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Abstract

In many games, moves consist of several decisions made by
the player. These decisions can be viewed as separate moves,
which is already a common practice in multi-action games
for efficiency reasons. Such division of a player move into a
sequence of simpler / lower level moves is called splitting.
So far, split moves have been applied only in forementioned
straightforward cases, and furthermore, there was almost no
study revealing its impact on agents’ playing strength. Tak-
ing the knowledge-free perspective, we aim to answer how to
effectively use split moves within Monte-Carlo Tree Search
(MCTS) and what is the practical impact of split design
on agents’ strength. This paper proposes a generalization of
MCTS that works with arbitrarily split moves. We design sev-
eral variations of the algorithm and try to measure the im-
pact of split moves separately on efficiency, quality of MCTS,
simulations, and action-based heuristics. The tests are carried
out on a set of board games and performed using the Reg-
ular Boardgames General Game Playing formalism, where
split strategies of different granularity can be automatically
derived based on an abstract description of the game. The re-
sults give an overview of the behavior of agents using split
design in different ways. We conclude that split design can be
greatly beneficial for single- as well as multi-action games.

Introduction
The benefits of simulation-based, knowledge-free, open-
loop algorithms such as Monte-Carlo Tree Search (MCTS)
(Kocsis and Szepesvári 2006; Browne et al. 2012;
Świechowski et al. 2021) and Rolling Horizon Evolution-
ary Algorithm (Perez et al. 2013) are especially suited to
work within environments with many unknowns. In partic-
ular, they are widely used in General Game Playing (GGP)
(Genesereth, Love, and Pell 2005), a domain focusing on de-
veloping agents that can successfully play any game given
its formalized rules, which was established to promote work
in generalized, practically applicable algorithms (Finnsson
and Björnsson 2010; Goldwaser and Thielscher 2020). Ini-
tially based entirely on Stanford’s Game Description Lan-
guage (GDL) (Love et al. 2006), GGP expands over time
as new game description formalisms are being developed
e.g., Toss (Kaiser and Stafiniak 2011), GVG-AI (Perez et al.
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2016), Regular Boardgames (RBG) (Kowalski et al. 2019),
and Ludii (Piette et al. 2020).

Recent advances in search and learning support the trend
of generalization, focusing on methods being as widely ap-
plicable as possible. Deep Q-networks were applied to play
classic Atari games and achieved above human-level perfor-
mance on most of the 49 games from the test set (Mnih et al.
2015). More recently, ALPHAZERO, showed how to utilize
a single technique to play Go, Chess, and Shogi on a level
above all other compared AI agents (Silver et al. 2018).

In the trend of developing enhancements for MCTS
(Cazenave 2015; Baier and Winands 2018), we tackle the
problem of influencing the quality of the search by alter-
ing the structure of the game tree itself. In many games,
a player’s turn consists of a sequence of choices that can
be examined separately. A straightforward representation is
to encode these choices as distinct moves, obtaining a split
game tree, instead of using a single move in orthodox design.
The potential applications go beyond games, as the method
can be used for any kind of problem that is solvable via a
simulation-based approach and its representation of actions
can be decomposed. In this paper, we are interested in the
general technique of altering the game tree by introducing
split moves and its possible effects, rather than its applica-
tion to a particular game combined with expert knowledge.
Hence, we focus on the GGP setting and MCTS, which is
the most well-known and widely applied general search al-
gorithm working without expert knowledge.

We propose the semisplit algorithm, which is a generaliza-
tion of MCTS that effectively works with arbitrary splitting.
For the purposes of experiments, we implement the concept
in the Regular Boardgames system (Kowalski et al. 2019) –
a universal GGP formalism for the class of finite determinis-
tic games with perfect information. A few split strategies of
different granularity are developed, which split moves bas-
ing on the given general game description. The experiments
are conducted on a set of classic board games, comparing
agents using orthodox and split designs. We test a number of
variants of the algorithm, applying split moves selectively to
different phases of MCTS, and include action-based heuris-
tics (MAST, RAVE (Gelly and Silver 2007)) to observe the
behavior also for enhanced MCTS. From the results, we
identify the most beneficial configurations and conclude that
split moves can greatly improve the player’s strength.
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The full version of this paper is available at (Kowalski
et al. 2021b), and the source code used for the experiments
is shared within the RBG implementation (Kowalski et al.
2021a).

Related Work
The idea of splitting moves is well known, but apparently,
it was not given proper consideration in the literature, being
either used naturally in trivial cases or restrained to follow a
human-authored heuristic. Even these cases were discussed
in rather limited aspects, given how general applications of
split technique can be.

For particularly complex environments, split is regarded
as natural and mandatory. This technique is widely used for
Arimaa, Hearthstone, and other multi-action games (Fot-
land 2006; Justesen et al. 2017; Roelofs 2017). Here, the
reduced branching factor is considered to be the main ef-
fect, as otherwise, programs could not play such games at
a proper level. The case of Amazons is the only one that
we have found where agents playing with split and non-split
representations were compared against each other (Kloet-
zer, Iida, and Bouzy 2007). For multi-action games such as
real-time strategies, where the ordering of actions is unre-
stricted, Combinatorial Multi-armed Bandits algorithms are
often employed (Ontañón 2017). Using actions separately as
moves in the MCTS tree was also considered under the name
of hierarchical expansion (Roelofs 2017) and in context of
factoring action space for MDPs (Geißer, Speck, and Keller
2020). So far, splitting was applied only for such multi-
action games, where it is possible and natural to divide a
turn into separate moves and process them like regular ones.
Splitting / move decomposition should not be confused with
the game decomposition (Hufschmitt, Vittaut, and Jouan-
deau 2019).

A practical application of splitting is found in GGP, where
many games are manually (re)encoded in their split variants
just to improve efficiency. For example, some split versions
of games like Amazons, Arimaa, variants of Draughts, or
Pentago exist in GDL. The same approach is taken in other
systems like Ludii. However, it is generally unknown how
such versions affect the agents’ playing strength.

Additionally, splitting via artificial turns causes some
repercussions, e.g., for game statistics or handling the turn
timer. Especially in a competitive setting, an agent gets the
same time for every move, even when they are single actions,
thus making more moves in a turn gives longer computation
time. Although this can be resolved, it requires specific lan-
guage constructions that do not exist in any GGP system.
Instead of complicating languages, it would be better and
more general to develop split-handling on the agent’s side.

A related topic is move groups (Saito et al. 2007; Childs,
Brodeur, and Kocsis 2008; Van Eyck and Müller 2011),
where during MCTS expansion, children of every tree node
are partitioned into a constant number of classes guided by a
heuristic. The basic idea of move groups is to divide nodes of
the MCTS tree into two levels, creating intermediate nodes
that group children belonging to the same class. There is
no reported application of move groups beyond Go, Settlers
of Catan, and artificial single-player game trees for maxi-

mizing UCT payoff. Usually, move groups are understood
as introducing artificial tree nodes unrelated to any move
representation nor simplifying computation. They also re-
quire human intervention to encode rules on how to parti-
tion the moves. From the perspective of splitting, (nested)
move groups are a side effect, but not every partition can be
obtained by splitting.

As splitting just alters the game tree, it is compatible with
any other search algorithm that uses this game tree as the
underlying structure. In particular, it affects action-based
heuristics operating on moves such as MAST and RAVE
(Gelly and Silver 2007). But unlike usual techniques, split-
ting often improves efficiency, so it would be beneficial as-
suming that it leaves the behavior of algorithms unchanged.

Semisplitting in MCTS
Abstract Game
We adapt a standard definition of an abstract turn-based
game (Rasmusen 2007) to our goals. A finite determinis-
tic turn-based game with perfect information (simply called
game) G is a tuple (playersG , TG , controlG , outG), where:
playersG is a finite non-empty set of players; TG = (V,E) is
a finite directed tree called the game tree, where V is the set
of nodes called game states and E is the set of edges called
moves, Vn ⊂ V is the set of inner nodes called non-terminal
states, and Vt ⊆ V is the set of leaves called terminal states;
controlG : Vn → playersG is a function assigning the cur-
rent player to non-terminal states; outG : Vt × playersG →
R is a function assigning the final score of each player at ter-
minal states. For a non-terminal state s ∈ Vn, the set of legal
moves is the set of outgoing edges {(s, t) ∈ E | t ∈ V }.
During a play, the current player controlG(s) chooses one of
its legal moves. The game tree is directed outwards its root
s0 ∈ V , which is called the initial state. Hence, all states
are reachable from s0. Each play starts from s0 and ends at
a terminal state (leaf).

Two games are isomorphic if there exists a bijection be-
tween the states that preserve the edges of the game tree and
the current player (if the state is non-terminal) or the scores
(if the state is terminal). For a state s ∈ V , the subgame Gs
is the game with the tree obtained from TG by rooting at s
and removing all states unreachable from s.

Semisplit Game
Going deeper into a particular representation of a move, it
usually can be partitioned into a sequence of smaller pieces,
which we call semimoves. For example, depending on a par-
ticular implementation, they could correspond to atomic ac-
tions, move groups, or, in the extreme case, even single bits
of a technical move representation. Computing semimoves
can be, but not always is, computationally easier than full
moves and sometimes may reveal structural information de-
sirable in a knowledge-based analysis.

However, often a natural and the most effective splitting
does not lead to a proper variant of the game, i.e., we can-
not treat semimoves as usual moves. It is because not ev-
ery available sequence of easily computed semimoves can
be completed up to a legal move. This especially concerns
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single-action games, but also splits inferred automatically in
general, where without prior knowledge it is difficult to de-
termine if we obtain a proper game.

Example 1 In Chess, a typical move consists of picking up a
piece and choosing its destination square. It would be much
more efficient first to select a piece from the list of pieces and
then a square from the list of available destinations com-
puted just for this piece, than to select a move from the list
of all legal ones, which is usually much longer. However,
sometimes we may not be able to make a legal move with a
selected piece, e.g., because the piece is blocked or the king
will be left under check.

A remedy could be checking if each available semimove
is a prefix of at least one legal move. However, in many
cases, this can be as costly as computing all legal moves,
losing performance benefits, or even decreasing efficiency.
Instead, we can work on semisplit games directly.

To provide an abstract model, we require a different game
definition, including additional information about intermedi-
ate states. We extend the definition of a game to a semisplit
game as follows. Let V be now the disjoint union of non-
terminal states Vn, terminal states Vt, and the intermediate
states Vi. Then, Vn is a subset of inner vertices of the game
tree, terminal states Vt is a subset of leaves, and Vi can con-
tain states of both types. The states in Vn and Vt are called
nodal. A semisplit game must satisfy that the initial state
s0 is nodal, and for every non-terminal state s ∈ Vn, the
subgame Gs contains at least one terminal state. The second
condition ensures that from each nodal state, a terminal state
is reachable. Yet, for an intermediate state, there may be no
nodal state in its subgame; then this state is called dead. An
edge is now called a semimove. A submove is a directed path
where nodal states can occur only at the beginning or at the
end, and there are only intermediate states in the middle.
Then, a move is a submove between two nodal states.

There is a correspondence between a semisplit game and
an (ordinary) game. The rolled-up game of a semisplit game
is obtained by removing all dead states, and then by replac-
ing each maximal connected component rooted at a non-
terminal state with only intermediate states below with one
non-terminal state; then all the edges become moves. A
semisplit game G′ is equivalent to a game G if the rolled-up
game of G′ is isomorphic to G. So generally, splitting moves
in a game means deriving its equivalent semisplit game.

An example of two distinct semisplit versions of Chess is
shown in Fig. 1.

The Semisplit Algorithm
We describe a generalization of MCTS that works on an un-
derlying semisplit game. To distinguish from the standard
MCTS algorithm that operates on an ordinary game, the lat-
ter is called orthodox MCTS. In the following description,
we use standard terminology (Browne et al. 2012) and focus
on the differences with orthodox MCTS.

The simulation phase is shown in Alg. 1, lines 1–13.
Drawing a move at random is realized through backtrack-
ing (SEMISPLITRANDOMMOVE). Given a game state, we
choose and apply semimoves in the same way as moves in

Algorithm 1: Vanilla semisplit MCTS.
Input: s – game state
1: function SEMISPLITSIMULATION(s)
2: while not s.ISTERMINAL() do
3: m← SEMISPLITRANDOMMOVE(s)
4: if m = None then return None . s is dead
5: s← s.APPLY(m)

6: return s.SCORES()

7: function SEMISPLITRANDOMMOVE(s)
8: for all a ∈ SHUFFLE(s.GETALLSEMIMOVES()) do
9: s′ ← s.APPLY(a)

10: if s′.ISNODAL() then return a
11: m← SEMISPLITRANDOMMOVE(s′)
12: if m 6= None then return CONCATENATE(a,m)
13: return None . No legal move
14: function MCTSITERATION( )
15: v ← TREEROOT()
16: while not v.STATE().ISTERMINAL() do
17: if v.FULLYEXPANDED() then
18: v ← v.UCT()
19: else
20: a1 ← GETRANDOM(v.UNTRIEDSEMIMOVES())
21: (v′, scores)← EXPAND(v, a1)
22: if scores = None then continue
23: BACKPROPAGATION(v′, scores)
24: return
25: BACKPROPAGATION(v, v.STATE().SCORES())

Input: v – leaf node; a1 – selected untried semimove
26: function EXPAND(v, a1)
27: s← v.STATE().APPLY(a1)
28: scores ← SEMISPLITSIMULATION(s)
29: if scores = None then
30: v.REMOVESEMIMOVE(a1)
31: return None
32: c← CREATENODE(s)
33: v.ADDCHILD(c, a1)
34: return (c, scores)

Input: v – leaf node; scores – players’ final scores
35: function BACKPROPAGATION(v, scores)
36: while v 6= TREEROOT() do
37: v.scoreSum ← v.scoreSum + scores[v.Player ]
38: v.iterations ← v.iterations + 1
39: v ← v.PARENT()

40: v.iterations ← v.iterations + 1

orthodox MCTS, but we keep the list of legal semimoves
computed at each level. When it happens that the current in-
termediate state does not have a legal semimove (it is dead),
we backtrack and try another semimove. Thus, a move is al-
ways found if it exists, and every legal move has a positive
chance to be chosen, although the probability distribution
(on legal moves) may be not uniform (in the worst case, the
probability of choosing a move can be exponentially smaller
in the number of introduced intermediate states). A single
simulation (SEMISPLITSIMULATION) just uses the modi-
fied random move selection. Note that this function can fail
(line 4), which happens if and only if called for a dead state.

The vanilla variant of semisplit MCTS is shown in Alg. 1.
As orthodox MCTS, it uses the UCT policy in the selection
phase (Kocsis and Szepesvári 2006). But in contrast, semis-
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Figure 1: A Chess position (left) and the corresponding fragments of two semisplit games of a smaller (middle) and a larger
(right) granularity. There are 8 legal moves in total (a7-a8Q, . . . ,Kh3-g2 in the long algebraic notation), which form 8 edges
in the standard game tree. Nodal states are marked with a double circle; �+ indicates passed non-check king test. In the right
semisplit game fragment, there are drawn 3 nodal, 9 intermediate, and 5 dead states.

plit MCTS uses both nodal and intermediate states as tree
nodes. The expansion begins with the selection of an un-
tried semimove (line 20). Dead states are never added to the
MCTS tree. If the next state turns out to be dead, that semi-
move is removed from the list in the node, and the search
goes back to the MCTS tree, so other untried semimoves are
chosen (line 22). It can happen that all untried semimoves
lead to dead states and the node becomes fully expanded;
then the search continues according to the UCT policy.
Raw and nodal variants. There are two expansion variants,
raw and nodal. The raw variant, given in Alg. 1, adds just
one tree node as usual, either intermediate or nodal. How-
ever, this can leave semisplit MCTS behind orthodox MCTS
in terms of expansion speed, as a single node in the latter
corresponds to a path between nodal states in the former. In
other words, when counting nodal states, orthodox MCTS
expands faster. The nodal variant compensates this risk by
adding the whole move (path) during a single expansion.
This may slightly increase the quality of the search when
these paths are long and, in particular, cannot be exploited
due to slower expansion. However, the nodal variant may be
slightly slower.
Final selection. There are several policies to select the final
move to play. A common policy is to choose the one with
the best average score (Winands 2017) among tried moves.
When it comes to selecting the final move to play, semis-
plit MCTS greedily chooses the best semimove till the first
next nodal state. If the move goes outside of the MCTS tree
constructed so far, the raw variant chooses the remaining
semimoves uniformly at random. This can happen when the
branching factor is very large compared to the number of it-
erations. In the nodal variant this cannot occur, as all leaves
added to the MCTS tree are nodal states.
Combined variants and roll-up. Possible variants of
semisplit MCTS involve combining both designs and using
them selectively in different phases. There are two natural
variants: orthodox design in the MCTS tree phases (selec-
tion and expansion) combined with semisplit design in the
simulation phase, and the opposite variant.

Another proposed variant is adaptive, applied in the
MCTS tree phases. The idea is to use semisplit design at

first, to improve efficiency and deal with potentially large
branching factor, and then switch to orthodox design to pro-
vide more conservative evaluation. The roll-up variant uses
semisplit design in the MCTS tree with the modification as
follows. Whenever a node v of an intermediate state in the
MCTS tree is fully expanded, i.e., all its children v1, . . . , vk
were tried, the algorithm removes v and connects v1, . . . , vk
directly to its parent v′. Then, the edges to them are sub-
moves obtained from concatenating the submove from v′

to v and the submoves from v to vi. In this way, semisplit
design is limited to the expansion phase, as the algorithm
switches to orthodox design in the parts of the MCTS tree
that become fully expanded. The roll-up variant can be used
to test the impact of semisplit design in this phase alone.
Action-based heuristics. Common general knowledge-free
enhancements of MCTS are online learning heuristics,
which estimate the values of moves by gathering statis-
tics. We test the two most fundamental methods, MAST
and RAVE (Finnsson and Björnsson 2008; Gelly and Sil-
ver 2011; Winands 2017). MAST globally stores for every
move (actually, for every set of moves with the same repre-
sentation) the average result of all iterations containing this
move; it is used in simulations in place of a uniformly ran-
dom choice. RAVE stores similar statistics locally in each
MCTS node for available moves and uses them to bias the
choice in UCT. For both techniques, there are many policies
proposed that differ in details.

MAST and RAVE can be adapted to semisplit in a
straightforward way if semisplit design is used both in the
MCTS tree and simulation. In combined variants, they re-
quire some adjustments, which rely on dividing (sub)moves
into semimoves or merging semimoves into moves.
• MAST-split and RAVE-split: The basic modification of
MAST adapted to semisplit simply stores separate statistics
for each semimove. Then, when evaluating the score of a
longer submove, we have to somehow combine the result
from the scores of the included semimoves. Here, we pro-
pose the arithmetic mean of the scores of the semimoves.
However, if a semimove has not been tried, then the maxi-
mum reward is returned as the final score of the whole sub-
move. MAST-split can be applied to any variant of MCTS.
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Game Nodal states/sec. Sim./sec. Mean nodal states/sim. Mean all states/sim. Mean br. f. (all states)
Breakthrough (orthodox) 2,388,827 (100%) 37,272 64 64 25.69
Breakthrough (@Mod) 5,717,972 (239%) 78,120 73 157 7.71
Breakthrough (@ModShift) 7,558,711 (316%) 220,074 34 164 3.12
Chess (orthodox) 308,157 (100%) 976 316 316 22.83
Chess (@Mod) 1,556,036 (505%) 5,971 261 1,494 2.96
Chess (@ModPlus) 1,390,428 (451%) 5,341 260 2,194 2.31

Table 1: Flat Monte-Carlo results (random simulations with gathering scores). The 2st and 3rd column show the speed measured
in the number of computed respective nodal states and simulations per second. The 4th and 5th columns show the mean
simulation depth measured resp. in nodal states and all states (computed dead states are also included). The last 6th column
shows the branching factor calculated as the number computed (semi)moves divided by the number of states.

RAVE-split works analogously, i.e., it splits every sub-
move into single semimoves. Statistics for a semimove in a
tree node are updated if this semimove was used explicitly at
the node or later in the iteration, either directly or possibly
as a part of a submove. RAVE-split is easily enabled only
in the combinations using semisplit design in the selection
and expansion phases, i.e. when the domain of semimoves
in these phases correspond to the stored statistics.

Depending on the implementation, split variants can be
much faster than regular heuristics due to a much smaller
domain of semimoves (i.e., we can use faster data structures
for storing statistics). However, obtained samples are less re-
liable, as semimoves carry less information than full moves.
• MAST-join and RAVE-join: These variants merge semi-
moves into full moves. MAST-join and RAVE-join store
statistics only for whole moves. Of course, they are avail-
able only in the cases where we evaluate only moves in the
corresponding MCTS phases.
• MAST-context and RAVE-context: To partially overcome
the weakness of less reliable samples, we also propose con-
text variants. They lead to storing sample values closer
to those used in orthodox design. The main idea of
MAST-context is entwined with N-gram-Average Sampling
Technique (NST) (Tak, Winands, and Björnsson 2012),
which gathers statistics for fixed-size sequences of moves.
MAST-context maintains statistics for submoves of different
lengths. When the iteration is over, for each move applied in
the iteration, the statistics are updated not only for that move
but also for each of its prefixes. The context of a state is the
submove from the last preceding nodal state to this state.
Thus, a context is a submove that is a prefix of some move.
While selecting the best submove in the simulation phase,
we use the statistics of the submoves concatenated to the cur-
rent context. In RAVE-context, MCTS nodes store statistics
for each child just as in the regular RAVE. The difference
is in updating them; the statistic of a semimove is updated
only if the iteration contains the same semimove played in
the same context. The context variants are available for ev-
ery variant of MCTS (in particular, for roll-up) because they
store statistics for all submoves that may be ever needed.
• MAST-mix and RAVE-mix: For most MCTS variants, we
have more than one choice for variants of action-based
heuristics. This leads to the possibility of using more than
one simultaneously. The variants of the heuristics differ in
speed of gathering samples but also in their quality, e.g.,
MAST-split gathers samples faster than MAST-context, but

they are less reliable. Hence, MAST-mix combines MAST-
split with MAST-context, and RAVE-mix combines RAVE-
split with RAVE-context. All statistics are updated sepa-
rately according to both split and context strategies. For
both heuristics, we have an additional parameter – the mix-
threshold. During the evaluation, when the number (weight)
of samples in the context heuristic is smaller than the mix-
threshold, the score is evaluated according to the split vari-
ant; otherwise, the context statistics are used.

Implementation and Experiments
Our test set consists of 12 board games, well known in GGP
(Amazons, Breakthrough, Breakthru, Chess, Chess without
check, English Draughts, Fox And Hounds, Go, Knight-
through, Pentago, Skirmish, and The Mill Game).
Split Strategies. For a given game, there are many equiva-
lent split versions. Usually, they are derived through a man-
ual implementation of the algorithm computing legal moves
and states. For the purposes of experiments, we use abstract
game descriptions in the Regular Boardgames and derive
semisplit games through split strategies, which are algo-
rithms taking as the input a pure definition of the game rules
(without any heuristic information for good playing). Thus,
they can be considered knowledge-free and derive splittings
automatically in a systematic way across different games.

Although split strategies might be interesting by them-
selves, they are developed here for the purposes of exper-
iments. This part is to create an example environment for
testing semisplit MCTS, and thus it is not the focus of the
current paper. We note that using such split strategies would
not be possible effectively without semisplit MCTS, as they
introduce dead states. Similar effects could be obtained via
other approaches; in particular, one could manually imple-
ment each semisplit game, apart from any GGP system.

Below, we describe the intuitive meaning of split strate-
gies. Each split strategy is defined via a subset of three com-
ponents.
• Mod: This is a basic component of relatively low granu-
larity. Every semimove corresponds to an action modifying
either a single square on the board or a variable; thus there is
introduced a semimove for each elementary modification of
the game state. A move in a chess-like game is split into two
semimoves: one for selecting and grabbing a piece from the
board and one for dropping it on the destination square. For
modifying more squares, more semimoves are introduced
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accordingly (e.g., Amazons). Also, it separates the final de-
cision in a move, e.g., in Chess, the king check is performed
in a final semimove; in Go, the player first chooses whether
to pass or to put a stone. An example of the resulting semis-
plit game tree is shown in Fig. 1(middle).
• Plus: This component introduces a semimove for every
single decision (branch) specified by the rules except those
made iteratively. It commonly involves choosing the direc-
tion of the movement (Amazons, Chess, English Draughts)
and move type (capture or two movements in Breakthru). It
does not split decisions that are repeated, such as stopping
on a square while moving in a chosen direction (e.g., rook
upwards move). An example of the resulting semisplit game
tree is shown in Fig. 1(right).
• Shift: This component splits square selection when it con-
sists of more than one decision. It commonly separates the
selection of a column and a row of the board (all games) and
also divides movements of some pieces (e.g., knight – first
long and then short hop).

By combining these components, we can build split strate-
gies such as Mod, ModShift, or ModPlusShift. Additionally,
the algorithm optimizes the semisplit game by removing
some indecisive splits (i.e., semimoves that are always the
only available choice) when possible.

Results
Setup and notation. All parameters (e.g., the exploration
factor, MAST and RAVE policies) were set according to the
recommendations in the literature (Finnsson and Björnsson
2010; Sironi and Winands 2016) and keep the same for ev-
ery agent. Semisplit agents were tested against the orthodox
ones: both the vanilla MCTS agent (denoted by O) and the
enhanced MCTS agent (Otree:RAVE

sim:MAST) were used as baselines.
Our semisplit agents are denoted by S with indices describ-
ing the variant: “S” means semisplit design and “O” means
orthodox design, which can be independently used in the
MCTS tree or in simulations; “R” is the roll-up variant. Raw
and nodal variants and which variants of MAST and RAVE
are used, if applied, are also indicated. Finally, the used split
strategy is denoted after “@”.

We tested agents in two settings: the timed setting, where
agents have the same amount of time (0.5s) per turn, and the
fixed setting, where agents have a limited number of nodal
states to compute. These settings are correlated by letting the
states limit equal to the number of states computed by the
baseline orthodox agent performing within the given time
limit. Hence, the fixed setting is used to observe the impact
of semisplit design apart from efficiency benefits. Note that
this is different than the common measurement with a fixed
number of simulations and gives a better correspondence
with the timed setting, as splitting alters simulation length.
Statistics. Tab. 1 shows illustratively how simulation statis-
tics change under semisplit design. We observe a significant
speed-up in terms of the number of traversed states, and thus
of simulations in a given time limit. Obviously, semisplit
design increases the depth of a simulation and reduces the
mean branching factor. When the branching factor is already
small, introducing more splits slows down. The real thresh-
old strongly depends on the game and the implementation.

Agent Win rates vs. O

Stree:S-raw
sim:S
@Mod

71.46%
58.94%
71.46%
58.94%

95 52 100 96 51 39 51 85 88 86 76 39
±2.4 ±5.7 ±2.1 ±5.2 ±3.4 ±5.7 ±4.1 ±3.7 ±3.6 ±4.6 ±4.7

Stree:S-nodal
sim:S
@Mod

71.43%
58.57%
71.43%
58.57%

95 56 100 97 52 43 46 80 91 89 77 34
±2.4 ±5.6 ±1.7 ±5.2 ±3.3 ±5.6 ±4.6 ±3.2 ±3.5 ±4.5 ±4.7

Stree:S-nodal
sim:O
@Mod

59.25%
58.68%
59.25%
58.68%

69 50 97 61 27 49 56 47 75 77 56 47
±5.2 ±.7 ±1.8 ±5.2 ±4.6 ±3.4 ±5.6 ±5.1 ±4.9 ±4.4 ±5.4 ±4.7

Stree:O
sim:S
@Mod

67.08%
50.21%
67.08%
50.21%

86 64 63 96 56 55 48 59 82 72 81 43
±3.9 ±5.5 ±5.4 ±2.0 ±4.8 ±3.0 ±5.7 ±5.6 ±4.4 ±4.7 ±4.3 ±5.0

Stree:R-nodal
sim:S
@Mod

67.07%
51.76%
67.07%
51.76%

83 58 100 94 37 54 43 69 78 72 77 41
±4.3 ±5.6 ±0.7 ±2.6 ±4.9 ±3.4 ±5.6 ±5.3 ±4.7 ±4.8 ±4.5 ±4.7

Stree:R-nodal
sim:O
@Mod

50.11%
51.38%
50.11%
51.38%

44 44 97 42 19 51 51 46 55 55 48 49
±5.6 ±5.6 ±1.8 ±5.2 ±3.8 ±3.2 ±5.7 ±5.3 ±5.6 ±5.4 ±6.4 ±4.9
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Stree:S-nodal
sim:S
@ModPlus

72.47%
61.86%
72.47%
61.86%

89
±3.6

49
±5.7

100 96
±2.0

62
±5.3

44
±3.2

49
±5.7

83
±4.3

87
±3.8

88
±3.3

83
±4.0

40
±4.7

Stree:S-raw
sim:S
@ModPlus

71.75%
60.67%
71.75%
60.67%

90
±3.5

40
±5.5

100 95
±2.4

61
±5.3

41
±3.4

52
±5.7

85
±4.0

89
±3.5

85
±3.6

87
±3.6

36
±4.6

Stree:S-nodal
sim:S
@ModShift

59.87%
52.70%
59.87%
52.70%

88
±3.6

31
±5.2

100 89
±3.3

25
±4.6

20
±3.0

30
±5.2

82
±4.4

67
±5.3

67
±5.2

67
±5.0

51
±4.9

Stree:S-nodal
sim:S
@ModPlusShift

58.98%
55.20%
58.98%
55.20%

85
±4.0

26
±5.0

100 91
±3.0

33
±5.1

21
±3.0

27
±5.1

77
±4.8

66
±5.4

64
±5.2

74
±4.7

43
±4.9

Stree:O
sim:S
@ModPlus

65.68%
51.39%
65.68%
51.39%

73
±5.1

63
±5.5

61
±5.5

97
±1.6

75
±4.3

52
±3.1

45
±5.6

52
±5.7

79
±4.6

72
±4.7

83
±4.1

38
±4.6

Agent Winrates vs. Otree:RAVE
sim:MAST

Stree:S-nodal,RAVE-split
sim:S,MAST-split
@Mod

58.65%
51.85%
58.65%
51.85%

66
±5.4

38
±5.5

100 97
±1.9

22
±4.7

43
±3.8

61
±5.5

66
±5.4

71
±5.1

68
±5.0

53
±5.3

17
±3.3

Stree:S-nodal
sim:S,MAST-split
@Mod

67.01%
54.01%
67.01%
54.01%

87
±3.9

71
±5.1

100 97
±1.8

42
±5.1

64
±3.5

36
±5.5

52
±5.6

79
±4.6

77
±4.2

81
±4.3

19
±3.6

Stree:S-nodal
sim:S,MAST-mix
@Mod

63.07%
55.88%
63.07%
55.88%

80
±4.5

69
±5.3

100 81
±4.2

43
±5.4

62
±3.6

35
±5.4

51
±5.6

78
±4.7

74
±4.5

67
±5.1

18
±3.6

Stree:O,RAVE-join
sim:S,MAST-split
@Mod

64.90%
51.93%
64.90%
51.93%

71
±5.1

54
±5.6

91
±2.8

99
±1.2

50
±4.9

48
±4.0

49
±5.7

69
±5.2

68
±5.3

70
±4.8

83
±4.0

26
±3.9

Stree:R-nodal
sim:S,MAST-split
@Mod

68.26%
50.47%
68.26%
50.47%

67
±5.3

79
±4.6

100 93
±2.7

60
±5.2

68
±3.5

32
±5.3

65
±5.4

82
±4.3

74
±4.7

79
±4.3

21
±3.7

Table 2: Win rates of semisplit agents. The bars show the
grand average in timed (upper, red) and fixed (lower, blue)
settings. Timed results are also given separately for each
game; green, yellow, and red indicate statistically significant
better, same, and worse performance, respectively. A game
is counted for better performance if the whole 95% confi-
dence interval is above 50%; worse is symmetrical.
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Figure 2: The results of Stree:S-nodal
sim:S @Mod versus O for different time limits (circle) and for equivalent states budgets (square).

Note that the mean depth of a simulation measured in nodal
states is also altered, which can independently influence the
number of simulations.
Comparison of agents. Table 2 contains three parts. The
first part shows the results of variants of semisplit MCTS
without action-based heuristics and using the Mod split
strategy (one of the least granularity). All variants get better
results than orthodox MCTS, except for Stree:R-nodal

sim:O @Mod.
There is no visible difference between the raw and nodal
variants. The efficiency benefits alone are most significant
when the agent uses semisplit in simulations. We also see an
advantage in the fixed setting when semisplit is applied in
the MCTS tree. While Stree:S-raw

sim:S @Mod gets the largest mean,
Stree:O

sim:S @Mod is the most robust, winning in ten games and
losing only in one. The particular case of Stree:R-nodal

sim:O @Mod
shows the effect of semisplit applied only to the expansion
phase, which results in a kind of an unprunning method
(Chaslot et al. 2008) – this is beneficial only for Breakthru,
which has a very large branching factor.

The second part shows four representative combinations
with split strategies of a larger granularity. Here, the nodal
variant has a slight advantage over raw. The results follow
the same pattern, yet ModPlus seems to be slightly better
than Mod, but ModShift already worsens the results.

The third part shows selected combinations of agents
equipped with RAVE and MAST against Otree:RAVE

sim:MAST.
Stree:S-nodal,RAVE-split

sim:S,MAST-split @Mod is the simplest variant; it gives pos-
itive results but is not that strong as previously. Surprisingly,
RAVE does not perform that well here; thus it is better to
omit it. Stree:S-nodal

sim:S,MAST-mix@Mod gives the best results in the
fixed setting, but the computation cost of MAST-mix does
not overcome the benefits. The best and most robust agent
among tested ones is the roll-up variant with semisplit sim-
ulations and MAST-split.

Fig. 2 shows how the win rate changes for different time
limits and in relation to the fixed setting. In most cases, the
results are kept consistent for different limits, especially in
the games where semisplit is clearly beneficial.

Conclusions
We have introduced a family of Monte-Carlo Tree Search
variants that work on semimoves – arbitrarily split game
moves. The algorithm is based on the idea of lazy move
computation, yet it has many possible variants. We applied
split design for single-action games for the first time and re-

vealed the impact on agents’ results on a wider set of games
(as previously, only Amazons was tested). Furthermore, we
tested different configurations concerning the selective ap-
plication in MCTS phases, split granularity, and variants
of action-based heuristics. The developed framework allows
testing the effects of (semi)splitting for more than 600 com-
bined variants of semisplit, action-based heuristics, and split
strategies, for any game described in RBG.

The impact of using semisplit is generally beneficial.
First, it greatly improves search efficiency (typically, 3–5
times more nodal states/sec.). Moreover, for many games,
the playing strength is improved over its orthodox coun-
terpart, also when both algorithms are capped to the same
performance. Even with general and blind split strate-
gies, we were able to obtain win rates larger than 70%
on about half of the test set (e.g., Stree:S-nodal

sim:S @Mod or
Stree:R-nodal

sim:S,MAST-split@Mod). For comparison, the benefits are
larger than those from adding action-based heuristics to the
vanilla orthodox agent (the mean win rate of Otree:RAVE

sim:MAST vs.
O on our test set is 53% in timed and 65% in fixed setting).

More detailed results show that using semisplit in sim-
ulations gives a large efficiency boost and generally is not
harmful in terms of their quality. This may be useful also
apart from game playing, as simulations are applied to many
single-player problems (Wang et al. 2020). On the other
hand, using semisplit in the MCTS tree gives some bene-
fits in the quality of iterations, yet it is riskier, as sometimes
it is consistently harmful (e.g., The Mill Game). However,
on average, almost none of the tested variants is worse in the
fixed setting than the orthodox baseline.

The conducted research can be seen as pioneering, as
there are many directions for future research, e.g.:
• There should be developed methods for choosing the most
suitable semisplit variant and split strategy for a given game.
• The used parameters were the same for both agent types
and were tuned rather for orthodox agents according to the
literature. This indicates that after a tuning, semisplit should
achieve even better results.
•We focused on the practical aspect, yet there are interesting
theoretical questions as to how strongly splitting the game
can distort the agent’s results, and how hard is the problem?
to determine whether splitting will be beneficial.
• Semisplit can be combined with prior knowledge (Gelly
and Silver 2007) or neural networks. It can reduce action
space and improve efficiency, especially when simulations
are combined with neural networks (Cotarelo et al. 2021).
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