
Towards Automated Discovery of God-Like Folk Algorithms for Rubik’s Cube

Garrett E. Katz, Naveed Tahir
Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, 13244

{gkatz01,ntahir}@syr.edu

Abstract

We present a multi-objective meta-search procedure that con-
structs candidate algorithms for state-space search puzzles
like Rubik’s cube. The candidate algorithms take the form
of macro databases, i.e., rule tables that specify sequences
of actions to perform in different states. Rules are repeatedly
applied until the puzzle is solved. The objectives favor candi-
dates that are god-like (solving the puzzle in fewer steps) and
folk-like (having fewer rules in the macro database). We build
each candidate with a non-deterministic rule table construc-
tion, and then optimize over the non-deterministic choice
points to find candidates near the Pareto-optimal trades-offs
between godliness and folksiness. We prove that the rule table
construction is correct: it always terminates and solves every
state at termination. This is verified empirically on the full
2×2×2 “pocket” cube, where correct (but unoptimized) con-
structions take under one hour and the total number of rules
is less than 10% the number of possible states. We also em-
pirically assess the multi-objective optimization on restricted
variants of the cube with up to 29K possible states, showing
relative improvements in the objectives between 14-20%. Av-
enues for scaling up the method in future work are discussed.

Introduction
A “god algorithm” for a puzzle like Rubik’s cube is one that
always transforms the puzzle into its solved state using as
few actions as possible. With unlimited time and memory,
a god algorithm could be implemented by a giant rule table
that maps each possible state to an optimal solution path.
In contrast, humans often memorize smaller rule tables that
map states to leading portions of sub-optimal solution paths,
and repeatedly execute rules until a given problem instance
is solved. These are termed “folk” algorithms because they
are feasible for humans to learn and execute.

Optimally solving the general n × n × n Rubik’s cube
is known to be NP-hard (Demaine, Eisenstat, and Rudoy
2018). A classic AI approach to the 3×3×3 cube used itera-
tive deepening best-first search, guided by a pattern database
heuristic that mapped states to solution path lengths (Korf
1997). This algorithm was godly (found optimal solution
paths), but not folksy, because the memory requirements of
the pattern database and best-first search render it infeasible

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for a human. In a more recent approach, the pattern database
was replaced by deep reinforcement learning to approximate
the heuristic function used by best-first search (Agostinelli
et al. 2019; McAleer et al. 2019). This approach was fairly
god-like (finding optimal solution paths 60.3% of the time),
and has some relevance to human solving insofar as the
heuristic function is approximated with neuro-inspired tech-
niques. However, the best-first search component is not folk-
like, and the learned weights of the function approximator
are not easily distilled into algorithmic instructions that a
human could understand.

Instead of mapping states to heuristic values, an alterna-
tive approach maps each state to a useful action sequence,
also called a “macro” (Fikes and Nilsson 1971), that should
be performed in that state (Korf 1982). Multiple states that
share some common features (e.g., a subset of matching cu-
bies) are mapped to the same macro. We refer to this ap-
proach as a “macro database.” Macro databases are akin
to folk algorithms, particularly if the number of records is
reasonably small. They are god-like to whatever extent the
macros are leading portions of optimal solution paths.

Automated discovery of macros has proven effective in
several AI planning domains (Botea et al. 2005; Chrpa and
Vallati 2019). This suggests a question which is the focus
of this paper: whether we can automate discovery of macro
databases that are both god-like and folk-like. Automated
macro database discovery is a meta-search, in that it does not
search for solutions for specific states, but rather it searches
for solvers (in the form of macro databases) that generate
solutions for any state. The meta-search is a multi-objective
optimization problem (Marler and Arora 2004; Deb et al.
2000) with two objectives, because it seeks macro database
algorithms that are both god-like (generating short solu-
tion paths) and folk-like (using small macro databases). The
Pareto optima are those algorithms that cannot be made
more godly without becoming less folksy, and vice versa.

Considerations of Pareto optimality arise naturally in
multi-objective problems, where the focus shifts from the
decision variable space to the objective space (Miettinen
2012). The solutions obtained are seldom optimal for all
the given objectives and usually characterized by tradeoffs
between competing objectives. Multi-objective optimization
problems can also be transformed into one or more single-
objective problems using so-called “scalarization” tech-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

10210

niques (Eichfelder 2008) - for example, taking a weighted
average of multiple objective values - especially when the
relative priorities of those objectives are known. Under cer-
tain conditions, solutions to multiple single-objective prob-
lems may also lie in the Pareto optimal set of the multi-
objective problem. Although various scalarizations exist and
some are preferable to others under certain assumptions,
they all extend the methods and theories of single-objective
optimization to multi-objective optimization.

In this work, we employ a recent scalarization technique
with strong theoretical guarantees, based on so-called “hy-
pervolume scalarization” (Zhang and Golovin 2020). This
approach repeatedly performs single-objective optimization
on randomly sampled scalarizations, drawn from a carefully
crafted function family. The function family is related to the
notion of dominated hypervolume in objective space. With
sufficiently many repetitions, the aggregated set of solutions
from the individual single-objective problems converges to
the multi-objective Pareto-optimal set.

The main novelties in our approach are our method for
producing candidate macro databases, and our method for
optimizing scalarization functions over those candidates.
Our naive first attempt, based on uniform random sam-
pling of initial candidates, was ineffective for generating
macro databases that were even correct (finding solution
paths of any length), let alone god-like. In response, we de-
signed a more sophisticated procedure, which is provably
guaranteed to construct correct macro databases. The god-
liness and folksiness of the result (but not its correctness)
depend on the non-deterministic choices made during the
construction. We use a Monte-Carlo back-tracking search
that compares different random instantiations of the non-
deterministic choices to optimize a given scalarization. An
empirical evaluation was performed on a Linux workstation
with 8-core Intel i7 CPU, 32GB of RAM, Python 3.7.3, and
NumPy 1.20.0 (Harris et al. 2020). All random choices use
NumPy’s default generator and seed, and the code to repro-
duce all experiments is freely available online.1

The focus of this paper is developing a strong theoreti-
cal foundation for our approach, rather than a high perfor-
mance computing platform or speed-optimized implementa-
tion. We prove several statements regarding the correctness
of our macro database construction, but our current imple-
mentation does not yet scale to the full 3 × 3 × 3 Rubik’s
cube. In this paper’s empirical results, correct (but unopti-
mized) constructions are limited to the smaller 2 × 2 × 2
“pocket” cube with 3.7M possible states, and optimized con-
structions are limited to restricted variants of the pocket cube
with at most 29K possible states. We conclude by discussing
future work to scale up the approach.

Macro Database Algorithms
A macro database implements a partial function from states
to macros. For our state representation, we number the indi-
vidual “facies” (i.e., faces of individual cubies) from 1 toK,
and the possible colors from 1 to 6. For an n× n× n cube,
there are n2 facies on each side, and K = 6n2 facies total.

1https://www.github.com/garrettkatz/cubbies

For example, the 2 × 2 × 2 pocket cube has K = 24 facies
total, 4 per side. A state s is represented by a length-K vec-
tor, with entry sk ∈ {1, ..., 6} specifying the color of the kth
facie. We let s∗ denote the solved state, and S denote the set
of possible states.

A macrom is a sequence of actions 〈ai〉Tm
i=1. The new state

s′ after performing action a on state s is denoted s′ = a(s).
Similarly, the result of performing a macro m is denoted

s′ = m(s) = aTm
(aTm−1(...(a1(s))...)). (1)

A rule r specifies a set of states that share some common fea-
tures (i.e., some matching facie colors) and a macro mr that
should be performed when any of those states are encoun-
tered. The set of states is determined by one “prototype”
state Sr ∈ S , and a wildcard mask Wr ∈ {0, 1}K that indi-
cates which facies must match Sr. A value of Wr,k = 1 in-
dicates that facie k is a “wildcard” and need not be matched
for the rule to apply. Formally, the rule applies to a state s
only if (sk = Sr,k) ∨ (Wr,k = 1) for all k.

To guarantee correctness of our construction procedure, it
is also important to store a number `r ∈ N with each rule
r, which specifies the length of a certain (potentially sub-
optimal) solution path from Sr to s∗. Therefore, a formal
macro database is a list of rules, each of which is a 4-tuple:
R = 〈(Sr,Wr,mr, `r)〉Rr=1. Given any query state s, the set
of all rules applicable to s is given by:{

r ∈ {1, ..., R} | ∀k (sk = Sr,k) ∨ (Wr,k = 1)
}
. (2)

A query function r = QUERY(R, s) returns one such rule r
in this set, if the set is non-empty. Otherwise, QUERY returns
r = False, to indicate that no existing rules inR apply to s.

The working memory requirements of a full best-first
search are not feasible for human solvers. However, it may
be reasonable for a human to look one or two steps ahead
(i.e., to perform a shallow breadth-first search) in order to
find an applicable rule in the neighborhood of their current
state s. We model this with a function

r′, s′,p′ = RULE-SEARCH(R, s) (3)

which performs a depth-limited breadth-first search rooted at
s. The return value s′ is the first nearby state found for which
QUERY(R, s′) 6= False, whereas r′ is the rule returned by
QUERY(R, s′), and p′ is the sequence of actions from s to
s′ in the breadth-first search tree. If the depth-limit D (fixed
at 1 in this paper) is reached before any such r′ is found, the
rule search has failed and the returned value for r′ is False.

Given a maximum solution length M , macro databaseR,
and initial state s, we consider a cube solving algorithm
A(M,R, s) that repeatedly calls RULE-SEARCH to find the
next macro, and then applies the macro, until the cube is
solved. Each action along the way is appended to a run-
ning list which is eventually returned as the solution path.
The algorithm terminates with failure if at any point RULE-
SEARCH fails to find an applicable rule, or if the sequence
of actions performed so far exceeds M .

This solving algorithm is illustrated in Figure 1 and codi-
fied in Algorithm 1. 〈〉 denotes an empty list, 〈x〉 denotes a
list with a single element x, |x| denotes the length of a list

10211

mr0
p′ mr1

s(0) s′ s∗

Sr0
∨Wr0

Sr1
∨Wr1

Figure 1: Illustration of Algorithm 1. Wildcard facies are
shown in gray. Initial state s(0) matches rule r0, triggering
macro mr0 . The result mr0(s(0)) does not match any rules,
but a depth-1 breadth-first rule search identifies a path p′ to
state s′ that matches rule r′ = r1. Applying macro mr1 to s′
reaches the solved state s∗.

x, and ⊕ denotes list concatenation. The first return value
v is a status flag indicating whether the algorithm termi-
nated successfully or not. The next value p = 〈a(t)〉Tt=1
with T ≤ M is the sequence of actions performed up un-
til termination, successful or not. The intermediate state af-
ter performing action a(t) is denoted s(t), with initial state
s(0) = s, and final state s(T) = s∗ if the algorithm was
successful. For our macro database construction procedure,
it will also prove useful to return the sequence of rules that
were applied along the way, r = 〈rn〉Nn=1, as well as each
corresponding intermediate state s(tn) that matched rule rn,
with {t1, ..., tn} ⊆ {0, 1, ..., T}.

Macro Database Queries
A brute-force implementation of QUERY(R, s) loops over
every rule in R, checking for a match with s. This takes
time linear in the number of rules R, which does not scale
well. We can achieve time constant in R (and linear in K,
the dimensionality of the state vectors) by instead using a
prefix tree (or “trie”) data structure (De La Briandais 1959;
Fredkin 1960). Each edge in the trie is labeled with one of
the possible facie colors {1, ..., 6}, and a trie node at depth
k ≤ K corresponds to a prefix (Sr,1, ..., Sr,k) of at least one
prototype state in R. Leaf nodes correspond to a complete
rule prototype and also store its associated rule index. Given
this data structure, the query procedure loops over k, follow-
ing the trie edge with label sk at depth k (Algorithm 2). If at
any point no such edge exists, the query state does not match
the macro database and the query returns False. Otherwise,
once a trie leaf is reached at depth k = K, the corresponding
rule index r is returned.

Algorithm 2 can accommodate wildcards if we allow mul-
tiple edges in the trie between a parent and its single child,
as shown in Figure 2(b). However, for simplicity, we restrict
any parent with multiple children to have only one edge per
child. Parents with multiple children must therefore be ren-
dered “tame” by disabling the wildcard at the correspond-
ing position in all associated rules, as shown in Figure 2(c).
This taming occurs when any parent acquires a second child
during the addition of a new rule. All remaining nodes in-

Algorithm 1: A(M,R, s)
Input:
M : A maximum solution path length
R: A macro database
s: A scrambled initial state
Output:
v: True if s∗ was found, False otherwise
p: The sequence of performed actions
r: The sequence of applied rules
s: The sequence of states that matched the rules

1: r, s, p← 〈〉, 〈〉, 〈〉
2: loop
3: r′, s′,p′ ← RULE-SEARCH(R, s)
4: if r′ = False then
5: Return False, p, r, s
6: end if
7: s, r, s, p← mr′(s

′), r⊕ 〈r′〉, s⊕ 〈s′〉, p⊕ p′ ⊕mr′

8: if |p| > M then
9: Return False, p, r, s

10: end if
11: if s = s∗ then
12: Return True, p, r, s
13: end if
14: end loop

troduced by the new rule can be initially wild. We formalize
this procedure as a function

R′ = ADD RULE(R, S,m, `),

which adds a new rule with prototype state S, macro m,
and path cost ` to an existing macro database R. As few
nodes are tamed as necessary to incorporate the new rule.
The function returns R′, the modified macro database in-
cluding the new rule and modified wildcards. Note that by
constraining trie edges and wildcards this way, query states
will never match more than one rule. In other words, the set
in Formula (2) will either be empty or a singleton, so there
is no ambiguity as to which rule QUERY should return.

Algorithm 2: QUERY(R, s)
Input:
R: A macro database
s: Query state
Output:
r: A rule applicable to s if one exists, False otherwise

1: node← root ofR’s prefix tree
2: for k ∈ {1, ...,K} do
3: if node.child[sk] = None then
4: Return False
5: end if
6: node← node.child[sk]
7: end for
8: Return node.rule

10212

1
2
3

(c)

S
0
: (1, 3, 3, 1, 2, 3)

W
0
: (1, 1, 1, 1, 1, 1)

S
0
: (1, 3, 3, 1, 2, 3)

W
0
: (1, 1, 1, 0, 1, 1)

S
1
: (1, 3, 3, 3, 1, 2)

W
1
: (1, 1, 1, 0, 1, 1)

(b)

1
2
3

1
2
3

1
2
3

1
2
3

1
2
3

r=0

1
2
3

1
2
3

1
2
3

1
2
3

1
2
3

1
2
3

r=0

1
2
3

1
2
3

r=1

1
2

3

4
5

6
1

3

3

1
2

3k S
0,k

(a)

Figure 2: Prefix trees with wildcards. Edges correspond-
ing to prototype facie colors are black and always persist,
while gray edges support wildcards and get removed when
wildcards are disabled. (a): A prototype state S0 is repre-
sented by a vector in {1, ..., 6}K , where the color of the
kth facie (with 1 ≤ k ≤ K, left) is represented by entry
S0,k ∈ {1, ..., 6} (right). Our implementation uses state vec-
tors in the full pocket cube state space in {1, ..., 6}24, but
the figure depicts state vectors in {1, 2, 3}6 for simplicity.
(b): A prefix tree with a single rule, whose prototype state
S0 has the colors shown in (a), with all nodes initially wild.
Colored squares next to each entry S0,k indicate the corre-
sponding facie color. (c): The new prefix tree after a sec-
ond rule was added where S0,4 6= S1,4, which causes the
branching node to be tamed and corresponding wildcards to
be disabled (bold-faced numbers in the prototype and wild-
card vectors).

Macro Database Construction
Our initial approach created and mutated prototypes, wild-
cards, and macros in a rule table uniformly at random. Rule
table fitness was evaluated by running A on a random sam-
ple of states, and a candidate population was guided towards
the Pareto-optimal set with a meta-heuristic approach. While
some degree of improvement was observed, we found that
the best candidates were far from godly, with A failing on
most of the random sample.

This motivated us to design a more sophisticated method
for constructing macro databases. We arrived at an iterative,
non-deterministic construction that provably converges to a
correct macro database. The macro database is correct in that
A will always find a solution path (though it may be sub-
optimal) from any scrambled state to s∗ within the maxi-
mum solution length M . The total number of rules and the

optimality of the solutions depend on the non-deterministic
choices made during construction. Hence, this construction
serves as a more solid foundation upon which the non-
deterministic choices may be optimized to improve folksi-
ness and godliness. The construction works by iteratively
incorporating possible states, one at a time, into a grow-
ing macro database. If the state is not already solved prop-
erly, the macro database is modified to accommodate it, ei-
ther by disabling certain wildcards (setting them to 0) or by
adding new rules. States are repeatedly incorporated until
every state is solved properly. Non-deterministic choices in-
clude the order in which states are incorporated, the wild-
cards that are disabled, and the macros used for new rules.

The sub-routine to incorporate a given state s into a par-
tial macro database R is codified in Algorithm 3. The sub-
routine input also requires a path from s to s∗ with length
at most M −D, although it need not be optimal. Formally,
the actions and intermediate states along this path are the in-
puts 〈a(t)〉Tt=1 and 〈s(t)〉Tt=0, with s(0) = s and s(T) = s∗.
Here, the maximum solution length M is treated as a hyper-
parameter (note that some invocations of A during incorpo-
ration require a smaller limit M ′ < M , line 6).

Algorithm 3 can be conceptually split into two checks.
If either check fails, R is modified accordingly, and φ is
set to False to indicate that the construction is unfinished.
First, lines 4-14 check for soundness, i.e., that any matched
rule (line 4) initiates a successful solve by A (line 6). If this
is not the case (line 7), one wildcard in the failing rule se-
quence (line 10) is disabled (line 12) so that an inappropriate
rule will no longer be matched. Next, lines 15-23 check for
completeness, i.e., that any state matches at least one rule
within the RULE-SEARCH depth-limit (line 16). If this is not
the case (line 17), one suitable intermediate state along the
path to s∗ (line 19) is chosen as the endpoint for a new macro
starting at s(0). A new rule using this macro is added to R
(line 21). In our implementation, every choice from ω or τ
is made independently and uniformly at random.

Correctness Guarantees
A sound and complete macro database can be constructed by
iteratively incorporating every state in multiple passes over
the state space. This is codified in Algorithm 4, which we re-
fer to as “RCONS” for “run construction.” To support Monte-
Carlo back-tracking optimization (described later), we must
track the history of partially complete macro databases in
a list H = 〈Ri〉Ii=1, where Ri is the partially complete
database after the ith modification. RCONS is initialized with
a partial incomplete history and then appends new modi-
fications to the history (line 12) until all states are solved
correctly (line 15). The initial history could come from a
previous, back-tracked invocation of RCONS, or it could be
initialized from scratch with an empty history H = 〈〉. In
the latter case, the macro database is initialized with a sin-
gle rule (line 2) for the solved state: its prototype is the
solved state, its macro is the empty sequence, its solution
length is 0, and its wildcards are all disabled (0 denotes a
vector of all 0’s). States are then incorporated in multiple
passes over the state space (lines 6-15). In a given pass, if

10213

Algorithm 3: INCORPORATE(R, 〈s(t)〉Tt=0, 〈a(t)〉Tt=1)

Input:
R: A (potentially incomplete) macro database
〈s(t)〉Tt=0, 〈a(t)〉Tt=1: A path with s(T) = s∗ and T ≤M−D
Output:
R: A (potentially modified) copy of the macro database
φ: True ifR was unmodified, False otherwise

1: 〈(Sr,Wr,mr, `r)〉Rr=1 ← R
2: φ← True
3: r ← QUERY(R, s(0))
4: if r 6= False then
5: M ′ ←M − (D + |mr|)
6: v,p, 〈rn〉Nn=1, 〈s(tn)〉Nn=1 ← A(M ′,R,mr(s

(0)))
7: if v = False then
8: φ← False
9: s(t0), r0 ← s(0), r

10: ω ← {(n, k) | (0 ≤ n ≤ N) ∧ (Srn,k 6= s
(tn)
k)}

11: Choose one (n̂, k̂) from ω
12: Wrn̂,k̂

← 0

13: R ← 〈(Sr,Wr,mr, `r)〉Rr=1
14: end if
15: else
16: r′, s′,p′ ← RULE-SEARCH(R, s(0))
17: if r′ = False then
18: φ← False
19: τ ← {(t, r) | (s(t) = Sr) ∧ (D + t+ `r ≤M)}
20: Choose one (t̂, r̂) from τ

21: R ← ADD RULE(R, s(0), 〈a(t)〉t̂t=1, t̂+ `r̂)
22: end if
23: end if
24: ReturnR, φ

any incorporations modify R, then φ is False (line 9) and
ϕ becomes False (line 10) to indicate that the construc-
tion has not yet converged. The construction must be pro-
vided with SCRAMBLES(M − D), an iterator that yields
pairs (s,p) suitable for INCORPORATE. That is, (s,p) =
(〈s(t)〉Tt=0, 〈a(t)〉Tt=1) is a solution path from a scrambled
state s(0) to the solved state s(T) = s∗, including all inter-
mediate steps (s(t+1) = a(t+1)(s(t))). To guarantee correct-
ness, every path must have length T ≤ M − D, and every
possible state must appear as s(0) in one pair (s,p), but the
order of iteration can be arbitrary.

The correctness proof hinges on the fact that as long as
the macro database is incorrect, the construction always has
choices that improve it (by disabling wildcards or adding
rules). Formally, the sets on lines 10 and 19 of Algorithm 3
are always non-empty when those lines are executed. Fur-
thermore, rule prototype states are always unique and hence
the total number of rules is bounded above by the total num-
ber of possible states. Since rules are never deleted, and
wildcards are only disabled (never enabled) after their rule
is added, both processes are bounded and eventually mono-
tonic, so they converge in finite time. In an extreme case

Algorithm 4: RCONS(H)

Input:
H = 〈Ri〉Ii=1: Initial modification history
Output:
H: Updated modification history

1: ifH = 〈〉 then
2: R ← 〈(s∗,0, 〈〉, 0)〉
3: else
4: R ← RI
5: end if
6: repeat
7: ϕ← True
8: for s,p ∈ SCRAMBLES(M −D) do
9: R, φ← INCORPORATE(R, s,p)

10: ϕ← ϕ ∧ φ
11: if ¬φ then
12: H ← H⊕ 〈R〉
13: end if
14: end for
15: until ϕ
16: ReturnH

(the impractical god algorithm described at the beginning of
this paper), the number of rules could converge to the num-
ber of possible states, and all wildcards could eventually be
disabled. However, we observe (next section) that the con-
struction typically converges to much smaller rule sets.

Full proofs of the foregoing claims are available from the
link given earlier in footnote 1. Here, we provide a proof
sketch and state the main steps as lemmas. The first step is
a lemma that new rules can always be added when needed.
Intuitively, in the worst case, a macro can always be added
that transforms a scrambled state all the way to the solved
state. More formally:

Lemma 1. τ is always non-empty when line 19 of Algorithm
3 is executed.

Proving that wildcards can always be disabled when
needed is more involved. For that, it is useful to first prove
two auxiliary lemmas about rule prototype states in particu-
lar. Prototype states have special theoretical utility because
they always match their own rule, regardless of the wildcard
values. The first auxiliary lemma states that distinct rules
have distinct prototype states:

Lemma 2. Rules created during Algorithm 4 have distinct
prototype states, i.e., Sr = Sr′ implies r = r′.

This is because new rules are only added with proto-
types that do not already have a match. The second auxiliary
lemma guarantees that each rule’s macro maps its own pro-
totype state to another rule’s prototype state. This induces
rule chains from prototypes to other prototypes, and eventu-
ally to s∗, within the maximum solution length and without
any intermediate RULE-SEARCH. Formally:

Lemma 3. For any rule r, there exists a sequence of rules
〈r∗n〉Nn=0 with r∗0 = r and the following properties:

• Sr∗n+1
= mr∗n(Sr∗n) for n < N

10214

• Sr∗N = s∗, the solved state

• `r∗0 =
∑N
n=0 |mr∗n | < M −D

This lemma holds because whenever a new rule is added,
the set τ of options for that rule is properly constrained.
Specifically, the endpoint of the new macro is constrained
to be an existing prototype state sufficiently close to s∗.

Once all wildcards for a rule have been disabled, it will
only be matched by its prototype. Hence, the prototype rule
chains above ensure that once all rules in a chain have no
wildcards left to disable, the chain successfully solves its
initiating state. By contrapositive, if a rule chain fails, there
must be some wildcards left to disable. Therefore, we obtain
the result that wildcards can always be disabled if needed:

Lemma 4. ω is always non-empty when line 10 of Algorithm
3 is executed.

Finally, using Lemmas 1-4 we prove that construction ter-
minates in finite time (Proposition 1) and returns a sound and
complete macro database (Proposition 2).

Proposition 1. Construction can always proceed and termi-
nates in finite time.

Construction always proceeds because of Lemmas 1 and
4, which guarantee the set of choices at any decision point to
be non-empty. To show termination, we first note that rules
are only added, never removed, and bounded above by the
total number of states (due to lemma 2). Therefore the total
number of rules converges in finite time. After that point, the
total number of non-zero wildcards is monotonically non-
increasing (and bounded below by 0), since existing wild-
cards are only disabled, never enabled. Therefore the to-
tal number of non-zero wildcards also converges in finite
time. After that point, the macro database never changes, φ
is never set to False, and hence the construction terminates.

Once the construction no longer needs to disable wild-
cards, every matched rule initiates a successful solve, so the
macro database is sound. Similarly, once there is no more
need to add rules, every state neighbors at least one applica-
ble rule, so the macro database is complete. Therefore:

Proposition 2. When construction terminates, the returned
rule table R is correct: i.e., for any state s, A(M,R, s) re-
turns a path from s to s∗ in at most M actions.

Empirical Validation
Correctness of RCONS was validated empirically on the full
pocket cube, as well as several restricted variants of the
pocket cube with fewer allowed actions and smaller state-
spaces. For the computer experiments in this paper, we im-
plemented SCRAMBLES by sampling possible states uni-
formly at random without replacement, paired with their op-
timal solution paths. Calculating optimal solutions for the
full state space and storing it in memory is feasible for the
pocket cube on modern hardware (we discuss scaling to the
full 3× 3× 3 cube in the discussion section). Note that even
though we provide optimal solution paths for each scramble,
only leading portions are used as macros, and the construc-
tion is still non-trivial because we aim to vastly compress
the full state space into a much smaller rule table. Providing

0 1 2 3

Incorporation ×107

0

1

R
a
te Modification

Correctness

Figure 3: One representative run of RCONS on the full pocket
cube. The horizontal axis indicates how many times INCOR-
PORATE has been called. The vertical axis indicates success
rate (black) and modification rate (gray) at different points
during the reconstruction.

optimal paths is not theoretically required for correctness,
but we found empirically that it promotes more rapid con-
vergence and more godly results.

For empirical validation, we measure ground truth cor-
rectness at regular intervals during construction by exhaus-
tively callingA(M,Ri, s) on every possible state s with the
current macro database Ri, and logging the fraction of pos-
sible states that are solved successfully. Figure 3 depicts one
representative run of RCONS, showing the success rate (frac-
tion of all possible states that are solved correctly) and mod-
ification rate (fraction of incorporations where φ = False) at
multiple points during construction. Modification rate was
calculated within a sliding window of length 30 along the x-
axis. These results confirm that the construction eventually
achieves a correct macro database with 100% success rate,
and we can also observe that modifications become gradu-
ally less frequent over time.

To gauge reproducibility, we performed 30 independent
repetitions of the construction with different random instan-
tiations of the non-deterministic choice points. All 30 repe-
titions eventually achieved 100% correctness. For each rep-
etition, we also measured the total number of incorporations
before convergence, the total running time in minutes, and
the final number of rules in the macro database at conver-
gence. The empirical distributions of these metrics, aggre-
gated over the 30 repetitions, are shown in Figure 4. All runs
finished within one hour, requiring at most 42 million incor-
porations. The final number of rules in the macro database
had an average and standard deviation of 259,120 (± 6,284),
which is approximately 7% of the total pocket cube state
space size (which has roughly 3.7 million reachable states).

Optimizing Godliness and Folksiness
We now turn to multi-objective optimization of godliness
and folksiness. Our macro database construction involves
randomness in new rule creation, wildcard restriction, and
states sampled for incorporation. Different random instan-
tiations produce different degrees of godliness and folksi-
ness. We can optimize over these instantiations to improve
the godliness or folksiness of the resulting macro database.

We formally define folksiness F (R) based on the ratio of

10215

3 4

Incs (10M)

0

10

20

C
o
u

n
t

30 40

Time (min)

2.4 2.6

Rules (100K)

Figure 4: Histograms of total incorporations (left), total run
time in minutes (middle), and total number of rules at con-
vergence (right), aggregated from 30 independent runs of
RCONS on the full pocket cube.

total rule count to the number of possible states,

F (R) = 1− |R|/|S|, (4)

so that folksiness is 0 in the extreme case of one rule per
state, and approaches 1 as the number of rules decreases.

Given a state s, we define godliness g(R, s) similarly,
based on the ratio of actual solution length to maximum al-
lowed solution length:

g(R, s) =

{
0 if v(R,s) = False,
1− |p(R,s)|/M otherwise,

(5)

where v(R,s) and p(R,s) are the success flag and solution
path returned by A(M,R, s), so that shorter solutions are
more godly. The state-independent godliness G(R) is then
the expected value Es[g(R, s)], where s is drawn uniformly
at random from the set of possible states. For computational
expediency, in practice we use a Monte-Carlo estimate of G
from a sample of 120 states drawn uniformly at random.

We adopt hypervolume scalarization (Zhang and Golovin
2020) as our optimization technique. The hypervolume
dominated by a set of points Ŷ = {ŷ(i)}ni=1 in RK is

HV(Y) = vol

(
n⋃
i=1

{y ∈ RK
∣∣ ∀k 0 ≤ yk ≤ ŷ(i)k }

)
, (6)

assuming each ŷ
(i)
k is non-negative. Dominated hypervol-

ume is maximized when Ŷ are the Pareto-optimal multi-
objective values. Hypervolume scalarizations take the form

σλ(y) = min
k

(max(0, yk/λk))K (7)

where y, λ ∈ RK . Zhang and Golovin (2020) show that

HV(Y) ∝ Eλ∼SK−1
+

[
max
y∈Y

σλ(y)

]
, (8)

where SK−1+ is a uniform distribution over the positive or-
thant of the unit hyper-sphere. This leads to a simple multi-
objective algorithm with strong theoretical guarantees: one
repeatedly samples a random λ and optimizes the single-
valued objective maxx σλ(y(x)). With sufficiently many
samples, the union of all x encountered during optimization
converges to (a superset of) the Pareto-optimal set. In our
case, x = R and y(x) = (F (x), G(x)).

Algorithm 5: Back-tracking Monte-Carlo Optimization
Input:
σλ: A scalarization function
Output:
R: An optimized ruled set

1: R1 ← 〈(s∗,0, 〈〉, 0)〉
2: I, n, z ← 1, 0,−∞
3: repeat
4: 〈R′i〉I

′

i=1 ← RCONS(〈Ri〉I−ni=1)
5: z′ ← σλ(R′I′)
6: if z′ ≤ z then
7: n← n+ ∆n
8: else
9: 〈Ri〉Ii=1 ← 〈R′i〉I

′

i=1
10: z, n← z′, 1
11: end if
12: until n ≥ I
13: ReturnRI

To use this approach, we devised a single-objective op-
timization routine over possible R via Monte-Carlo back-
tracking, codified in Algorithm 5. The method is Monte-
Carlo in that it sub-samples the set of all possible RCONS
traces, i.e., all possible histories of random choices that
could be made during construction. Each sampled trace runs
to completion (line 4) and is then evaluated using the scalar-
ization σλ. The maximal scalarization value found so far is
saved in the variable z. The best trace so far is repeatedly
back-tracked n modifications into the past and forked into
another trace. If the fork performs worse than the best trace,
the number of back-track steps n is increased by an integer
amount ∆n (line 7). Otherwise, the fork becomes the new
best so far and n is reset to 1 (lines 9 and 10). Intuitively, this
looks for local improvements to the trace first, and gradually
looks more globally when local improvements are not found.
The method stops when the trace has been back-tracked as
far as possible (line 12). Similarly to RCONS, it is initialized
with an incomplete macro database containing one rule for
the solved state (line 1), such that line 4 in the first iteration
will construct the first complete trace. The increase amount
∆n is a hyperparameter: smaller values search more thor-
oughly but result in longer search time. We set ∆n = 32 in
our experiments, and stop the optimization early once 256
forks have been constructed.

Algorithm 5 calls RCONS in every iteration, and poten-
tially runs many iterations before n reaches I and the search
terminates. Since each run of RCONS on the pocket cube ap-
proaches one hour, it was not practical to run Algorithm 5 on
the full pocket cube using our current implementation and
computing resource constraints. Instead, we empirically as-
sessed the backtracking search on two restricted variants of
the pocket cube. In the first, two of three rotational cube axes
were limited to half-turns, resulting in 5040 possible states.
In the second, only two of the three rotational axes were al-
lowed to turn, resulting in roughly 29K possible states. We
set M = 30 for the 5040 variant and M = 50 for the 29K

10216

600 700

Rule count

14

16

18
A

v
g
.

S
o
ln

.
L

en
.

5040

2500 3000

Rule count

17.5

20.0

22.5

29k

Figure 5: Final objective values for all forks in all repetitions
of Monte-Carlo backtracking: 128 repetitions for the 5040
state variant (left) and 16 for the 29K state variant (right).
The optimal fork in each repetition is shown in black; all
other forks are shown in gray. Average solution length (i.e.,
godliness) is shown on the vertical axis and rule count in
the final macro database (i.e., folksiness) is shown on the
horizontal axis.

variant, the idea being that larger M allows the meta-search
to trade more godliness for folksiness.

Figure 5 shows the results of repeatedly running Algo-
rithm 5 on the two restricted pocket cube variants, using dif-
ferent independent random scalarization weights λ in each
run. The best traces found do not coincide perfectly with
the empirical Pareto-optimal front, but this is not surprising
given the stochasticity of the method. It is also consistent
with the method of Zhang and Golovin (2020), according to
which all points generated during single-objective optimiza-
tion (not just the final optima) should be saved to encompass
the Pareto optimal set. Comparing the best and average val-
ues for each objective over all forks, we found relative per-
centage improvements of roughly 18-20% for folksiness and
14-16% for godliness.

Discussion
We have presented an approach for automated discovery
of god-like folk algorithms for Rubik’s cube. The method
converges to sound and complete algorithms which can be
optimized to improve their folksiness and godliness. Cur-
rently, the method does not scale beyond restricted variants
of the pocket cube. It relies on multiple passes over the full
state space, uniform state sampling without replacement,
and availability of optimal solutions for each state. Future
work will focus on addressing these issues, scaling to the
3 × 3 × 3 Rubik’s cube, and assessing the methodology in
other application domains.

One potential route to reducing the run-time of RCONS is
visible in our experimental results (Figure 3). We observe
that almost perfect success rate is achieved much sooner
than true convergence, and that modification rate (easily
measured) may provide information useful for estimating
success rate (expensive to measure). With more careful sta-
tistical modeling, this could potentially be exploited to jus-
tify early stopping of RCONS and incorporate branch-and-
bound techniques into the Monte-Carlo backtracking search.

To deal with uniform state sampling and optimal solutions in
the 3×3×3 cube, it may be possible to leverage techniques
for uniform sampling on large graphs (Katzir, Liberty, and
Somekh 2011; Chiericetti et al. 2016), and existing optimal
(but unfolksy) Rubik’s cube solvers (Korf 1997). A more
systematic and theoretically well-grounded hyperparameter
selection than done here could also lead to performance im-
provements in our method.

Lastly, although our present focus is Rubik’s cube, the
method might also be applicable to other domains that ad-
mit similar state representations. For example, blocks-world
problems (Nilsson 1980) with K blocks can be represented
by state vectors s ∈ {0, ...,K}K , where sk = j when the
kth block is stacked on top of the jth block (j = 0 for the
table). Future work should explore the applicability of our
method to this and other benchmark planning domains, such
as those from the international planning competitions (Val-
lati, Chrpa, and Mccluskey 2018).

Acknowledgements
Supported by ONR award N00014-19-1-2044.

References
Agostinelli, F.; McAleer, S.; Shmakov, A.; and Baldi, P.
2019. Solving the Rubik’s cube with deep reinforcement
learning and search. Nature Machine Intelligence, 1(8):
356–363.
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-FF: Improving AI planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research, 24: 581–621.
Chiericetti, F.; Dasgupta, A.; Kumar, R.; Lattanzi, S.; and
Sarlós, T. 2016. On sampling nodes in a network. In
Proceedings of the 25th International Conference on World
Wide Web, 471–481.
Chrpa, L.; and Vallati, M. 2019. Improving domain-
independent planning via critical section macro-operators.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, 7546–7553.
De La Briandais, R. 1959. File searching using variable
length keys. In Papers presented at the the March 3-5, 1959,
western joint computer conference, 295–298.
Deb, K.; Agrawal, S.; Pratap, A.; and Meyarivan, T. 2000.
A fast elitist non-dominated sorting genetic algorithm for
multi-objective optimization: NSGA-II. In International
conference on parallel problem solving from nature, 849–
858. Springer.
Demaine, E. D.; Eisenstat, S.; and Rudoy, M. 2018. Solv-
ing the Rubik’s Cube Optimally is NP-complete. In 35th
Symposium on Theoretical Aspects of Computer Science.
Eichfelder, G. 2008. Adaptive Scalarization Methods in
Multiobjective Optimization, 21–66. Vector Optimization.
Springer-Verlag Berlin Heidelberg.
Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artificial intelligence, 2(3-4): 189–208.

10217

Fredkin, E. 1960. Trie Memory. Commun. ACM, 3(9):
490–499.
Harris, C. R.; Millman, K. J.; van der Walt, S. J.; Gommers,
R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg,
S.; Smith, N. J.; Kern, R.; Picus, M.; Hoyer, S.; van Kerk-
wijk, M. H.; Brett, M.; Haldane, A.; del Rı́o, J. F.; Wiebe,
M.; Peterson, P.; Gérard-Marchant, P.; Sheppard, K.; Reddy,
T.; Weckesser, W.; Abbasi, H.; Gohlke, C.; and Oliphant,
T. E. 2020. Array programming with NumPy. Nature,
585(7825): 357–362.
Katzir, L.; Liberty, E.; and Somekh, O. 2011. Estimating
sizes of social networks via biased sampling. In Proceed-
ings of the 20th international conference on World wide web,
597–606.
Korf, R. E. 1982. A Program That Learns to Solve Rubik’s
Cube. In AAAI, 164–167.
Korf, R. E. 1997. Finding optimal solutions to Rubik’s Cube
using pattern databases. In AAAI/IAAI, 700–705.
Marler, R. T.; and Arora, J. S. 2004. Survey of multi-
objective optimization methods for engineering. Structural
and multidisciplinary optimization, 26(6): 369–395.
McAleer, S.; Agostinelli, F.; Shmakov, A.; and Baldi, P.
2019. Solving the Rubik’s Cube with Approximate Policy
Iteration. In International Conference on Learning Repre-
sentations.
Miettinen, K. 2012. Nonlinear Multiobjective Optimization,
volume 12 of International Series in Operations Research &
Management Science, 4–36. Springer Science & Business
Media.
Nilsson, N. J. 1980. Principles of artificial intelligence.
Tioga, Palo Alto, CA.
Vallati, M.; Chrpa, L.; and Mccluskey, T. L. 2018. What you
always wanted to know about the deterministic part of the
International Planning Competition (IPC) 2014 (but were
too afraid to ask). The Knowledge Engineering Review, 33:
e3.
Zhang, R.; and Golovin, D. 2020. Random Hypervolume
Scalarizations for Provable Multi-Objective Black Box Op-
timization. In International Conference on Machine Learn-
ing, 11096–11105. PMLR.

10218

