
An Exact Algorithm with New Upper Bounds for the Maximum k-Defective
Clique Problem in Massive Sparse Graphs

Jian Gao1, Zhenghang Xu2, Ruizhi Li2,3, Minghao Yin4*

1College of Information Science and Technology, Dalian Maritime University, China
2Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education, Jilin University, China

3School of Management Science and Information Engineering, Jilin University of Finance and Economics, China
4School of Computer Science and Information Technology, Northeast Normal University, China
gaojian@dlmu.edu.cn, zhenghangxu97@gmail.com, lirz111@jlufe.edu.cn, ymh@nenu.edu.cn

Abstract
The Maximum k-Defective Clique Problem (MDCP), as a
clique relaxation model, has been used to solve various prob-
lems. Because it is a hard computational task, previous works
can hardly solve the MDCP for massive sparse graphs de-
rived from real-world applications. In this work, we propose a
novel branch-and-bound algorithm to solve the MDCP based
on several new techniques. First, we propose two new upper
bounds of the MDCP as well as corresponding reduction rules
to remove redundant vertices and edges. The proposed reduc-
tion rules are particularly useful for massive graphs. Second,
we present another new upper bound by counting missing
edges between fixed vertices and an unfixed vertex for cutting
branches. We perform extensive computational experiments
to evaluate our algorithm. Experimental results show that our
reduction rules are very effective for removing redundant ver-
tices and edges so that graphs are reduced greatly. Also, our
algorithm can solve benchmark instances efficiently, and it
has significantly better performance than state-of-the-art al-
gorithms.

Introduction
Recently, analyzing cohesive subgraphs has received much
attention as it can deal with a great number of real-world
applications in network analysis. The clique is a basic con-
cept of cohesive subgraphs, while it is difficult to model
real-world problems directly due to its strong restriction on
connectivity. Since identifying cliques from real-world ap-
plications is an ideal task, some relaxations of the clique,
such as quasi-cliques (Brunato, Hoos, and Battiti 2007), k-
plexes (Balasundaram, Butenko, and Hicks 2011), k-clubs
(Almeida and de Carvalho 2014), and k-defective cliques
(Yu et al. 2006), were proposed to deal with real-world ap-
plications. Among those relaxations, the k-defective clique,
a relation of clique, allows at most k edges to be absent
from a complete graph. Therefore, it is a more useful tool for
analyzing complex networks encoded from various applica-
tions compared with the clique. The concept of k-defective
clique was proposed by Yu et al. (2006) to analyze proteins
and predict protein interactions in biological networks. Be-
sides, it was also employed in many fields, such as trans-
portation science (Sherali, Smith, and Trani 2002; Sherali

*Corresponding author
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Smith 2006), cluster detection (Stozhkov et al. 2020;
Bomze, Rinaldi, and Zeffiro 2021), and social network anal-
ysis (Gschwind et al. 2020; Jain and Seshadhri 2020).

Trukhanov et al. (2013) proposed the first exact algo-
rithm for the MDCP, which was based on the Russian Doll
Search (RDS) (Verfaillie, Lemaı̂tre, and Schiex 1996), and
then Gschwind, Irnich, and Podlinski (2018) improved it
by a new incremental verification procedure with a bet-
ter worst-case runtime. Shirokikh (2013) proved some up-
per bounds for the maximum k-defective clique for general
graphs as well as some special graphs (e.g. planar graphs and
r-partite graphs). In recent years, there have been an increas-
ing number of works on the MDCP. Gschwind et al. (2020)
proposed a framework based on the branch-and-price tech-
nique to solve the MDCP and other relaxed cliques. They
implemented their algorithm with CPLEX and tested some
small instances. Stozhkov et al. (2020) proposed continu-
ous cubic formulations for the MDCP by generalizing the
Motzkin-Straus formulation, and provided some theoretical
results. They compared their approach with RDS on small
instances. Moreover, a nonlinear optimization approach as
well as an equivalent continuous formulation has been pro-
posed for network-based cluster detection in (Bomze, Ri-
naldi, and Zeffiro 2021). Besides, Chen et al. (2021) have
proposed an exact algorithm based on the branch-and-bound
framework with some new reduction and pruning strategies,
and showed their algorithm performs best among existing
algorithms for massive graphs.

In the past decade, graphs from real-world applications
have revealed some new characteristics, i.e., massive, sparse
and the power-law distribution of vertex degrees. To find
the maximum (relaxed) clique or enumerate maximal (re-
laxed) cliques in such graphs, a number of algorithms for
cliques (Rossi et al. 2014; Cai and Lin 2016; Jiang, Li, and
Manyà 2017), k-plexes (Xiao et al. 2017; Miao and Bala-
sundaram 2017; Conte et al. 2017; Zhou et al. 2021; Jiang
et al. 2021), and quasi-cliques (Sanei-Mehri et al. 2021;
Marinelli, Pizzuti, and Rossi 2021) have been proposed.
However, compared with the clique and its other relaxations,
existing k-defective algorithms can hardly handle massive
sparse graphs. Though several algorithms have been pro-
posed, the effect of them declines greatly with k growing,
and there is a lack of evaluations on the cases with k > 5. In
fact, study on algorithms for the k-defective clique in mas-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

10174

sive graphs is in its early stage, so we require more effec-
tive algorithms for massive graphs. In this paper, we pro-
pose an exact maximum k-defective clique algorithm based
on the branch-and-bound framework to solve massive sparse
graphs. Our contributions are summarized as follows: (1) We
focus on how to reduce graphs; Different from existing ap-
proaches that only remove vertices, we propose five reduc-
tion rules for removing both redundant vertices and edges
based on our two newly proposed upper bounds. (2) With
those rules, we present a preprocessing method for graph
reduction, and then propose a new branch-and-bound algo-
rithm by integrating the reduction rules into branching steps.
(3) To further enhance efficiency and cut more branches, an-
other new upper bound is defined by calculating the min-
imum possible increment of missing edges when adding a
candidate vertex to a clique. We perform computational ex-
periments on massive sparse graphs by varying k from 1 to
30. To the best of our knowledge, this is the first time to
evaluate algorithms with k > 5. We show our algorithm per-
forms best on both average CPU runtimes and the number
of instances solved successfully among all comparative al-
gorithms. Furthermore, we show our new bound still works
well when k grows bigger.

Preliminaries
In this section, we provide some definitions and notations.
First, we only consider simple and undirected graphs in this
paper. Formally, an undirected graph is defined as G =
(V,E), where V = {v1, v2, ..., vn} is a set of vertices and
E is a set of edges, in which an edge e is always denoted
by an unordered pair of two ended vertices (v, u) from V .
Moreover, we use E (G) to denote the edge set of a graph.

Furthermore, we say a vertex u is a neighbor of a vertex v
if there is an edge (v, u) in E. Given a graph G, the neighbor
set of a vertex v is denoted by NG(v), and the degree of a
vertex v is defined as the number of its neighbors, denoted
as |NG(v)|. Moreover, we define NG[v] = NG(v) ∪ {v}.
The notation NG is also used to denote common neighbor
set of two vertices. Given two vertices v and u, NG(u, v) =
NG(u)∩NG(v); and NG[u, v] = (NG(u)∩NG(v))∪{u, v}.

Given a subset S ⊆ V , G[S] = (V ′, E′) is the induced
subgraph in G by S if V ′ = S and the edge set E′ consists
of all the edges in E whose both vertices are in S. We use
the notation G to represent a complement graph of G. The
complement of a graph G is a graph on the same vertices
such that two vertices of it are adjacent if and only if they
are not adjacent in G.

With the above notations, we give the definition of k-
defective clique.
Definition 1 (k-defective clique). Given a graph G =
(V,E) and a positive integer k, an induced subgraph G[S]

(S ⊆ V) is a k-defective clique if G[S] has at least
(|S|

2

)
−k

edges.
We say a k-defective clique is maximal if any other k-

defective clique cannot strictly contain it. The MDCP is to
find the k-defective clique with the largest number (size)
of vertices in a given graph. It is easy to see the parame-
ter k is the number of allowed missing edges at most in a

k-defective clique. It is pointed out that the decision version
of the MDCP is NP-complete (Chen et al. 2021).

We also have to define some notations to make it easy
to specify the context of a state in the branch-and-bound
algorithm. We always use S to denote a fixed vertex set
whose induced graph is the current k-defective clique, and
we denote a candidate vertex set as C, where C = V \S.
In our algorithm, the problem is divided through branching,
so we have to solve subproblems that find the maximum k-
defective clique including all vertices in S. Given a graph
G = (V,E) and a vertex set S ⊆ V , the function ωk(G,S)
returns the size of the maximum k-defective clique includ-
ing all vertices in S.

The notation =LB defines equivalence of two graphs w.r.t.
the maximum k-defective cliques above the level of LB ,
which is always denote a lower bound of the maximum k-
defective cliques.

Definition 2 (equivalence). Given G = (V,E) and G′ =
(V,E′), suppose S ⊆ V is a fixed vertex set, and LB is
a positive integer, then we say ωk(G,S) =LB ωk(G

′, S)
(k is a positive integer) if it satisfies one of the following
conditions:
- ωk(G,S) = ωk(G

′, S), and ωk(G,S) > LB ;
- ωk(G,S) ≤ LB , and ωk(G

′, S) ≤ LB .

Definition 2 provides an equivalence case of two graphs,
and it is helpful to reduce graphs by removing edges when
we try to find a k-defective clique larger than LB .

New Upper Bounds
In this section, we present some new theoretical results of
upper bounds for graph reduction and cutting branches in a
branch-and-bound algorithm.

Upper Bounds for Graph Reductions
We propose two upper bounds for graph reduction in this
subsection. The upper bounds are discussed in the contexts
of a graph G = (V,E) and a positive integer k. Given a
fixed vertex set S, and a vertex v in V (either in S or in
a candidate vertex set C = V \S), we define the function
remG,k(S, v) = k − |E(G[S ∪ {v}])| to calculate the re-
maining number of allowed missing edges required to form
a complete graph if the fixed set is S ∪ {v} (add v to S
if v /∈ S). Note that we suppose G[S ∪ {v}] is a legal k-
defective clique, i.e., |E(G[S∪{v}])| ≤ k, so remG,k(S, v)
is always a non-negative number.

Then, we consider how many extra vertices not adjacent
to v can be added to S at most. The number cannot exceed
remG,k(S, v) because one vertex donates at least one miss-
ing edge. Also, the number cannot exceed the total number
of vertices not adjacent to v, so we define resG,k(S, v) =
min(remG,k(S, v), |C\NG[C∪{v}][v]|), where min() re-
turns the minimum number of its parameters. The func-
tion UBG,k is to compute an upper bound as follow:
UBG,k (S, v) = |S∪{v}|+ |NG[C∪{v}](v)|+ resG,k(S, v).
Hence, we have Theorem 1, which indicates our first upper
bound.

Theorem 1. UBG,k (S, v) ≥ ωk(G,S ∪ {v}).

10175

The proof will be omitted since it is straightforward. We
then discuss the upper bound in the case of adding two
vertices. Given a fixed vertex set S, a candidate vertex set
C = V \S, and two vertices u, v in V (u (or v) either
in S or in C), we define the notation remG,k(S, u, v) =

k − |E(G[S ∪ {u, v}])| (suppose S ∪ {u, v} is a
k-defective clique). Also, we have resG,k(S, u, v) =
min(remG,k(S, u, v), |C\NG[C∪{u,v}][u, v]|). We define
UBG,k (S, u, v) = |S ∪ {u, v}| + |NG[C∪{u,v}](u, v)| +
resG,k(S, u, v), so Theorem 2 indicates UBG,k (S, u, v) is
an upper bound of k-defective cliques including u, v and S.
Theorem 2. UBG,k (S, u, v) ≥ ωk(G,S ∪ {u, v}).

Theorem 2 is an extension of the one-vertex case, and
hence no proof will be given.

Reduction Rules with Upper Bounds
Given a lower bound (integer) LB , we shall try to find a k-
defective clique larger than LB or prove no such k-defective
clique exists. Therefore, we can remove some vertices and
edges from the graph if they are impossible to form a k-
defective clique larger than LB .

The following rules can be applied in the preprocessing
step, in which S is an empty set.
Rule 1. Remove the vertex v from G = (V,E), if it satisfies
UBG,k (∅, v) ≤ LB .

In fact, this rule removes the vertex if its degree is too
low to form a k-defective clique larger than LB according to
Theorem 1. Then, we show how to remove edges from the
graph via our upper bound. We give the following theorem
about equivalence between two graphs. It is useful for edge
reduction.
Theorem 3. Given a fixed vertex set S in G = (V,E), a
positive integer k and two vertices u and v s.t. (u, v) ∈ E,
ωk(G,S) =LB ωk(G

′, S) if UBG,k (S, u, v) ≤ LB , where
G′ = (V,E\{(v, u)}).

Proof. It is obvious that ωk(G,S) ≥ ωk(G
′, S) since G

has exactly one more edge than G′. On the one hand, if
ωk(G,S) ≤ LB , then ωk(G

′, S) ≤ LB . On the other hand,
if ωk(G,S) > LB , any k-defective clique in G, including
all vertices in S and larger than LB , is also a k-defective
clique in G′. Because UBG,k (S, u, v) ≤ LB , u and v can-
not be included such a k-defective clique at the same time,
and thus we have ωk(G,S) = ωk(G

′, S). Hence, Theorem
3 is proved.

Theorem 3 indicates that removing the edge between u
and v from G does not change the maximum k-defective
clique if the clique has more than LB vertices. Hence, when
we try to find a k-defective clique with at least LB + 1 ver-
tices, we can search on the graph excluding the edge be-
tween u and v from G if UBG,k (S, u, v) ≤ LB . Therefore,
we have a rule for removing edges in the preprocessing step.
Rule 2. Remove the edge (u, v) from G = (V,E), if it satis-
fies UBG,k (∅, u, v) ≤ LB .

Our upper bounds also work in a branch-and-bound al-
gorithm. We will show how to make graph reduction dur-
ing search. We consider the context of selecting a vertex v

and adding it to S. In that context, we can check an unfixed
vertex u by calculating UBG,k (S, u, v). It is clear u can be
removed if u and v cannot form a larger k-defective clique
than LB . Rule 3 gives the formal description.
Rule 3. Remove the vertex u ∈ C from G = (V,E), if it
satisfies UBG,k (S, u, v) ≤ LB , where v is a vertex in the
fixed vertex set S and C = V \S.

Moreover, in a search tree node, we can check whether a
vertex v ∈ C can be removed according to Theorem 1.
Rule 4. Remove the vertex v ∈ C from G = (V,E), if it
satisfies UBG,k (S, v) ≤ LB , where S is the fixed vertex set
and C = V \S.

Another important case is that both u and v are in the
candidate set C. In that case, we can check whether the edge
between them can be removed.
Rule 5. Remove the edge (u, v) (u, v ∈ C) from G = (V,E),
if it satisfies UBG,k (S, u, v) ≤ LB , where S is the fixed
vertex set and C = V \S.

Note that all rules above can be done in O(d) time (d
is the maximum degree in G), as we can compute UBG,k

by checking a vertex’s neighbors or two vertices’ common
neighbors. Besides, we employ some straightforward rules,
which were also employed in previous works (Chen et al.
2021). For example, if a vertex v is adjacent to all other ver-
tices, it can be added to any k-defective clique; all vertices
in the candidate set C can be added to the fixed set if after
adding them the fixed set still forms a k-defective clique.

The Candidate-based Upper Bound
In this subsection, we propose a new upper bound based
on counting the least increment on missing edges by try-
ing to fix each candidate vertex, and then employ it to cut
branches. Similar to upper bounds for reduction, we discuss
our new upper bound in the context of a given fixed ver-
tex set S and a candidate set C = V \S. First, we sort ver-
tices in C by a non-decreasing order w.r.t. |NG[S∪{v}](v)|
(v ∈ C), i.e., sort by the number of missing edges be-
tween v and S. We then define an ordered set of C as
ord(C) = {u1, u2, ..., u|C|} such that for any pair of ui and
uj , we have |NG[S∪{ui}](ui)| ≤ |NG[S∪{uj}](uj)| if i < j.

With the ordered set ord(C), we discuss the least incre-
ment on the number of missing edges after we add some
vertices to S. It is easy to see when we add a candidate ver-
tex v, the least increment is |NG[S∪{v}](v)|. Also, it is easy
to see the first vertex in ord(C) has the smallest value of the
least increment. We can obtain a lower bound of the small-
est increment. When we add several vertices at a time, each
vertex v donates at least |NG[S∪{v}](v)| missing edges, so
we can easily calculate the total number of missing edges
between the added vertices and fixed vertices as the lower
bound. Moreover, if we add i vertices to S at a time, it is
clear that selecting the first i vertices in ord(C) can mini-
mize the increment, because the first vertex in ord(C), the
smaller possible increment we have. We introduce the func-
tion inc to denote how many missing edges increased at
least, and define inc(ord(C), i) =

∑i
j=1 |NG[S∪{uj}](uj)|,

10176

(uj ∈ ord(C)).
Afterwards, we define our candidate-based upper bound

as:
candibound(G,S, k) = |S|+ c,

where

c =

{
max(i) ∀i ∈ I, if I 6= ∅;

0, if I = ∅,
and an integer set I = { i | inc(ord(C), i) ≤ k −
|E(G[S])| (1 ≤ i ≤ m)}, where m = |ord(C)| and
C = V \S.

An integer i in the set I means that the smallest possi-
ble increment does not exceed the remaining number of al-
lowed missing edges when we add the first i vertices. There-
fore, the maximum number in I is the maximum possible
number of vertices, denoted by c, can be added to S if
I 6= ∅; otherwise the number c is 0. Hence, the function
candibound(G,S, k) defines the maximum possible num-
ber of vertices in a k-defective clique including S. There-
fore, we have Theorem 4 as follow.

Theorem 4. candibound(G,S, k) ≥ ωk(G,S).

KDBB: An Exact Algorithm
The Preprocessing Method
Preprocessing is a necessary step to solve massive sparse
graphs, since with an initial lower bound it can reduce
the graph greatly. We use this technique in our algorithm,
and present a preprocessing method based on our reduction
rules. Algorithm 1 gives the detailed procedure. The func-
tion preprocessing takes a graph G, a positive integer k, and
a lower bound LB as inputs. Two sub-functions are intro-
duced here for vertex and edge reduction, respectively. With
the initial bound, Rule 1 is performed iteratively in function
check vertex until no vertex can be removed. After that, the
function check edge is performed, and Rule 2 for edge re-
duction is performed until no redundant edge exists. Then,
we obtain a reduced graph without redundant edges, but
edge reduction does not remove any vertex, so we should
check the graph again to remove vertices by Rule 1 (lines
3-4). Finally, the function returns the reduced graph G.

The Branch-and-Bound Algorithm
We present the framework of our algorithm (Algorithm 2)
in this subsection. The algorithm starts with finding an ini-
tial lower bound by a heuristic strategy. Here we employ the
method called FastLB. It is a classic method for the maxi-
mum clique (Rossi et al. 2014), and was used to construct
a clique so as to find a lower bound of k-defective cliques
(Chen et al. 2021). Then, the algorithm calls the function
preprocessing to reduce the input graph. After that, it be-
gins to perform branching. The function branch-and-bound
is called as the root node (line 4). In the function, it checks
whether S can form a k-defective clique, and then it applies
reduction rules to further reduce graphs by calling a function
reduction (we will introduce it later). Afterwards, it returns
the size of S if the reduced graph only contains vertices in

Algorithm 1: Function preprocessing(G,k,LB)
Input: G = (V,E), a positive integer k, a lower bound LB ;
Output: the reduced graph G.

1 G← check vertex(G, k, LB);
2 G← check edge(G, k, LB);
3 foreach v ∈ V do
4 apply Rule 1 on v with LB and k;

5 return G;

6 Function check vertex(G, k, LB)
7 Q← ∅; add all vertices in V to Q;
8 while Q is not empty do
9 v ← pop(Q), Nv ← NG(v);

10 apply Rule 1 on v with LB and k;
11 if v is removed then
12 add all vertices in Nv to Q;

13 return G;

14 Function check edge(G, k, LB)
15 Q← ∅; add all edges in E to Q;
16 while Q is not empty do
17 (u, v)← pop(Q);
18 apply Rule 2 on (u, v) with LB and k;
19 if (u, v) is removed then
20 add all edges of u and v to Q;

21 return G;

S. Otherwise, it calculates an upper bound with G and S.
After selecting a vertex v, we use a binary branching strat-
egy in the search tree node, i.e, either adding the vertex v
to S or removing it from the graph G, each corresponding
to a branch. Therefore, search tree nodes can be expanded
recursively by the function branch-and-bound until there is
no vertex left in the candidate set. Finally, the function will
backtrack and return the best lower bound. There are some
crucial components in the function branch-and-bound to be
explained.

The most important component is the function reduction,
which is shown in Algorithm 3. Three rules are considered
here. On the one hand, after a new vertex v is added into
S, we can check whether a candidate vertex is consistent
with v, so each vertex u in the candidate set is checked by
Rule 3 (line 3). On the other hand, we check vertices in the
candidate set to remove redundant edges. It is desirable to
remove all redundant edges, but the cost on the checking is
very expensive because all edges should be considered. In
fact, we have deleted redundant edges in the preprocessing
step, so remaining edges probably satisfy the upper bound if
their neighbors are not further removed. Therefore, to speed
up reduction, we only check vertices whose neighbors have
been added to S or removed in the parent search tree node
(line 5). For each neighbor u of w, we apply Rule 5 to try to
remove the edge (u,w). To further improve the efficiency,
we check the degree of w and remove it if Rule 4 is satisfied
(line 8), since vertex deletion is more efficient than deleting
edges one by one. Moreover, if w is removed, we stop check-
ing w’s neighbors and continue to check the next vertex in
V \S (line 9). Finally, the reduced graph G is returned.

10177

Algorithm 2: KDBB(G, k)
Input: G = (V,E), the problem parameter k;
Output: the size of the maximum k-defective clique.

1 S ← ∅;
2 initialize LB by the heuristic method FastLB;
3 G← preprocessing(G, k,LB);
4 LB ← branch-and-bound(G,S, null, k,LB);
5 return LB ;

6 Function branch-and-bound(G,S, v, k,LB)

7 if |E(G[S])| > k then return LB ;
8 if v 6= null then G← reduction(G,S, v, k,LB);
9 if V \S = ∅ then return |S| ;

10 UB ← candibound(G,S, k);
11 if UB > LB then
12 select a vertex u in V \S;
13 size← branch-and-bound(G,S ∪ {u}, u, k,LB);
14 if LB < size then LB ← size;
15 remove u from G;
16 size← branch-and-bound(G,S, u, k,LB);
17 if LB < size then LB ← size;

18 return LB ;

Algorithm 3: Function reduction(G,S, v, k,LB)
Input: G = (V,E), the fixed vertex set S, the selected

vertex v , the parameter k, and the lower bound LB ;
Output: the reduced graph G.

1 if v ∈ S then
2 foreach vertex u in V \S do
3 apply Rule 3 on u with LB , S, k, and v;

4 foreach vertex w in V \S do
5 if a neigbor of w is removed in the parent node or v is

a neigbor of w then
6 foreach vertex u in V \S s.t. (u,w) ∈ E do
7 apply Rule 5 on (u,w) with LB , S, and k;
8 apply Rule 4 on w with LB , S, and k;
9 if w is removed then break;

10 return G;

The upper bound for cutting branches is also important in
our algorithm. After applying reduction rules on the graph,
the algorithm calculates an upper bound and checks whether
the bound is larger than the current lower bound. If so, it
goes on to search the subtree. We use the candidate-based
upper bound we propose in the previous section, and we will
analyze the effectiveness and show the power of the upper
bound as k grows in the experiment part.

In our candidate-based bound computation, we divide
candidate vertex set C = V \S into k+1 subsets C0, ..., Ck,
where Ci = {v ∈ C | |NG[S∪{v}](v)| = i}, instead of sort-
ing C. Then, we check C0, C1, ... , Ck sequentially. Suppose
r (initialized by k − |E(G[S])|) is the remaining number
of allowed missing edges. If r ≥ i|Ci|, we subtract i|Ci|
from r, where i|Ci| is the least increment of missing edges
for adding all vertices in Ci, and then we add |Ci| to the
bound UB (initialized by 0); otherwise, we add br/ic to UB ,

and thus we obtain the upper bound. We then stop check-
ing remaining sets. For each vertex in C, we should check
all its neighbors, so our implementation can be achieved in
O(d|V |) time, where d is the maximum degree of G.

The vertex selection heuristic is another important strat-
egy that impacts on the search tree size greatly. We use a
dynamic approach to determine which one will be picked
out at a decision node. In our strategy, the vertex with the
maximum degree in the induced graph G[V \S] is selected,
breaking ties randomly.

Experiments
In this section, we perform computational experiments to
test our algorithm. We use massive sparse graphs as bench-
marks, where several datasets are selected. The first one
is Facebook social networks including 114 instances1. The
second one is massive sparse graphs from real-world appli-
cations. Among which, 139 graphs, originally from the Net-
work Data Repository online (Rossi and Ahmed 2015), were
frequently tested in previous works (Rossi and Ahmed 2014;
Cai 2015; Lin et al. 2017; Jiang et al. 2021)2. The third one
is a set of massive graphs from DIMACS103 and SNAP4

benchmarks, where 37 instances were tested the same as the
instances used in (Chen et al. 2021).

Our algorithm KDBB (the maximum K-Defective clique
algorithm with Branch-and-Bound) was implemented in
C++ language and compiled by g++ 4.8.5 with -O3 op-
tion. Benchmarks were solved on a workstation with an In-
tel(R) Xeon(R) E7-4820 v2 (2.00GHz) CPU, and 256GB
RAM, running CentOS Linux 7.7.1908 (Core). Each in-
stance was solved with the cutoff time 10800s (3 hours). As
we stated, MADEC+ and RDS are the state-of-the-art ex-
act algorithms for the MDCP (Chen et al. 2021; Gschwind,
Irnich, and Podlinski 2018), so we mainly compare our al-
gorithm with them. All source codes of the comparative al-
gorithms were downloaded from GitHub5.

Preprocessing Results
In this subsection, we analyze reduction effects of our pre-
processing method. We select Facebook benchmarks as an
example, where instances with more than 25000 vertices
are counted (we exclude instances that cannot be solved
within the cutoff time). Table 1 gives the detailed results
of the number of vertices and edges before and after re-
duction when k = 1, where the column “vertex reduction”
only uses check vertex, “vertex&edge reduction” uses both
check vertex and check edge, and the column “ratio” is the
ratio of the number of vertices in reduced graphs to the
original vertex number. It is obvious that check edge can
further reduce the graph greatly compared with the results
of check vertex. For large-scale graphs, the preprocessing
method can obtain a reduced graph with the ratio below 5%.

1
https://networkrepository.com/socfb.php

2
http://lcs.ios.ac.cn/˜caisw/Resource/realworld%20.graphs.tar.gz

3
https://www.cc.gatech.edu/dimacs10/downloads.shtml

4
http://snap.stanford.edu/data/

5
https://github.com/chenxiaoyu233/k-defective

10178

In fact, the method is still effective beyond k = 1, and even
for k = 10, it can obtain a ratio of 19% on average.

original graph vertex
reduction

vertex&edge
reduction

instance
(socfb-) |V | |E| |V | |E| |V | |E| ratio

(%)
FSU53 27737 1034802 7585 464509 525 24330 1.893
Indiana69 29747 1305765 17386 1036472 1225 43354 4.118
Indiana 29732 1305757 17386 1036472 1225 43354 4.120
Michigan23 30147 1176516 16337 932524 785 29750 2.604
MSU24 32375 1118774 13592 692484 375 12444 1.158
OR 63392 816886 12942 442781 858 20832 1.353
Penn94 41536 1362220 20353 978684 487 13697 1.172
Texas80 31560 1219650 9832 624884 122 6084 0.387
Texas84 36364 1590651 18075 1142849 799 35691 2.197
UF21 35123 1465660 14613 929463 1526 70410 4.345
UF 35111 1465654 14613 929463 1526 70410 4.346
UIllinois20 30809 1264428 12067 743461 406 17969 1.318
UIllinois 30795 1264421 12067 743461 406 17969 1.318
wosn-friends 63731 817090 12942 442781 858 20832 1.346

Table 1: Comparison of graph size before and after prepro-
cessing (k = 1)

Comparative Results with Existing Algorithms
We then compare our algorithm with the state-of-the-art al-
gorithms. Though MADEC+ and RDS are taken for com-
parison, it is noted that without our preprocessing method
the two comparative algorithms always fail to solve most in-
stances when k>3. Therefore, to make an intensive analysis,
we combine MADEC+ and RDS with our preprocessing
method, so two enhanced versions, denoted by MADEC+

P
and RDSP respectively, are also compared in our experi-
ment. Hence, five algorithms are taken into consideration.

First, we provide summary results on three groups of
datasets, i.e., the number of instances that can be solved by
an algorithm in limited time. Tables 2-4 indicate the results
for Facebook benchmarks, 139 massive sparse graphs and
37 instances from DIMACS10 and SNAP benchmarks. The
results are grouped by each value of k = 1, 3, 5, 10, 15, 20,
respectively.

KDBB MADEC+ MADEC+
P RDS RDSP

k = 1 110 31 110 16 103
k = 3 110 1 104 1 50
k = 5 108 0 78 0 14
k = 10 109 0 9 0 0
k = 15 103 0 0 0 0
k = 20 80 0 0 0 0

Table 2: Statistic results of the number of successfully
solved instances for Facebook instances

From the tables, we can see our algorithm KDBB can
solve far more instances than others on all datasets. Also, for
each k, our algorithm solves the most number of instances.
Without our preprocessing method, MADEC+ and RDS
cannot solve any Facebook instance when k ≥ 5, and with
our preprocessing method they can solve more instances,

KDBB MADEC+ MADEC+
P RDS RDSP

k = 1 117 86 115 80 111
k = 3 107 64 94 56 76
k = 5 104 54 81 42 57
k = 10 85 30 36 21 21
k = 15 68 22 26 11 12
k = 20 56 17 20 7 8

Table 3: Statistic results of the number of successfully
solved instances for 139 massive sparse graphs

KDBB MADEC+ MADEC+
P RDS RDSP

k = 1 36 29 36 26 36
k = 3 35 24 31 22 31
k = 5 34 23 28 19 23
k = 10 30 12 15 12 12
k = 15 25 8 10 6 6
k = 20 22 5 6 3 3

Table 4: Statistic results of the number of successfully
solved instances for DIMACS10 and SNAP instances

but they are not comparable with KDBB. Besides, we tested
benchmark graphs by CPLEX as Chen et al. (2021) did, but
it failed to solve most massive graphs, so we do not report
its results.

Furthermore, we show the detailed runtime results of
Facebook instances. We only show Facebook instances with
more than 15000 vertices (excluding instances cannot be
solved by any algorithm), and thus select out 37 instances.
Table 5 indicates CPU runtimes with k=1, 3, 5, 10. Since
MADEC+

P and RDSP fail to solve most instances if k >
10, we omit results of k=15, 20. We also omit results of
MADEC+ and RDS, and instead we list MADEC+

P and
RDSP. In the table, N/A means a failure run due to out of
time or memory. Clearly, KDBB is the fastest one for most
instances. When k = 1, runtimes of KDBB and MADEC+

P
are close, but as k increases the difference between two al-
gorithms is enlarged. For example, KDBB can solve a large
part of instances below 1000s for k = 5, but MADEC+

P re-
quires thousands of seconds for more than half of those in-
stances. KDBB can still solve those instances when k grows
to 10 whereas MADEC+

P fails to solve most of them. More-
over, RDSP is not comparable with KDBB and MADEC+

P
even for k = 1.

We also count the search tree sizes of those algorithms for
the instances in Table 5. The number of tree nodes for each
run is reported in Table 6, where the tree sizes are listed in
thousands and N/A means a failure run due to out of time or
memory. For k = 1, MADEC+

P has a smaller average tree
size than KDBB. For the groups of k > 1, however, KDBB
has smaller tree sizes for most of those instances. It is clear
that the gap between the two algorithms becomes wide as k
grows. This result is consistent with the CPU runtimes listed
in Table 5. Moreover, RDSP visited far more tree nodes to
complete searching compared to MADEC+

P and KDBB.
In addition, we take 4 instances as examples to show

trends of CPU runtimes by varying k from 1 to 30 at in-
crement of 1. Figure 1 depicts the curves of three algo-

10179

k = 1 k = 3 k = 5 k = 10
instance KDBB MADEC+

P RDSP KDBB MADEC+
P RDSP KDBB MADEC+

P RDSP KDBB MADEC+
P RDSP

socfb-Auburn71 431.82 434.32 9344.55 535.67 666.94 N/A 639.28 5254.52 N/A 1194.54 N/A N/A
socfb-Berkeley13 425.01 430.04 1170.46 452.45 573.67 N/A 505.92 9644.20 N/A 629.82 N/A N/A
socfb-BU10 252.48 253.05 550.18 289.99 295.62 N/A 331.91 410.58 N/A 369.62 N/A N/A
socfb-Cornell5 393.10 431.78 N/A 921.53 3583.99 N/A 1265.04 N/A N/A 2636.48 N/A N/A
socfb-FSU53 208.65 194.91 4120.45 610.09 356.71 N/A 827.74 2628.48 N/A 1400.47 N/A N/A
socfb-Harvard1 346.56 347.01 1160.67 420.73 504.22 N/A 516.89 N/A N/A 1354.25 N/A N/A
socfb-Indiana69 1133.84 1155.64 2406.44 1071.99 1186.98 N/A 1185.71 2673.82 N/A 1320.53 N/A N/A
socfb-Indiana 1142.24 1163.96 2422.74 1138.33 1253.55 N/A 1261.44 2754.66 N/A 1420.77 N/A N/A
socfb-Maryland58 149.80 149.63 235.95 161.77 161.34 1114.20 185.48 200.69 N/A 239.30 4785.85 N/A
socfb-Michigan23 832.79 837.27 1451.63 1072.10 1249.84 N/A 970.61 6060.48 N/A 1383.89 N/A N/A
socfb-MSU24 493.45 493.69 551.56 576.35 583.73 9406.49 665.95 1085.90 N/A 878.53 N/A N/A
socfb-MU78 181.78 181.57 193.19 199.89 203.42 605.46 215.22 397.22 N/A 306.05 N/A N/A
socfb-NYU9 348.54 348.79 354.30 398.52 407.73 1492.59 396.44 589.08 N/A 466.15 N/A N/A
socfb-Oklahoma97 383.00 322.40 N/A 2047.65 1166.24 N/A 3938.08 N/A N/A 6926.11 N/A N/A
socfb-OR 356.19 368.25 696.82 455.70 1683.91 N/A 587.24 N/A N/A 1485.83 N/A N/A
socfb-Penn94 1138.78 1140.64 1233.24 1556.72 1580.36 N/A 1820.09 2518.84 N/A 1971.97 N/A N/A
socfb-Rutgers89 218.92 218.84 223.65 276.22 276.54 400.15 278.99 332.03 N/A 386.18 N/A N/A
socfb-Tennessee95 246.35 242.59 6092.39 361.29 402.39 N/A 423.89 5583.14 N/A 553.96 N/A N/A
socfb-Texas80 341.82 339.87 470.02 422.86 408.56 2254.93 533.85 1143.19 N/A 753.08 N/A N/A
socfb-Texas84 1490.20 1475.98 N/A 1674.41 1634.17 N/A 2769.26 N/A N/A 10252.70 N/A N/A
socfb-UC33 155.55 156.44 854.40 170.87 176.97 N/A 181.06 475.71 N/A 262.87 N/A N/A
socfb-UCLA26 184.50 184.52 185.69 207.02 207.22 233.95 215.07 219.47 N/A 288.32 3652.25 N/A
socfb-UCLA 190.21 190.23 191.41 205.56 205.76 232.68 237.37 241.77 N/A 289.83 3636.10 N/A
socfb-UConn91 104.97 104.93 108.89 123.09 123.34 1008.57 172.63 192.13 N/A 208.27 N/A N/A
socfb-UConn 109.09 109.04 113.08 125.95 126.20 1016.88 168.66 188.16 N/A 194.22 N/A N/A
socfb-UF21 786.98 786.07 N/A 1297.48 1434.09 N/A 1542.10 N/A N/A 2571.06 N/A N/A
socfb-UF 793.23 791.06 N/A 1331.76 1469.12 N/A 1601.77 N/A N/A 2579.11 N/A N/A
socfb-UGA50 723.90 709.32 N/A 1467.17 3209.00 N/A 2458.83 N/A N/A 6793.84 N/A N/A
socfb-UIllinois20 486.01 481.63 2215.92 609.77 580.99 N/A 784.10 2047.08 N/A 1217.39 N/A N/A
socfb-UIllinois 486.06 481.69 2212.43 643.97 616.32 N/A 806.13 2073.49 N/A 1244.94 N/A N/A
socfb-UMass92 225.75 226.59 243.97 245.18 268.70 N/A 265.19 888.08 N/A 318.00 N/A N/A
socfb-UNC28 236.01 235.62 263.98 286.83 283.44 637.27 335.61 341.38 2237.48 380.12 9840.37 N/A
socfb-USC35 231.73 229.53 1124.37 266.70 258.85 N/A 333.99 1493.47 N/A 408.71 N/A N/A
socfb-UVA16 341.48 341.97 547.90 387.41 520.16 N/A 400.43 7127.35 N/A 551.93 N/A N/A
socfb-Virginia63 83.54 83.32 90.11 102.84 100.89 160.39 143.49 149.76 381.83 214.84 N/A N/A
socfb-Wisconsin87 532.00 535.77 1355.82 612.05 699.23 N/A 664.18 6234.68 N/A 923.55 N/A N/A
socfb-wosn-friends 374.51 386.08 713.63 438.38 1660.01 N/A 533.33 N/A N/A 1259.73 N/A N/A

Table 5: CPU runtimes of three algorithms on Facebook instances in seconds with cut-off time of 10800s

rithms. We can see that our algorithm can successfully solve
instances under each value of k, even for k = 30, but
MADEC+

P and RDSP fail when k > 11. As k grows, run-
times of our algorithm increase slowly and for most cases it
can complete search within 1000s, but we can see that there
is a very sharp growth of runtimes for the other two algo-
rithms.

Analysis of the Candidate-based Bound
In this subsection, we show the effect of our candidate-
based bound. Table 7 gives the statistic results of Facebook
benchmark, where the number of solved instances and av-
erage runtime are grouped by k (we set runtimes to 10800s
for unsolved instances). In the previous work (Chen et al.
2021), the c-color bound is used as the main strategy to cut
branches. Two versions therefore are compared: KDBB that
uses our candidate-based bound, and KDBB with the c-color
bound instead of our bound, denoted by KDBBcolor. Both
algorithms can solve the same number of instances when

0 10 20 30

k

0

3000

6000

9000

12000

tim
e(

s)

KDBB

MADEC
+

P

RDS
P

0 10 20 30

k

0

2000

4000

6000

8000

tim
e(

s)

KDBB

MADEC
+

P

RDS
P

(a) (b)

0 10 20 30

k

0

2000

4000

6000

8000

tim
e(

s)

KDBB

MADEC
+

P

RDS
P

0 10 20 30

k

0

2000

4000

6000

8000

10000

tim
e(

s)

KDBB

MADEC
+

P

RDS
P

(c) (d)

Figure 1: Runtime tendency with k growing. Four instances
are: (a) Northwestern25; (b) Trinity100; (c) Bingham82; (d)
USF51.

10180

k = 1 k = 3 k = 5 k = 10
instance KDBB MADEC+

P RDSP KDBB MADEC+
P RDSP KDBB MADEC+

P RDSP KDBB MADEC+
P RDSP

socfb-Auburn71 29.6 9.4 31990.2 212.5 630.5 N/A 398.7 11578.6 N/A 1386.5 N/A N/A
socfb-Berkeley13 4.9 4.9 2739.2 21.3 383.1 N/A 30.4 27755.0 N/A 104.5 N/A N/A
socfb-BU10 2.3 2.1 2696.6 12.3 28.7 N/A 29.0 397.9 N/A 88.6 N/A N/A
socfb-Cornell5 21.5 72.8 N/A 190.2 6961.8 N/A 222.6 N/A N/A 401.3 N/A N/A
socfb-FSU53 58.7 5.9 22337.7 467.3 323.8 N/A 677.2 8751.3 N/A 1636.4 N/A N/A
socfb-Harvard1 2.4 6.5 4759.2 30.5 579.4 N/A 74.8 N/A N/A 278.1 N/A N/A
socfb-Indiana69 6.9 6.6 2250.2 28.6 161.3 N/A 48.5 2146.5 N/A 148.0 N/A N/A
socfb-Indiana 6.9 6.6 2250.2 28.6 161.3 N/A 48.5 2146.5 N/A 148.0 N/A N/A
socfb-Maryland58 3.1 1.0 1274.7 11.6 10.3 12423.2 17.7 125.8 N/A 53.6 25980.3 N/A
socfb-Michigan23 5.4 5.7 2144.4 21.5 427.1 N/A 34.3 9711.5 N/A 99.5 N/A N/A
socfb-MSU24 6.2 1.5 377.5 33.2 56.4 17396.3 60.2 1588.5 N/A 109.7 N/A N/A
socfb-MU78 1.9 1.5 209.7 13.2 76.0 6167.9 29.3 1823.6 N/A 147.1 N/A N/A
socfb-NYU9 1.5 2.1 55.4 3.7 64.0 3670.7 4.4 1154.4 N/A 16.6 N/A N/A
socfb-Oklahoma97 236.3 23.9 N/A 1702.5 2233.8 N/A 2933.2 N/A N/A 6562.4 N/A N/A
socfb-OR 7.9 22.8 708.7 55.8 3025.6 N/A 99.5 N/A N/A 386.7 N/A N/A
socfb-Penn94 3.2 3.3 420.6 10.1 56.0 N/A 15.1 1671.4 N/A 26.4 N/A N/A
socfb-Rutgers89 1.5 0.6 69.5 7.8 15.2 1243.5 11.3 445.2 N/A 39.3 N/A N/A
socfb-Tennessee95 62.9 8.1 32961.4 379.0 500.2 N/A 456.3 16405.9 N/A 713.0 N/A N/A
socfb-Texas80 19.0 2.9 2127.1 130.9 189.7 26287.1 302.9 5040.9 N/A 795.0 N/A N/A
socfb-Texas84 66.2 14.8 N/A 584.5 1319.6 N/A 1227.8 N/A N/A 6554.9 N/A N/A
socfb-UC33 3.8 2.1 4530.8 16.8 41.5 N/A 24.1 1502.6 N/A 66.8 N/A N/A
socfb-UCLA26 0.4 0.3 15.7 2.9 4.7 193.8 5.4 43.2 N/A 20.0 19950.7 N/A
socfb-UCLA 0.4 0.3 15.7 2.9 4.7 193.8 5.4 43.2 N/A 20.0 19950.7 N/A
socfb-UConn91 2.7 1.0 58.6 7.3 7.9 4349.5 7.8 155.7 N/A 21.7 N/A N/A
socfb-UConn 2.7 1.0 58.6 7.3 7.9 4349.5 7.8 155.7 N/A 21.7 N/A N/A
socfb-UF21 101.6 15.7 N/A 596.4 1035.6 N/A 846.9 N/A N/A 2368.4 N/A N/A
socfb-UF 101.6 15.7 N/A 596.4 1035.6 N/A 846.9 N/A N/A 2368.4 N/A N/A
socfb-UGA50 87.6 23.2 N/A 759.9 5506.6 N/A 1617.4 N/A N/A 5204.3 N/A N/A
socfb-UIllinois20 31.6 4.1 12408.2 239.4 254.3 N/A 389.6 6028.7 N/A 1067.8 N/A N/A
socfb-UIllinois 31.6 4.1 12408.2 239.4 254.3 N/A 389.6 6028.7 N/A 1067.8 N/A N/A
socfb-UMass92 2.8 2.5 85.0 6.9 93.9 N/A 12.9 2573.9 N/A 46.8 N/A N/A
socfb-UNC28 8.2 0.9 425.8 34.6 12.6 4328.5 67.3 189.6 18313.8 161.5 38954.8 N/A
socfb-USC35 30.8 3.8 10443.3 143.4 185.9 N/A 178.8 5857.6 N/A 249.5 N/A N/A
socfb-UVA16 6.0 3.9 1524.7 27.9 498.4 N/A 61.7 19224.9 N/A 360.8 N/A N/A
socfb-Virginia63 5.1 0.3 153.2 43.8 17.4 1295.6 98.5 207.9 4940.8 275.9 N/A N/A
socfb-Wisconsin87 6.4 5.7 3368.8 46.9 299.9 N/A 92.7 14643.0 N/A 391.8 N/A N/A
socfb-wosn-friends 7.9 22.8 708.7 55.8 3025.6 N/A 99.5 N/A N/A 386.7 N/A N/A

Table 6: Search tree sizes in thousands for three algorithms on Facebook instances with cut-off time of 10800s

k = 1, but KDBB is slightly better than KDBBcolor on the
average runtime. As k increases, our upper bound shows its
good effectiveness. It achieves far better performance than
KDBBcolor when k > 1 because both measurements are
better. The difference of the number of solved instances is
enlarged with k growing, where we can see our approach
can solve almost all instances when k = 10 whereas the al-
gorithm with the c-color bound can only solve 19 instances,
less than 1/5 of KDBB. Therefore, it is clear that our upper
bound is effective, and particularly good at solving instances
with large values of k.

KDBB KDBBcolor

group #solved time(s) #solved time(s)
k = 1 110 561.21 110 572.81
k = 3 110 687.78 97 2337.19
k = 5 108 926.60 79 4677.43
k = 10 109 1239.92 19 9434.41

Table 7: Statistic results of KDBB with two upper bounds

Conclusion

As a generalization of the clique, the k-defective clique is
a useful tool for analyzing complex networks. We propose
a branch-and-bound algorithm for the maximum k-defective
clique problem. The main contribution is that our algorithm
adopts several newly proposed upper bounds for graph re-
duction. Different from existing methods that remove ver-
tices from graphs, we try to delete both useless vertices
and edges. Also, we propose an effective upper bound for
cutting branches based on counting missing edges between
fixed vertices and unfixed ones. We perform extensive ex-
periments on large-scale graphs from social networks and
other real-world applications. We analyze the effectiveness
and efficiency of our algorithm, showing that our algorithm
is far better than existing exact algorithms. It is also worth to
mention that our algorithm still performs well on solving in-
stances with k > 5, but other algorithms fail to solve most of
them. In the future work, enumerating maximal k-defective
cliques is an interesting topic.

10181

Acknowledgments
We would like to thank anonymous reviewers for use-
ful suggestions. The work in this paper was supported by
the National Natural Science Foundation of China (Nos.
61972063, 61976050 and 61806082) and the Fundamen-
tal Research Funds for the Central Universities, JLU (No.
93K172021K07).

References
Almeida, M. T.; and de Carvalho, F. D. 2014. Two-phase
heuristics for the k-club problem. Comput. Oper. Res., 52:
94–104.
Balasundaram, B.; Butenko, S.; and Hicks, I. V. 2011.
Clique relaxations in social network analysis: the maximum
k-plex problem. Oper. Res., 59(1): 133–142.
Bomze, I. M.; Rinaldi, F.; and Zeffiro, D. 2021. Fast clus-
ter detection in networks by first-order optimization. arXiv
preprint arXiv:2103.15907.
Brunato, M.; Hoos, H. H.; and Battiti, R. 2007. On effec-
tively finding maximal quasi-cliques in graphs. In Maniezzo,
V.; Battiti, R.; and Watson, J., eds., Learning and Intelli-
gent Optimization, Second International Conference, Trento,
Italy, December 8-12, 2007, volume 5313 of Lecture Notes
in Computer Science, 41–55.
Cai, S. 2015. Balance between complexity and quality:
local search for minimum vertex cover in massive graphs.
In Yang, Q.; and Wooldridge, M. J., eds., Proceedings of
the Twenty-Fourth International Joint Conference on Artifi-
cial Intelligence, Buenos Aires, Argentina, July 25-31, 2015,
747–753.
Cai, S.; and Lin, J. 2016. Fast solving maximum weight
clique problem in massive graphs. In Kambhampati, S., ed.,
Proceedings of the Twenty-Fifth International Joint Confer-
ence on Artificial Intelligence, New York, NY, USA, 9-15 July
2016, 568–574.
Chen, X.; Zhou, Y.; Hao, J.; and Xiao, M. 2021. Computing
maximum k-defective cliques in massive graphs. Comput.
Oper. Res., 127: 105131.
Conte, A.; Firmani, D.; Mordente, C.; Patrignani, M.; and
Torlone, R. 2017. Fast enumeration of large k-plexes. In
Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, Halifax,
NS, Canada, August 13 - 17, 2017, 115–124.
Gschwind, T.; Irnich, S.; Furini, F.; and Calvo, R. W. 2020.
A branch-and-price framework for decomposing graphs into
relaxed cliques. INFORMS Journal on Computing.
Gschwind, T.; Irnich, S.; and Podlinski, I. 2018. Maximum
weight relaxed cliques and Russian doll search revisited.
Discret. Appl. Math., 234: 131–138.
Jain, S.; and Seshadhri, C. 2020. Provably and effi-
ciently approximating near-cliques using the Turán shadow:
PEANUTS. In Huang, Y.; King, I.; Liu, T.; and van Steen,
M., eds., WWW ’20: The Web Conference 2020, Taipei, Tai-
wan, April 20-24, 2020, 1966–1976. ACM / IW3C2.
Jiang, H.; Li, C.; and Manyà, F. 2017. An exact algorithm
for the maximum weight clique problem in large graphs. In

Proceedings of the Thirty-First AAAI Conference on Artifi-
cial Intelligence, February 4-9, 2017, San Francisco, Cali-
fornia, USA., 830–838.
Jiang, H.; Zhu, D.; Xie, Z.; Yao, S.; and Fu, Z. 2021. A
new upper bound based on vertex partitioning for the max-
imum k-plex problem. In Zhou, Z., ed., Proceedings of
the Thirtieth International Joint Conference on Artificial In-
telligence, Virtual Event / Montreal, Canada, 19-27 August
2021, 1689–1696.
Lin, J.; Cai, S.; Luo, C.; and Su, K. 2017. A reduction based
method for coloring very large graphs. In Proceedings of
the Twenty-Sixth International Joint Conference on Artifi-
cial Intelligence, Melbourne, Australia, August 19-25, 2017,
517–523.
Marinelli, F.; Pizzuti, A.; and Rossi, F. 2021. LP-based dual
bounds for the maximum quasi-clique problem. Discret.
Appl. Math., 296: 118–140.
Miao, Z.; and Balasundaram, B. 2017. Approaches for find-
ing cohesive subgroups in large-scale social networks via
maximum k-plex detection. Networks, 69(4): 388–407.
Rossi, R. A.; and Ahmed, N. K. 2014. Coloring large com-
plex networks. Social Network Analysis and Mining, 4(1):
228.
Rossi, R. A.; and Ahmed, N. K. 2015. The network data
repository with interactive graph analytics and visualization.
In Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, January 25-30, 2015, Austin, Texas,
USA., 4292–4293.
Rossi, R. A.; Gleich, D. F.; Gebremedhin, A. H.; and Pat-
wary, M. M. A. 2014. Fast maximum clique algorithms for
large graphs. In 23rd International World Wide Web Confer-
ence, Seoul, Republic of Korea, April 7-11, 2014, Compan-
ion Volume, 365–366.
Sanei-Mehri, S.; Das, A.; Hashemi, H.; and Tirthapura, S.
2021. Mining largest maximal quasi-cliques. ACM Trans.
Knowl. Discov. Data, 15(5): 81:1–81:21.
Sherali, H. D.; and Smith, J. C. 2006. A polyhedral study
of the generalized vertex packing problem. Math. Program.,
107(3): 367–390.
Sherali, H. D.; Smith, J. C.; and Trani, A. A. 2002. An
airspace planning model for selecting flight-plans under
workload, safety, and equity considerations. Transp. Sci.,
36(4): 378–397.
Shirokikh, O. A. 2013. Degree-based clique relaxations:
theoretical bounds, computational issues, and applications.
Ph.D. thesis, University of Florida.
Stozhkov, V.; Buchanan, A.; Butenko, S.; and Boginski, V.
2020. Continuous cubic formulations for cluster detection
problems in networks. Mathematical Programming, 1–29.
Trukhanov, S.; Balasubramaniam, C.; Balasundaram, B.;
and Butenko, S. 2013. Algorithms for detecting optimal
hereditary structures in graphs, with application to clique re-
laxations. Comput. Optim. Appl., 56(1): 113–130.
Verfaillie, G.; Lemaı̂tre, M.; and Schiex, T. 1996. Russian
doll search for solving constraint optimization problems.
In Clancey, W. J.; and Weld, D. S., eds., Proceedings of

10182

the Thirteenth National Conference on Artificial Intelligence
and Eighth Innovative Applications of Artificial Intelligence
Conference, Portland, Oregon, USA, August 4-8, 1996, Vol-
ume 1, 181–187.
Xiao, M.; Lin, W.; Dai, Y.; and Zeng, Y. 2017. A fast algo-
rithm to compute maximum k-plexes in social network anal-
ysis. In Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, February 4-9, 2017, San Francisco,
California, USA., 919–925.
Yu, H.; Paccanaro, A.; Trifonov, V.; and Gerstein, M. 2006.
Predicting interactions in protein networks by completing
defective cliques. Bioinform., 22(7): 823–829.
Zhou, Y.; Hu, S.; Xiao, M.; and Fu, Z. 2021. Improving max-
imum k-plex solver via second-order reduction and graph
color bounding. In Thirty-Fifth AAAI Conference on Artifi-
cial Intelligence, Virtual Event, February 2-9, 2021, 12453–
12460.

10183

