, ∀i ∈ [0, n−1]. It is op-
timal if its cost

∑n−1
i=0 c(ai) is minimal. A heuristic function

h : S → R≥0 ∪ {∞} maps all states to their h-values. The
h-value of a state s estimates the minimal cost path from s
to any goal state. The perfect heuristic function h∗ estimates
that cost correctly for all states, assigning h∗(s) = ∞ to
states s for which no such path exists. A heuristic is ad-
missible if and only if h(s) ≤ h∗(s) for all s ∈ S. The
f -value of a state s estimates the cost of a solution going
through s and is defined as f(s) = g(s) + h(s), where g(s)
is the current cost from s0 to s. A search node n is a data
structure that contains a state s, its g and f -values, and its
parent node (⊥ for the root node). We assume the search al-
gorithms have access to the state-space task through a black-
box interface, i.e., they do not have access to a declarative
representation of the task. The black-box interface provides
the following methods: make root() generates a node n0

with the initial state s0, is goal(n) tests if n contains a
goal state, extract path(n) generates the path of transi-
tions from s0 to n.state and succ(n) generates all nodes n′

such that n′.state is children of n.state (i.e., nodes n′ such
that T (n.state, a) = n′.state). When succ(n) is invoked,
the node n is expanded and all its children are generated.

A∗ Algorithm The A∗ algorithm (Hart, Nilsson, and
Raphael 1968) processes first nodes in Open with least f -
value. It initializes the Open list with the root node n0 and
repeatedly removes Open nodes until it removes a node that
contains a goal state. At each iteration, it removes a node n,
generates the nodes children of n, and adds n with its g-
value to Closed. For each generated child n′, if n′.state /∈
Open and n′.state /∈ Closed, then n′ is inserted in Open.
If n′.state ∈ Open and n′.g < Open(n.state).g, then its
g-value and parent are updated. If n′.state ∈ Closed and
n′.g < Closed(n.state).g, then n′.state is removed from
Closed and n′ is inserted in Open.

Iterative Deepening A∗ Algorithm The Iterative Deep-
ening A∗ (IDA∗) (Korf 1985) algorithm performs iterations
bounded by an increasing f -limit. At each iteration, start-
ing from the root node, IDA∗ expands nodes recursively dis-
carding generated nodes with f -values greater than the cur-
rent f -limit. If a node containing a goal state with f -value
equal to the f -limit is generated during an iteration, the al-
gorithm terminates finding a solution. At the end of the itera-
tion, the minimal f -value among generated discarded nodes
is set to be the next f -limit (if there is at least one lower than
∞, otherwise the search ends by task unsolvability). IDA∗

is a linear-space search algorithm. The trade-off is that it
may frequently expand nodes with the same states and re-
quires multiple re-expansions of the same nodes. Transpo-
sition Tables (TTs) (Reinefeld and Marsland 1994; Akagi,
Kishimoto, and Fukunaga 2010) and other methods use extra
memory to reduce the IDA∗ number of re-expansions aim-
ing to approximate the performance of A∗. We assume IDA∗

prunes cycles in expanded paths and that it process children
sorted by lower f -value and lower h-value.

A∗+IDA∗ Algorithm The A∗+IDA∗ algorithm (Bu and
Korf 2019) has two phases. The first phase runs A∗ until
it finds a solution or reaches a memory limit. If A∗ reaches
a memory limit, A∗+IDA∗ starts the second phase. The sec-
ond phase removes a node n from Open, using the A∗ or-
der, and performs an IDA∗ iteration starting from n and
using as f -limit n.f . If the iteration finds a solution, the
search ends. Otherwise, the node n is inserted in Open
with f -value updated. The new f -value of n is the new f -
limit returned by IDA∗. This process repeats until a solution
is found. A∗+IDA∗ is a memory-restricted algorithm that
finds optimal solutions for states-space tasks using specific
memory limits. Unfortunately, A∗+IDA∗’s second phase has
the drawbacks of being an IDA∗ search. However, Bu and
Korf reported that A∗+IDA∗ is empirically superior to other
methods such as TT for specific domains.

Partial Expansion A∗ Algorithm Partial Expansion A∗

(PEA∗) (Yoshizumi, Miura, and Ishida 2000) is an algo-
rithm that reduces the A∗’s Open memory consumption with
a trade-off of possibly requiring multiple re-expansions of
nodes. PEA∗ processes first nodes with least F -value instead
of a node with least f -value. The F -value of a node is de-
fined to be equal to its f -value until it is updated to another
value. When expanding a node n, the algorithm discards all
its children that have F -values greater than its n.F . PEA∗

re-inserts n in Open with F -value updated to the minimal
finite F -value of the discarded children if there is at least
one. Otherwise, the node n is inserted in Closed. The orig-
inal version of PEA∗ allows defining a parameter C, such
that PEA∗ only discards children of a node n that have F -
values greater than n.F + C. We assume C = 0, which is
most frequently used. When C = 0, no node with f -value
greater than h∗(s0) is ever stored. Goldenberg et al. (2014)
improved PEA∗ by making it avoid generating the children
nodes that will be discarded, when using specific heuristics
or solving specific domains. In this paper, we don’t evaluate
the enhanced version of PEA∗ (EPEA∗) because we assume
the black-box interface model and a general heuristic.

10292

Algorithm 1: PEA∗+IDA∗

1 Open := {make root()}
2 Closed := ∅
/* First Phase: Restricted PEA∗

*/
3 while Open ̸= ∅ do
4 Remove node n from Open with minimum n.F
5 if is goal(n) then return extract path(n)
6 Children≤ := {n′ | n′ ∈ succ(n) ∧ n′.F ≤ n.F}
7 Children> := {n′ | n′ ∈ succ(n) ∧ n′.F > n.F}
8 if |Open|+ |Children≤|+min(|Children>|, 1) >

MEMORY LIMIT then
9 Insert n in Open

10 break
11 foreach n′ ∈ Children≤ do process child(n′)
12 n.F := min{n′.F | n′ ∈ Children>}
13 if n.F = ∞ then Insert n in Closed
14 else if |Children>| = 1 then
15 process child(n′) | n′ ∈ Children>
16 Insert n in Closed

17 else Insert n in Open

/* Second Phase: IDA∗
*/

18 while Open ̸= ∅ do
19 Remove node n from Open with minimum n.F
20 solution path,new F limit := IDA∗(n, n.F)
21 if solution path ̸= ⊥ then return solution path
22 if new F limit = ∞ then Insert n in Closed
23 else
24 n.F := new F limit
25 Insert n in Open

26 return ⊥ // UNSOLVABLE

27 Method process child(n′):
28 if n′.state ̸= n.state then
29 if n′.state ∈ Open then
30 if n′.g < Open(n′.state).g then
31 Open(n′.state).update(n′.parent , n′.g, n′.F)
32 else if n′.state ∈ Closed then
33 if n′.g < Closed(n′.state).g then
34 Remove n′.state from Closed

35 Insert n′ in Open

36 else Insert n′ in Open

PEA∗+IDA∗ Algorithm
In this section, we introduce the PEA∗+IDA∗ hybrid
memory-restricted algorithm. We show its high-level de-
scription and how to modify it to use as A∗+IDA∗, or as
the pure algorithms PEA∗, A∗, or IDA∗. We then present a
proof sketch of its soundness and completeness. Finally, we
present a model that shows how PEA∗+IDA∗ can perform
better than A∗+IDA∗. The PEA∗+IDA∗ algorithm has two
phases. The first phase runs PEA∗ until it reaches a memory
limit. Our aim to use PEA∗ as the first phase algorithm is
to reduce the drawbacks of its IDA∗ phase. Using PEA∗ in-
stead of A∗ may extend the first phase, since PEA∗ reduces
the Open size of A∗.

High-Level Description
Algorithm 1 shows PEA∗+IDA∗ with its two phases: PEA∗

(lines 3–17) and IDA∗ (lines 18–25).

First Phase (lines 3–17) PEA∗+IDA∗ removes from Open
first a node n with least F -value (line 4) and not least
f -value. Note that the F -value of a node can be updated
through the execution of the algorithm. When expanding the
node n, the algorithm divides the generated children nodes
from succ(n) into two sets Children≤ and Children>.
The set Children≤ (line 6) stores nodes with F -values
lower or equal to n.F . The set Children> (line 7) stores
nodes F -values greater than n.F . PEA∗+IDA∗ terminates
the first phase (lines 8–10) if the memory (Open size) re-
quired to expand the node n is greater than the predeter-
mined limit. Line 11 invokes the typical method of A∗ that
processes generated nodes in Children≤. Lines 12–17 pro-
cess Children>, if there is no child with finite F -value
greater than n.F , then the node n is inserted in Closed.
Otherwise, if there is more than one node in Children> the
node n is re-inserted in Openwith F -value equals to the min-
imum finite F -value of nodes in Children>. We propose a
minor modification of the original PEA∗ that reduces ex-
pansions of PEA∗+IDA∗ in our experiments: if Children>
has only one child node n′, then it is processed as a child
node with F -value lower or equal to n.F , and the node n
is then inserted in Closed. We do that because in this case
processing n′ and closing n completes the expansion with-
out changing the overall Open size.

Second Phase (lines 18–25) PEA∗+IDA∗ again removes
from Open first a node n using the same order from the first
phase. Line 20 invokes a standard iteration of IDA∗ starting
from the node n and using as F -limit its F -value. At the
end of the iteration, if IDA∗ finds a solution, the algorithm
returns it. If the new F -limit returned by the IDA∗ iteration
is infinite, the node n is inserted in Closed. Otherwise, it is
re-inserted in Open updating its F -value to the new F -limit.

Obtaining Other Algorithms We can obtain other al-
gorithms by performing minor changes in PEA∗+IDA∗.
To obtain IDA∗, we can set MEMORY LIMIT to zero since
PEA∗+IDA∗ would fail to make an expansion in the first
phase, going then straight to the second phase. To obtain
PEA∗, we can set MEMORY LIMIT to ∞ since it would never
go to the second phase. To obtain the A∗+IDA∗ algorithm,
it is sufficient to insert all children nodes into Children≤,
instead of splitting them into Children≤ and Children>.
Lastly, to obtain the A∗ algorithm is sufficient to simulta-
neously perform both the conversion procedures to obtain
PEA∗ and obtain A∗+IDA∗.

Soundness and Completeness
Here we present a proof sketch of the soundness and com-
pleteness of the PEA∗+IDA∗ algorithm. It does not consider
all effects of having the Open and Closed duplicate detec-
tion due to space constraints, although we could prove it
does not harm the algorithm soundness and completeness.

Theorem 1. For a state-space task Θ, PEA∗+IDA∗ with
an admissible heuristic function h returns an optimal solu-
tion if one exists and terminates otherwise.

Proof sketch. Before any Open node removal, there is a
node n in Open such that there is an optimal solution in-
cluding n with cost at least n.F . This is initially valid be-

10293

1 2

2 21 1 4 3

4 1 12 2 16 31 0 16 4

6 0 24 1 56 2 96 3 96 4

36 0 128 1 304 2 512 3 576 4

200 0 704 1 1632 2 2816 3 3200 4

1104 0 3840 1 8896 2 15360 3 17664 4

(a) Example state-space task.

PEA∗+IDA∗ PEA∗+IDA∗

4 → 5 5 → 6

A∗+IDA∗ A∗+IDA∗

4 → 5 5 → 6

(b) Illustration of the Open of the hybrid algorithms.

Figure 1: On the left: an example of a state-space task. Each rectangle is a node-set that contains nodes with the same g and h-
values. The number at the right of a node-set is its nodes h-value, while the number inside is its size. The depth of a node-set is
its nodes g-value. Node sets with nodes g-values greater than 6 are omitted. On the right: an illustration of the node composition
of the A∗+IDA∗ and PEA∗+IDA∗’s Open lists.

cause at the start n0 is in Open with n0.F = n0.f . The
property remains valid until n is removed from Open. When
n is removed in the first phase, if n is a goal, the search
successfully ends. Otherwise, n has a child n′ with an op-
timal solution including n′. If n′.F = n′.f > n.F , then n
will be re-inserted with n.F increased to some value at most
n′.f , and since n′.f is a lower bound to the optimal solu-
tion cost, the new n.F also would be, maintaining the prop-
erty. If n′.F = n′.f ≤ n.F , n′ would be simply inserted
in Open, thus also maintaining the property. If n is removed
in the second phase and a solution is not found, the new-F -
limit assigned to n.F is still a lower bound to the optimal
solution cost, maintaining the property. So, the property re-
mains true during the whole search. It remains to be proved
that the algorithm terminates. The first phase terminates be-
cause eventually all states with finite h-value will be stored
in Closed and because the number of times that the F -value
of a node can be updated is finite. The second phase termi-
nates because nodes that form a cycle are pruned. Thus each
iteration of IDA∗ terminates expanding at most nodes with
depth |S|. ■

Open Size and Composition Model
We now present a simplified model (due to space con-
straints) of the size and node composition of the A∗+IDA∗

and PEA∗+IDA∗’s Open lists when the minimum node F -
value transitions from x to x+ 1. In this paper, the F -value
of A∗+IDA∗ is always equal to the f -value. The model of
Korf and Reid (1998) serves as inspiration for our model. In
this model, h-values range from l− to l+, the root node has
h-value equals to h(n0.state) and the transitions have uni-
tary cost. In addition, a node n generates γ1 non-duplicated
children with h-value equals to n.h − 1, γ2 with h-value
equals to n.h, and γ3 with h-value equals to n.h + 1. With

the model, we can compute the number of nodes with g-
value g and h-value h using Equation 1.

|Ng,h| =

γ1 · |Ng−1,h+1|+
γ2 · |Ng−1,h| +

γ3 · |Ng−1,h−1| if g > 0 ∧ l− ≤ h ≤ l+;
1 if g = 0 ∧ h = h(n0.state);
0 else.

(1)
Suppose the hybrid algorithm does not require its IDA∗

phase yet. Then, we can determine what nodes are in Open
at the instant of the transition of minimum node F -value,
i.e., when Open starts to only contain nodes with F -values
equal to at least x + 1. For PEA∗+IDA∗, the nodes in Open
are the ones with f -values (original F -values) at most x that
have children nodes with f -values at least x+1. Since nodes
with f -values greater than x would still not be generated
without being discarded, and since nodes without children
nodes with f -values at least x+ 1 would have already been
inserted in Closed. For x = x using Equation 2 we can
compute the number of nodes in PEA∗+IDA∗’s Open.

l+∑
h=l−

(|N(x−1)−h,h|+ |Nx−h,h|). (2)

For the A∗+IDA∗ algorithm, the nodes in Open are the
ones with f -values at least x + 1 that are children of nodes
with f -value at most x. Since nodes with f -values lower
than x + 1 would have already been expanded, and since
children of nodes with f -values greater than x would have
not been generated yet as their parents’ nodes would have
not been expanded. For x = x using Equation 3 we can
compute the number of nodes in A∗+IDA∗’s Open.

γ2 ·
l+∑

h=l−

|Nx−h,h|+ γ3 ·
l+−1∑
h=l−

(|N(x−1)−h,h|+ |Nx−h,h|). (3)

10294

Example Using the model we can create a state-space task
that exemplifies the behavior of the hybrid algorithms. Fig-
ure 1a shows a task from a model with l− = 0, l+ = 4,
h(n0.state) = 2, γ1 = 1, γ2 = 2, and γ3 = 4, i.e., a node n
generates one non-duplicated child node with h-value one
less than its h-value, two with h-value equals to its h-value,
and four with h-value one more than its h-value. In this ex-
ample, the optimal solution cost is 6. This example aims to
emulate a space-state with a heuristic that maps few states
to small h-values since generally few nodes are near goal
states.

Therefore, for x = 4, PEA∗+IDA∗ has nodes in Open
with f -values equal to 3 and 4, thus (6 + 4 + 2) + (36 +
24 + 12 + 4) = 12 + 76 = 88 nodes. Figure 1a shows
these node-sets in the second and third diagonals. For x = 5,
PEA∗+IDA∗ has the nodes in Open with f -values equal to 4
and 5, thus 76 + (200 + 128 + 56 + 16) = 76 + 400 = 476
nodes. The Figure 1b shows in black, in the upper quadrants,
the node-sets in PEA∗+IDA∗’s Open respectively for x = 4
and x = 5.

For x = 4, A∗+IDA∗ has in Open the nodes with f -values
5 and 6 that are children of nodes with f -values equal to 3
and 4, thus γ3 · 12 + (γ2 + γ3) · 76 = 4 · 12 + 6 · 76 = 504
nodes. For x = 5, A∗+IDA∗ has in Open the nodes with
f -values 6 and 7 that are children of nodes with f -values
equal to 4 and 5, thus γ3 · 76 + (γ2 + γ3) · 400 = 2704
nodes. Figure 1b shows in black, in the lower quadrants, the
node-sets in A∗+IDA∗’s Open respectively for x = 4 and
x = 5, and in gray, the node-sets partly in A∗+IDA∗’s Open
also respectively for x = 4 and x = 5.

Note that, for a memory limit of 500 nodes in Open,
A∗+IDA∗ would run out of memory while still having a node
with F -value equals to 4 in Open, while PEA∗+IDA∗ would
only run out of memory after having in Open only nodes
with F -values at least 6. Thus, the IDA∗ phase of the for-
mer would have two more layers of iterations than the one
of the latter, providing an intuition of why the PEA∗+IDA∗

algorithm may overcome the A∗+IDA∗ algorithm.

Empirical Analysis
In this section, we aim to understand better A∗+IDA∗ and
PEA∗+IDA∗. Thus, we compare them using three different
memory limits. We measure time as the number of expanded
nodes because it avoids differences that result from imple-
mentation details. Moreover, since the memory consump-
tion of these algorithms is mainly given by their Open and
Closed lists, but the relative cost of each one depends on
implementation details, we measure memory consumption
using the number of nodes stored in Open instead of real
memory. Taking also into account the Closed size would
increase the advantage of PEA∗+IDA∗ since, as we will
show, it typically has a significantly smaller Closed than
A∗+IDA∗. In addition, Open usually grows faster and con-
sumes more memory per node than Closed.

We use the STRIPS (Nilsson and Fikes 1971) optimal
benchmark of 1877 tasks of the International Planning Com-
petition (IPC). We obtain the memory limits by solving tasks
using pure A∗ with hLMCut (Helmert and Domshlak 2009)
saving the peak of number of nodes in A∗’s Open for each

solved task. We remove from our experiments tasks that are
either too “hard” or too “easy”, i.e., not solved by pure A∗

with hLMCut in 10 minutes with 2 GB of memory, or solved by
pure A∗ with blind heuristic function with the same limits.
We ran all experiments with a Ryzen 3900X, and all algo-
rithms use as tie-breakers for Open first lower h-value fol-
lowed by the greater depth and finally lower generation or-
der. We use the Fast Downward (Helmert 2006) framework
to implement all our algorithms.

A∗ with hLMCut does not solve 927 tasks, 123 failed by
memory, 800 by time, and four by being unsolvable, fully
removing Agricola and Childsnack domains both with 20
tasks. The 800 tasks that failed by time in pure A∗ should not
be solved by any other algorithm (unless tie-breakers luckily
benefit some algorithm in some task). The other algorithms
may solve the 123 tasks that failed by memory, but we re-
moved them because we do not have the Open size peak in-
formation. A∗ with the blind heuristic solves 618 tasks, and
fails by memory in 332 of the 950 remaining tasks, removing
the domains (with their respective number of tasks in paren-
thesis): Barman (34), Gripper (20), Hiking (20), Movie (30),
Openstacks (100), Pegsol (50), Snake (20), and Tetris (17).

We compare the algorithms using the remaining 332 tasks
limiting the Open size to 10%, 50%, and 90% of the A∗’s
Open size peak. We use hLMCut in all the remaining experi-
ments. Note that tie-breakers may cause A∗ to have more ex-
pansions than some of the hybrid algorithms. Also, note that
the hybrid algorithms’ Open second phase node removals
are not expansions and that the total number of expansions
of the hybrid algorithms account for all expansions made
during each IDA∗ iteration.

A∗+IDA∗ vs. PEA∗+IDA∗ We now compare the hybrid
algorithms. In addition to the previously defined limits, the
algorithms could not solve some tasks within six hours. For
PEA∗+IDA∗ the number of failures is respectively 83, 26,
and 14 at 10%, 50%, and 90% memory limits, while for
A∗+IDA∗ is respectively 85, 65, and 57. At 10% there are
nine tasks that only PEA∗+IDA∗ failed to solve, and 11
tasks that only A∗+IDA∗ failed to solve. At 50% and 90%,
only PEA∗+IDA∗ failed respectively on four and zero tasks,
while only A∗+IDA∗ failed respectively on 43 and 43 tasks.
Table 1 shows the coverage of both hybrid algorithms for the
memory limits. Since both hybrid algorithms have a very
similar cost per expansion in the first phase and the same
cost per expansion in the second phase, the higher coverage
of PEA∗+IDA∗ shows that it is generally superior.

To compare expansions, we remove tasks that failed to
be solved by any experiment, remaining 237 tasks, and re-
moving the domains (with their number of tasks in parenthe-
sis) Elevators (50), Freecell (80), Pathways (30), Petri (20),
PSR (50), Termes (20), TPP (30) and Transport (70). Table 1
shows as (x/y) the total number y and the number x of the
remaining tasks of each domain after all filtering. The ex-
periments further made did not result in any new failure or
removal. Table 1 shows per-domain geometric mean expan-
sions for each algorithm and memory limit. It also shows
the expansions of pure A∗ for reference. To compute the
expansions, we increment by one the values before doing

10295

10% 50% 90% 100%

A∗+IDA∗ PEA∗+IDA∗ A∗+IDA∗ PEA∗+IDA∗ A∗+IDA∗ PEA∗+IDA∗ A∗

Airport (2/50) 550 188 203 223 357 223 225
Blocks (10/35) 240,000 303,167 80,140 88,138 68,379 88,138 65,289
Data (5/20) 8,337 9,325 761 354 365 354 199
Depot (3/22) 510,071,912 586,146,642 13,285,410 149,088 5,919,570 149,088 97,433
Driverlog (7/20) 353,027 355,316 37,090 3,870 13,384 3,870 3,058
Floortile (5/40) 9,305,927 105,582,631 212,129 52,701 38,791 52,701 27,077
Ged (2/20) 18,111,171 55,838,776 9,253,283 2,045,180 3,707,632 2,045,180 2,166,322
Grid (1/5) 331,728 477,407 89,609 109,367 83,421 109,367 77,087
Logistics (3/63) 22,907,130 951,837 22,699,231 373 15,519,334 373 375
Miconic (93/150) 168 183 168 186 187 186 185
Mprime (7/35) 2,523 1,538 1,455 940 1,280 940 1,180
Mystery (3/30) 3,796 2,571 2,737 2,412 1,609 2,412 1,605
Nomystery (6/20) 24,014 45,142 8,657 4,295 5,164 4,295 3,605
Organic (6/40) 3,793 4,028 2,627 2,444 1,908 1,769 1,216
Parcprinter (11/50) 338 235 179 63 142 63 58
Parking (5/40) 81,800 143,550 38,201 29,698 29,176 29,698 24,404
Pipesworld (8/150) 1,178,042 1,334,954 187,688 54,576 143,275 54,576 43,619
Rovers (2/40) 127,806,277 404,719,675 9,457,675 22,380 4,270,004 22,380 19,372
Satellite (3/36) 416,021 93,621 130,167 8,935 53,908 8,935 7,999
Scanalyzer (10/50) 15 15 15 14 15 14 14
Sokoban (4/50) 15,289 15,289 4,392 4,390 1,262 1,262 458
Spider (2/20) 2,618,834 1,627,121 357,970 101,673 217,938 101,673 95,344
Storage (1/30) 6,235,135 13,994,290 857,116 215,483 447,060 215,483 155,763
Tidybot (8/40) 344,327 351,201 60,675 49,727 31,632 27,813 20,395
Trucks (3/30) 396,319 4,267,495 125,631 14,434 39,035 14,434 13,201
Visitall (5/40) 1,040,799 1,125,316 269,693 347,120 212,046 231,582 177,030
Woodworking (16/50) 349,931 20,803 82,080 2,131 39,288 2,131 1,564
Zenotravel (6/20) 623,588 21,778 411,994 8,192 189,333 8,192 8,628

Avg. Expansions 149,628.33 132,823.20 40,284.94 7,815.38 23,554.71 7,133.72 5,698.35

Avg. Node Generations 1,814,141.82 1,608,987.07 483,384.55 92,846.75 280,722.73 85,429.31 66,580.69
Avg. Closed Size Peak 429.05 120.63 2,387.17 368.76 4,853.33 415.08 5,683.18

Coverage 247 249 267 306 275 318

Table 1: Coverage, expansions, node generations and Closed size for hybrid algorithms at three memory limits.

the mean (and decremented by one after) to deal with zero
values of IDA∗ expansions. We use a geometric mean in
all average calculations since it avoids overweighting hard
domains, reduces the effect that some domains have more
remaining tasks than others. In per-domain expansions, at
10% memory limit, the hybrid algorithms are comparable.
At 50% and 90% memory limits, PEA∗+IDA∗ wins in al-
most all domains respectively 23 vs. 5 and 21 vs. 6.

Figure 2 shows the number of expansions for each task
of Table 1. It shows that for most tasks, the first phase of
PEA∗+IDA∗ is, as expected, extended, especially at 10%
where memory is critical, and that few tasks require the sec-
ond phase at higher memory limits. Figure 2 also shows that
outliers often occur for A∗+IDA∗, having much more to-
tal expansions. In some tasks, it requires more than 10,000
times more expansions than PEA∗+IDA∗. We believe that
tasks which A∗+IDA∗ failed to solve would have signif-
icantly more expansions than the tasks that PEA∗+IDA∗

failed to solve. However, since those tasks were removed
from all Figures and Tables, and running them to the end

could be prohibitive, we present lower bounds to the mean
number of expansions in the 257 tasks that at least one of
the two algorithms solved at all three memory limits. The
lower bounds consider the number of expansions made up
to the time limit of six hours. For the limits of 10%, 50%,
and 90%, PEA∗+IDA∗ has a respectively lower bound on
the number of expansions of 207,149.27, 11,794.65, and
9,638.18, while A∗+IDA∗ has a respectively lower bound
of 421,773.34, 98,566.23, and 55,575.52. Thus, an estimate
of the speed-up of PEA∗+IDA∗ for the respective limits is
2.04, 8.36, and 5.77.

Table 1 also shows the mean number of nodes generated
by the hybrid algorithm at the three memory limits, and their
Closed size peaks. On average PEA∗+IDA∗ has a smaller
Closed size peak supporting the claim that the advantage of
PEA∗+IDA∗ would increase if we were to consider also the
Closed memory consumption. PEA∗+IDA∗ has also great
advantage regarding node generations, which would be even
greater if EPEA∗ was used, due to its capability of reducing
PEA∗’s node generations. Table 2 displays geometric mean

10296

10% 50% 90%

(a) Total expansions.

(b) Only 1st phase expansions.

(c) Only 2nd phase expansions.

Figure 2: PEA∗+IDA∗ (vertical axis) vs. A∗+IDA∗ (horizon-
tal axis) number of expansions for each task. Note that the
horizontal scales are equal to the vertical scales.

second phase information over domains and tasks of Table 1
for the hybrid algorithms, showing that PEA∗+IDA∗ dramat-
ically reduces the number of second phase expansions and
iterations.

Better Open Composition We now analyze information
about F -values of nodes in Open when memory reaches
the limit (requiring the second phase). We focus on the
memory limit of 10% since it provides the highest num-
ber of tasks that both algorithms solve reaching the memory
limit. The minimum, mean, maximum F -values in Open for
A∗+IDA∗ are respectively 37.18, 40.28, and 45.03 while for
PEA∗+IDA∗ are 39.34, 41.14, and 44.90. The mean cost the
solution of those tasks is 42.40, and the mean solution length
is 28.12 for A∗+IDA∗ and 28.37 for PEA∗+IDA∗. The per-
centage of nodes with minimum F -values for A∗+IDA∗ is
18% and for PEA∗+IDA∗ is 30%. Therefore, PEA∗+IDA∗

has a more homogeneous Open when memory reaches the
limit and it also has a higher starting F -limit to the IDA∗ it-
erations. Thus, the higher starting F -limit could explain the
better performance of PEA∗+IDA∗. However, PEA∗+IDA∗,
besides reducing the number of IDA∗ iterations, also reduces
(at 50% and 90%) the number of expansions of each itera-
tion. The number of second phase expansions per iteration
for PEA∗+IDA∗ and the three limits is respectively 168.47,
2.63, and 2.61, while for A∗+IDA∗ is 136.62, 32.30, and
30.53. Thus, the better Open composition of PEA∗+IDA∗ is
partially responsible for its performance.

Higher Initial F-Limit To evaluate the effect of the
higher F -limit of PEA∗+IDA∗, we artificially modified
A∗+IDA∗ into what we call “A∗+IDA∗↑”. A∗+IDA∗↑ runs
A∗ as A∗+IDA∗, but, when memory reaches the limit and
before the second phase begins, all nodes in Open with F -

A∗+IDA∗ A∗+IDA∗↑ PEA∗+IDA∗

10%

IDA∗ Phase Exp. 145,201.08 73,442.10 35,506.81
IDA∗ Iterations 1,062.78 722.83 210.76

50%

IDA∗ Phase Exp. 30,306.27 220.13 3.29
IDA∗ Iterations 938.31 46.48 1.25

90%

IDA∗ Phase Exp. 8,093.42 60.60 0.47
IDA∗ Iterations 265.14 18.63 0.18

Table 2: Mean second phase number of expansions and iter-
ations for hybrid algorithms, and A∗+IDA∗↑.

values lower than a value F ↑ have their F -values updated
to F ↑. We define F ↑ as the minimal F -value in the Open
of PEA∗+IDA∗ at its first IDA∗ iteration if it required the
second phase to solve the task, and as h∗(n0.state), other-
wise. Table 2 shows that A∗+IDA∗↑ has a dramatic reduction
of IDA∗ phase expansions and iterations when compared to
A∗+IDA∗ in all memory limits. This indicates that higher
F -limits have a considerable impact on the second phase of
the algorithm, although the last two layers of IDA∗ iterations
dominate the number of expansions.

We also used A∗+IDA∗↑ to measure the impact of the
Open node composition of PEA∗+IDA∗ against the one of
A∗+IDA∗ when memory reaches the limit. Since A∗+IDA∗↑

has a F -limit at first IDA∗ iteration greater or equal to
PEA∗+IDA∗, and approximately the same Open size due to
the memory limits, we could expect that the former would
perform at least as better as the latter in the second phase.
However, Table 2 shows otherwise, PEA∗+IDA∗ is still su-
perior concerning second phase expansions and IDA∗ itera-
tions, due to its better Open composition.

Conclusion and Future Work

In this paper, we proposed an improved hybrid memory-
restricted algorithm combining PEA∗ and IDA∗. We showed
that we could increase the minimum F -value in the Open at
fixed memory limits by using PEA∗ instead of A∗ as the first
phase algorithm. Our experiments show that PEA∗+IDA∗

reduces the number of IDA∗ iterations and expansions, gen-
erally reducing the number of total expansions and increas-
ing the coverage. Our analysis shows that higher minimum
F -values do not entirely explain the improvement obtained
by the algorithm and that the Open composition is also an
important aspect. We plan to refine our model to understand
better each component of hybrid memory-restricted algo-
rithms in the future. Also, we plan to investigate further the
role of the Open composition in the performance of IDA∗

iterations, and how to improved the second phase with tech-
niques such as Transposition Tables.

10297

Acknowledgments
André G. Pereira acknowledges support from FAPERGS
with projects 17/2551-0000867-7 and 21/2551-0000741-9.
This study was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil
(CAPES) – Finance Code 001. We thank UFRGS, CNPq
and FAPERGS for partially funding this research.

References
Akagi, Y.; Kishimoto, A.; and Fukunaga, A. 2010. On
Transposition Tables for Single-Agent Search and Planning:
Summary of Results. In Symposium on Combinatorial
Search, 2–9.
Bu, Z.; and Korf, R. E. 2019. A*+IDA*: A Simple Hybrid
Search Algorithm. In International Joint Conference on Ar-
tificial Intelligence, 1206–1212.
Bu, Z.; Stern, R.; Felner, A.; and Holte, R. C. 2014. A* with
Lookahead Re-Evaluated. In Symposium on Combinatorial
Search, 15–17.
Chakrabarti, P. P.; Ghose, S.; Acharya, A.; and de Sarkar,
S. 1989. Heuristic Search in Restricted Memory. Artificial
Intelligence, 41(2): 197–221.
Goldenberg, M.; Felner, A.; Stern, R.; Sharon, G.; Sturte-
vant, N.; C. Holte, R.; and Schaeffer, J. 2014. Enhanced
partial expansion A*. Journal of Artificial Intelligence Re-
search, 50: 141–187.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research, 26: 191–246.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Criti-
cal Paths and Abstractions: What’s the Difference Anyway?
In International Conference on Automated Planning and
Scheduling, 162–169.
Kaindl, H.; Kainz, G.; Leeb, A.; and Smetana, H. 1995. How
to Use Limited Memory in Heuristic Search. In Interna-
tional Joint Conference on Artificial Intelligence, 236–242.
Kaindl, H.; and Khorsand, A. 1994. Memory-bounded bidi-
rectional search. In AAAI Conference on Artificial Intelli-
gence, 1359–1364.
Korf, R. E. 1985. Depth-First Iterative-Deepening: An Op-
timal Admissible Tree Search. Artificial Intelligence, 27(1):
97–109.
Korf, R. E.; and Reid, M. 1998. Complexity Analysis of Ad-
missible Heuristic Search. In AAAI Conference on Artificial
Intelligence, 305–310.
Manzini, G. 1995. BIDA*: An Improved Perimeter Search
Algorithm. Artificial Intelligence, 75(2): 347–360.
Nilsson, N. J.; and Fikes, R. E. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artificial Intelligence, 2: 189–208.
Reinefeld, A.; and Marsland, T. 1994. Enhanced Iterative-
Deepening Search. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 16(7): 701–710.

Russell, S. 1992. Efficient Memory-Bounded Search Meth-
ods. In European Conference on Artificial Intelligence, 1–5.
Sen, A. K.; and Bagchi, A. 1989. Fast Recursive Formu-
lations for Best-First Search That Allow Controlled Use of
Memory. In International Joint Conference on Artificial In-
telligence, 297–302.
Stern, R.; Kulberis, T.; Felner, A.; and Holte, R. 2010. Us-
ing Lookaheads with Optimal Best-First Search. In AAAI
Conference on Artificial Intelligence, 185–190.
Sturtevant, N.; and Helmert, M. 2019. Exponential-
Binary State-Space Search. arxiv.org/abs/1906.02912.
arXiv:1906.02912.
Yoshizumi, T.; Miura, T.; and Ishida, T. 2000. A* with Par-
tial Expansion for Large Branching Factor Problems. In
AAAI Conference on Artificial Intelligence, 923–929.

10298

