
NukCP: An Improved Local Search Algorithm for Maximum k-Club Problem
Jiejiang Chen1, Yiyuan Wang1,3*, Shaowei Cai2,4, Minghao Yin1,3∗,

Yupeng Zhou1,3∗, Jieyu Wu1

1School of Computer Science and Information Technology, Northeast Normal University, China
2State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China

3Key Laboratory of Applied Statistics of MOE, Northeast Normal University, Changchun, China
4School of Computer Science and Technology, University of Chinese Academy of Sciences, China

chenjj016@nenu.edu.cn, yiyuanwangjlu@126.com, caisw@ios.ac.cn, {ymh, zhouyp605}@nenu.edu.cn, wjy4204@163.com

Abstract

The maximum k-club problem (MkCP) is an important clique
relaxation problem with wide applications. Previous MkCP
algorithms only work on small-scale instances and are not ap-
plicable for large-scale instances. For solving instances with
different scales, this paper develops an efficient local search
algorithm named NukCP for the MkCP which mainly in-
cludes two novel ideas. First, we propose a dynamic reduction
strategy, which makes a good balance between the time effi-
ciency and the precision effectiveness of the upper bound cal-
culation. Second, a stratified threshold configuration check-
ing strategy is designed by giving different priorities for the
neighborhood in the different levels. Experiments on a broad
range of different scale instances show that NukCP signifi-
cantly outperforms the state-of-the-art MkCP algorithms on
most instances in terms of solution quality.

Introduction
A clique is a subset of vertices of an undirected graph in
which each pair of vertices are adjacent. Clique is one of the
basic concepts of graph theory and has been widely stud-
ied (Ouyang et al. 1997; Butenko and Wilhelm 2006). How-
ever, the constraint condition of clique model is too strict for
many real-world applications since the aim of these applica-
tions is to find some dense structures rather than a complete
subgraph. These structures can usually be seen as clique re-
laxation models and are mainly divided into two categories:
density-based models such as k-plex (Gao et al. 2018) and
quasi-clique (Chen et al. 2021) as well as diameter-based
models such as k-clique (Cavique, Mendes, and Santos
2009) and k-club (Shahinpour and Butenko 2013b).

In this paper, we focus on studying the maximum k-club
problem (MkCP) which has been used in various domains.
For example, the MkCP can help to facilitate the search on
the internet since it can cluster topically related information
(Pattillo, Youssef, and Butenko 2013). In social network, the
well-known “a friend of a friend” concept can be modeled
as k-club and the problem of finding a low-diameter com-
munity can be encoded to the MkCP (Goodreau, Kitts, and
Morris 2009). The MkCP is also used to analyze the roles of
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functional modules by mining important substructures in bi-
ological network (Balasundaram, Butenko, and Trukhanov
2005; Jia et al. 2018).

Given a graph G = (V,E) and a fixed integer k, a k-
club S is a subset of vertices inducing a subgraph of diam-
eter at most k. It is easy to see that 1-club is a clique. The
MkCP aims to identify the k-club with the maximum size in
a graph. It is NP-hard, even for any fixed k > 1 (Bourjolly,
Laporte, and Pesant 2002). Up to now, there are mainly two
types of algorithms for the MkCP, i.e., exact algorithms and
heuristic algorithms.

Several exact algorithms have been designed to solve the
MkCP. Bourjolly et al. (2002) proposed a classic branch-
and-bound algorithm for the MkCP and could solve the in-
stances involving up to 200 vertices. The branch-and-bound
algorithms for the MkCP were further improved by consid-
ering the k-coloring number as an upper bound (Pajouh and
Balasundaram 2012) and designing a dynamic data structure
(Chang et al. 2013). Recently, another paradigm solved the
MkCP by using different integer linear programming formu-
lations (Almeida and Carvalho 2012, 2014a; Veremyev et al.
2021). Although exact algorithms can guarantee the opti-
mality of their solutions, they may fail to solve the problem
within acceptable time, especially for large-scale instances.

In practice, for solving the large-scale MkCP instances,
researchers resort to designing heuristic algorithms for ob-
taining good solutions. Bourjolly et al. (2000) proposed
three simple and effective heuristic algorithms for the
MkCP, including Constellation, Drop and k-Clique & Drop.
Shahinpour and Butenko (2013a) developed a variable
neighborhood search called VNS for the MkCP and firstly
tested the performance of VNS on the DIMACS benchmark.
Afterwards, two hybrid algorithms including mS IP spe-
cialized for the 2-club problem and mB IP specialized for
the 3-club problem were introduced by combining heuris-
tic algorithms and integer linear programming formulations
(Almeida and Carvalho 2014b). In the same work, Almeida
and Carvalho (2014b) also proposed a heuristic algorithm
called Backbone and proved its superiority over the previ-
ous algorithm Constellation on the 3-club problem. Moradi
and Balasundara (2018) proposed a heuristic algorithm for
the MkCP called ITDBC which used a combination of graph
decomposition and model decomposition techniques. In the
ITDBC, a reduction method called TRIM played an impor-
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tant role in cutting down the search space. Results showed
that ITDBC achieved the best results on most instances.

In this paper, we develop an efficient local search algo-
rithm named NukCP which can apply to different scale in-
stances and performs better on almost all benchmarks. There
are two main novel ideas in our algorithm.

The first idea is called dynamic reduction method (DRM)
designed for quickly reducing the size of graphs. The previ-
ous reduction method TRIM (2018) used a kind of static up-
per bound calculation, which is time-consuming and thus is
not applicable for large-scale instances. Compared to TRIM,
the DRM allows to delete vertices during the calculation of
upper bounds. Additionally, the DRM introduces a novel
method to dynamically update the upper bound values in-
stead of recalculating them as the TRIM does. These two
techniques make our reduction method much faster than
TRIM. Experiments show that the DRM can achieve good
practical results within short time.

The second idea is an improved version of the configura-
tion checking (CC) strategy called stratified threshold con-
figuration checking (STCC). CC firstly proposed by Cai et
al. (2011) was used to overcome the cycling problem dur-
ing local search. Recently, different variants of CC have
been designed for solving the clique related problems such
as SCC for the maximum weight clique problem (Wang,
Cai, and Yin 2016), DCC for the maximum k-plex prob-
lem (Chen et al. 2020) and BoundedCC for the maximum
quasi-clique problem (Chen et al. 2021). Different from the
above problems, the MkCP needs to consider the multi-level
neighborhood of vertices due to its characteristics. In our
work, we take the characteristics into account and maintain
the multi-level neighborhood information. Although previ-
ous CC version named CC2V3 (Wang et al. 2018) considers
the two-level neighborhood, for the MkCP we need to take
more than two-level neighborhood into account, which leads
to a serious problem, i.e., how to maintain the neighborhood
information. To address this, the spanning tree is used to dy-
namically maintain the multi-level neighborhood of vertices
in the candidate solution.

We carry out extensive experiments to evaluate the
NukCP on the benchmarks used in the literature for the
MkCP as well as a suite of massive graphs (Rossi and
Ahmed 2015). Compared with three state-of-the-art heuris-
tic algorithms, NukCP obtains the best results for almost all
benchmarks. Besides, our experimental analyses verify the
effectiveness of the proposed strategies.

The remainder of the paper is organized as follows. The
next section introduces some basic definitions. Section 3
presents a new reduction strategy. Section 4 presents a vari-
ant of CC designed for the MkCP. Section 5 describes our
NukCP algorithm. Experimental results are shown in Sec-
tion 6 and Section 7 gives concluding remarks.

Preliminaries
An undirected graph G = (V,E) consists of a vertex set V
and an edge set E. Two vertices are neighbors if they belong
to one edge. We denote NG(v) = {u ∈ V | {u, v} ∈ E}
as the set of neighbors of a vertex v and its degree is
degG(v) = |NG(v)|. Given a pair of vertices u, v ∈ V ,

the distance distG(u, v) is the number of edges in a shortest
path connecting them and distG(v, v) = 0 particularly. The
diameter of G denoted as diam(G) is the maximum distance
between any pair of vertices. We define the i-th level neigh-
borhood of v in G as Ni,G(v) = {u ∈ V | distG(u, v) = i}.
Ni,G[v] = Ni,G(v)∪{v} and Nk

G[v] =
⋃k

i=1 Ni,G[v]. Thus,
N1,G(v) = NG(v). For S ⊆ V , G[S] = (VS , ES) is a sub-
graph in G induced by S whose vertex set is S and whose
edge set consists of all of the edges in E that have both end-
points in S.

Given a graph G and a fixed integer k, a k-club S is a sub-
set of V such that diam(G[S]) ≤ k. The maximum k-club
problem (MkCP) is to find a k-club with the most vertices.

A Dynamic Reduction Strategy
Although reduction methods have been widely used in the
clique related problems (Cai and Lin 2016; Jiang, Li, and
Manyà 2016; Wang et al. 2020a; Zhou et al. 2021), we are
aware of only one reduction method for the MkCP, which
is named TRIM (Moradi and Balasundaram 2018). In this
section, we propose a novel reduction method for the MkCP,
which is built upon the rules of TRIM but significantly faster
than TRIM.

Previous Static Reduction Strategy
For the MkCP, the general principle for reduction is as fol-
lows. For a graph G, an upper bound function calculates
for each vertex a value ubG(v) such that the size of any k-
club that v belongs to is at most ubG(v). A lower bound
function calculates a value lb(G) such that the size of the
largest k-club in G is not smaller than lb(G). All vertices
with ubG(v) ≤ lb(G), along with their incident edges, can
be safely deleted since they cannot be part of any optimal
solution.

The TRIM reduction method employs simple but effective
lower bound and upper bound.

• lb(G) = max{|N ⌊k/2⌋
G [v]| | v ∈ V }

• ubG(v) = |Nk
G[v]|

When applying reduction rules, the graph G always refers
to the current graph in process and thus can be omitted. For
convenience, lb(G) and ubG(v) are denoted as lb and ub(v).
TRIM works in an iterative way and each iteration is con-
sisted of two steps as below.
• Step 1. Calculate X = {v ∈ V | ub(v) ≤ lb};
• Step 2. If X is not empty, then V = V \ X and TRIM

goes to step 1. Otherwise, TRIM breaks the iteration.
In practice, TRIM is time-consuming and not suitable for

the massive graphs due to the following two reasons. (1)
The deletion of a vertex v would change the ub values of
those vertices in Nk

G[v]. TRIM recalculates ub values for
such vertices. What is worse, the ub values for some vertices
are recalculated multiple times. (2) In each iteration, TRIM
first calculates ub values for all vertices, and then removes
those vertices satisfying the reduction condition. In this way,
TRIM does not update the ub values in real time based on
the current simplified graph. This leads to more iterations
than necessary for the reduction process to converge.
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Dynamic Reduction Method
In order to address the drawback of TRIM, we develop a new
reduction method for the MkCP called dynamic reduction
method (DRM). There are two main ideas in the DRM, with
the aim of resolving the two issues of TRIM. Firstly, DRM
only calculates the ub values once for all vertices and then
dynamically updates the ub values instead of recalculating
them whenever a vertex is deleted. Secondly, DRM allows
a vertex to be deleted during the process of calculating its
ub value — this strategy not only decreases the iterations of
reduction, but also accelerates the subsequent calculation or
updating of ub values as the computation is executed on the
simplified graph.

The proposed DRM is consisted of two phases: the dy-
namic calculation phase and the iterative deletion phase.
During the DRM, the calculation of ub is only executed once
at the beginning of the algorithm and the iterative deletion
phase is used for further reduction. Before presenting our
DRM, we first introduce a novel dynamic maintenance rule
named dynamic update rule (DUR) for updating the neigh-
borhood of a deleted vertex.

Dynamic Update Rule. When a vertex v ∈ V is deleted
from G, ub(u) = ub(u)− 1 for ∀u ∈ Nk

G[v] .
The above rule has a low time complexity of O(|V |).

Based on the DUR, we present the dynamic calculation
phase whose implementation efficiency is closely related
to the sequence of vertices and the iterative deletion phase
which is implemented by an auxiliary queue.

Dynamic Calculation Phase. Initially, the positions of
vertices are arranged in an ascending order of their degrees,
V = {v1, v2, . . . , vn}, s.t. degG(v1) ≤ degG(v2) ≤ · · · ≤
degG(vn). If ub(vi) ≤ lb, then vi is deleted from G in ad-
vance, and at the same time the ub values for its neighbor-
hood vj ∈ Nk

G[vi] with j < i are updated by the DUR.
Iterative Deletion Phase. An auxiliary queue is used to

store all vertices v ∈ V with ub(v) ≤ lb. In each iteration,
a vertex in the queue is deleted from G and the ub values of
each vertex u ∈ Nk

G[v] are updated by the DUR. If ub(u) ≤
lb and u is not in the queue, then u is added into the queue.
The loop continues until the queue is empty.

Notice that during the first phase, when deleting vi from
G, we do not update the ub value of the vertex vj whose
position is behind vi (i.e., j > i) since ub(vj) has not been
initialized yet. Additionally, the deletion of vi reduces the
size of G, which makes the subsequent process of calculat-
ing ub values faster. Thus, before calculating ub values, we
sort all vertices in an ascending order according to their de-
grees, trying to delete vertices as early as possible, which
accelerates the overall deletion process.

As explained above, the DUR avoids the recalculation of
ub values. On the other hand, this comes with a price that
the ub values calculated in this way may be actually larger
than the ub of TRIM whose value is always equal to |Nk

G|.
It is mainly caused by the following situation: when a vertex
v is deleted from G, the |Nk

G[u]| values for u ∈ Nk
G[v] may

decrease by more than one while the DUR just subtracts one
for ub(u).

We use an example to illustrate this situation in Fig-
ure 1. Assume that an original graph is G = (V,E) and

v3

v2

v4

v8

v5
v7

v6

v1

G1

G2 ,G3 G4

Figure 1: An example of the DRM for the 2-club problem.

V = {v1, . . . , v8} whose positions have been already ar-
ranged. In order to show the changes in the size of the
graph during the first phase, we use G1, G2, . . . , G8 to de-
note the corresponding graphs where Vi+1 = Vi \ {vi} if
vi is deleted and Vi+1 = Vi otherwise. We can easily get
lb = |N1

G[v8]| = 5. At the beginning, there are no ver-
tices being deleted inducing that G1 = G. Based on the
G1, ubG1

(v1) is calculated. Because ubG1
(v1) = 4 < lb,

v1 should be deleted and V2 = V1 \ {v1}. Afterwards, we
cannot delete v2 since ubG2

(v2) = 7, and thus G3 = G2.
ubG3

(v3) = 5 induces that v3 should be deleted. When
deleting v3, we update its neighborhood according to the
DUR which decreases ub(v2) by one, i.e., ubG3(v2) = 6.
However, if we recalculate ub(v2) on G3 as what TRIM
does, the value of |N2

G3
[v2]| should be 5. This is because

the deletion of v3 makes v4 no longer be in the neighbor-
hood of v2. Thus, in some cases, our upper bound value is
larger than the one calculated by TRIM.

Even though our method may sacrifice the precision of the
ub values, it has greatly improved the efficiency of updating
process and can be used for massive graphs. In fact, our ex-
perimental results show that the reduction ability of our dy-
namic reduction method is close to that of TRIM, whilst it
greatly improves the efficiency.

The DRM Function The pseudo code of DRM is pre-
sented in Algorithm 1, which includes the dynamic calcula-
tion phase (lines 2–13) and the iterative deletion phase (lines
14–18). Input parameter mode = 1 means the algorithm calls
the DRM function on the initialization phase, while mode =
2 means that the DRM function is used when the algorithm
obtains a better solution during the local search phase. At
first, the algorithm initializes a deletion queue named Qd as
an empty set (line 1). When entering the first phase, the al-
gorithm first sorts all vertices in an ascending order accord-
ing to their degrees (line 3). After that, for each vertex vi,
its ub(vi) value will be calculated. If ub(vi) ≤ lb, then vi
will be deleted from V in advance (line 7). For vj in the vi’s
neighborhood and j < i, ub(vj) will be updated according
to the DUR (lines 8–9). If ub(vj) ≤ lb, then vj will be added
into Qd (line 10). If NukCP calls the DRM during the local
search phase (i.e., mode = 2), then the vertices vi ∈ V with
ub(vi) ≤ lb will be added into Qd (lines 11–13).

In the iterative deletion phase, during each iteration (lines
14–18), a vertex v ∈ Qd will be deleted from G and its
neighborhood should be updated according to the DUR. Af-
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Algorithm 1: the DRM function
Input: graph G = (V,E), lower bound lb, parameter k,

reduction mode mode
Output: the graph after reduction G

1 Qd := ∅;
2 if mode == 1 then
3 sort v ∈ V in an ascending order based on degG;
4 for i := 1; i ≤ |V |; i := i+ 1 do
5 ub(vi) := |Nk

G[vi]|;
6 if ub(vi) ≤ lb then
7 V := V \ {vi};
8 foreach vj ∈ Nk

G[vi] && j < i do
9 ub(vj) := ub(vj)− 1;

10 if ub(vj) ≤ lb then Qd := Qd ∪ {vj} ;

11 else if mode == 2 then
12 foreach vi ∈ V do
13 if ub(vi) ≤ lb then Qd := Qd ∪ {vi} ;

14 while Qd is not empty do
15 pop a vertex v in Qd and V := V \ {v};
16 foreach u ∈ Nk

G[v] \ {v} do
17 ub(u) := ub(u)− 1;
18 if ub(u) ≤ lb then Qd := Qd ∪ {u} ;

19 return G;

ter updating the upper bound of vertex u, the algorithm adds
it into Qd if ub(u) ≤ lb (line 18). Finally, the graph after
reduction is returned (line 19).

Stratified Threshold Configuration Checking
Configuration checking (CC) was firstly proposed to deal
with the cycling problem in local search (Cai, Su, and Sat-
tar 2011) and has been successfully used in several NP-hard
problems. The CC is mainly based on the definition of con-
figuration of the vertex which refers to the states (i.e., in
solution or not) of its neighbors. For u ∈ N1,G(v), once u
changes its state, then we say that the configuration of v has
been changed. Only the vertices whose configuration have
changed are allowed to add back into the candidate solution.

Intuition of STCC
Recently, many variants of CC for clique relaxation prob-
lems have been designed, such as DCC for the maximum
k-plex problem (Chen et al. 2020) and BoundedCC for the
maximum quasi-clique problem (Chen et al. 2021). The pro-
posed DCC and BoundedCC strategies adopted the first level
neighborhood (i.e., N1,G) as the configuration of vertex. Dif-
ferent from the above problems, the relaxation constraint
of the MkCP considers the distance between the vertices,
which intuitively refers to the multi-level neighborhood of
the corresponding vertices. Thus, it is not applicable to di-
rectly use the previous CC strategies into solving the MkCP.

Based on the above considerations, we propose a stratified
version of DCC called the stratified threshold configuration
checking (STCC) strategy for the MkCP to distinguish the
effects caused by the states changing of different neighbor-

hood. The reason for choosing DCC as the basic strategy for
expansion is that the search space for clique relaxation prob-
lems is usually relatively concentrated, which will result in
that the high-degree vertices are very likely to change their
configurations. The introduction of threshold makes those
vertices that frequently change their states have more restric-
tions, thereby increasing their forbidding strength.

Intuitions underlying the STCC strategy are given be-
low. When adding a vertex into the candidate solution, it is
quite reasonable to allow the multi-level neighborhood of
the added vertex to be added by giving them different priori-
ties. On the other hand, the removal operation (i.e., removing
a vertex from the candidate solution) can hardly improve the
quality of solution. In this case, we keep the previous prior-
ities for the multi-level neighborhood of the removal vertex.

Data Structure of STCC
Different from DCC and BoundedCC which only preserve
the first level neighborhood, we need to maintain the first
k-level neighborhood of each vertex in the candidate solu-
tion S as the configuration information. Moreover, the first
k-level neighborhood of vertices for the MkCP will be dy-
namically changed with respect to S.

In order to facilitate the dynamic maintenance of the
neighborhood information, for each v ∈ S, we build a
spanning tree for it, denoted as T v = (V v

T , E
v
T ), where

V v
T = {u ∈ V | distG[S∪{u}](u, v) ≤ k}. distTv (u, v) is

used to denote the depth value of vertex u in the T v . During
the search process, we maintain |S| spanning trees. Three
corresponding updating rules of spanning tree are described
as follows.

Constructing Rule. For v ∈ S, a spanning tree T v =
(V v

T , E
v
T ) is constructed via using breadth-first search. Dur-

ing this process, three expansion ways are used. 1) For
u1 /∈ S and distG[S∪{u1}](u1, v) ≤ k, we do not expand
it and directly mark it as a leaf vertex. 2) For u2 ∈ S and
distG[S](u2, v) < k, u2 will be expanded. If u2 cannot ex-
pand any vertices, then we mark u2 as a leaf vertex. 3) For
u3 ∈ S and distG[S](u3, v) = k, u3 needs to be marked as
a leaf vertex.

Adding Rule. When vertex v is added into S, T v will
be generated according to the constructing rule. For ∀u ∈
(T v ∩ S), Tu needs to be updated in the following method.
For v and ∀w ∈ V u

T with distTu(u,w) > distTu(u, v),
these vertices should be re-extended by using the expansion
ways of the constructing rule.

Removing Rule. When vertex v is removed from S, we
delete its spanning tree T v and update Tu for ∀u ∈ (T v ∩
S). For ∀w ∈ V u

T with distTu(u,w) ≥ distTu(u, v), these
vertices should be re-extended by using the expansion ways
of the constructing rule.

The vertices inside S constitute the trunk or leaf vertices
of the spanning tree, and some vertices outside S constitute
the remaining leaf vertices. The complexity of constructing
or updating a spanning tree T v is O(|VNk

G[v]| + |ENk
G[v]|).

To make the updating rules more comprehensive, we show
an example in Figure 2 with regard to maintaining T v1 when
adding v3 and then removing v5.
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v1 v2

v3

v6

v4

v5 v7
v8

v9 v10

v11 v12

v1 v2

v3

v6

v4

v5 v7
v8

v9 v10

v11 v12

v1 v2

v3

v6

v4

v5 v7
v8

v9 v10

v11 v12

Add v3 Remove v5

S={v1, v2, v5, v6, v9} S={v1, v2, v3, v5, v6, v9} S={v1, v2, v3, v6, v9}

Figure 2: An example of updating spanning tree for the 3-
club problem where the black vertices denote the vertices
inside S, the grey vertices denote the vertices in T v1 but not
inside S and the solid edges denote the edges in T v1 .

Update Rule for STCC

For ∀v ∈ V , the proposed STCC strategy is implemented
with two arrays conf [v] and thred[v] to denote the config-
uration and threshold of vertices, respectively. Only when
conf [v] ≥ thred[v], v is allowed to be added into S. The
novel STCC strategy is specified by the following rules.

STCC-InitialRule. For ∀v ∈ V , conf [v] and thred[v]
are both initialized to k.

STCC-AddRule. When v is added into the candidate so-
lution, for ∀u ∈ V v

T , conf [u] is increased by k + 1 −
distTv (u, v) and thred[v] is increased by 1.

STCC-RemoveRule. When v is removed from the candi-
date solution, conf [v] is reset to 0.

In the above rules, we increase conf [u] by different values
according to their distTv to reflect the impact of changes in
the states of neighborhood at different levels.

The NukCP Algorithm
According to the above strategies, we propose a local search
algorithm for the MkCP named NukCP. Before introduc-
ing the NukCP, we present the scoring function used in our
work, which has been used in (Bourjolly, Laporte, and Pe-
sant 2000; Almeida and Carvalho 2014b) for the MkCP. We
denote our scoring function as score(v) for ∀v ∈ V .

score(v) = |{u ∈ S | distG[S∪{v}](u, v) ≤ k}|

Based on the above scoring function, our vertex selection
rules are given as below.

Selection Adding Rule. Select a vertex v ∈ V \ S with
the highest score(v) value, breaking ties by the oldest one1.

Selection Removing Rule. Select a vertex v ∈ S with the
lowest score(v) value, breaking ties by the oldest one.

Note that only when the score values of all vertices in S
are equal to |S|, then we say S is a feasible solution for the
MkCP. In addition, for k = 3, we use a tighter lower bound
lb = max{|N1,G[u] ∪N1,G[v]| | {u, v} ∈ E} proposed by
Almeida and Carvalho (2014b).

1The age of a vertex is the number of steps since its state was
last changed.

Algorithm 2: the NukCP algorithm
Input: graph G, the cutoff time, parameter k
Output: the best k-club S∗ found

1 S∗ := ∅;
2 if k ̸= 3 then lb := max{|N⌊k/2⌋

G [v]| | v ∈ V };
3 else lb := max{|N1,G[u] ∪N1,G[v]| | {u, v} ∈ E};
4 G := DRM(G, lb, k, 1);
5 while elapsed time < cutoff do
6 S := InitConstruct(G);
7 Slbest := ClubSearch(G,S);
8 if |Slbest| > |S∗| then
9 S∗ := Slbest;

10 G := DRM(G, |S∗|, k, 2);
11 if |VG| ≤ |S∗| then return S∗;

12 return S∗;

The Main Framework of NukCP
The pseudo code of NukCP is outlined in Algorithm 2. At
first, the algorithm initializes S∗ (line 1) and calculates the
lower bound lb according to k (lines 2-3). The algorithm
reduces the original graph by calling the DRM (line 4).

In each loop (lines 5–11), the algorithm first constructs an
initial candidate solution S by calling our InitConstruct
process (line 6). Specifically, InitConstruct first selects a
random vertex v ∈ V , and then sets S = Nk

G[v] as an initial
solution. InitConstruct iteratively removes vertices accor-
ing to the selection removing rule until S becomes a feasible
solution, and S will be returned. Afterwards, the algorithm
calls the ClubSearch process to improve the current solu-
tion (line 7). If the local best solution Slbest in this search
trajectory is better than S∗, then S∗ is updated by Slbest and
the algorithm tries to reduce the graph G again (lines 8–10).
If the size of remaining vertices in G is smaller than |S∗|
which means the optimal solution is found, then we can re-
turn S∗ in advance (line 11). Otherwise, we return S∗ when
the time limit is reached (line 12).

The ClubSearch Function
After getting the initial solution, the algorithm calls the
ClubSearch function to improve this solution. We formal-
ize the ClubSearch function in Algorithm 3 as below. At
the beginning, step and Slbest are set to 0 and S, respectively
(line 1). The spanning tree of each vertex in S is initialized
according to the constructing rule (line 2). The algorithm
sets the conf and thred of each vertex to k (line 3). After
then, the algorithm searches for a local optimal solution de-
noted by Slbest (lines 4–18). Finally, the algorithm returns
Slbest when step reaches parameter stepMax (line 19).

During each step, if S is a feasible solution, Slbest is up-
dated by S and step is reset to 0 (line 6). The algorithm
selects a vertex by using the selection adding rule and the
STCC strategy, and then adds it into S (line 7). Otherwise, if
S is not a feasible solution, the algorithm uses the above
same adding strategy to add at most two vertices into S
(lines 9-11). This is because for the MkCP, adding two ver-
tices may make the solution become feasible while adding
only one vertex fails to obtain a feasible solution in some
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Algorithm 3: ClubSearch(G,S)
Input: Graph G, a feasible solution S
Output: the best local solution Slbest found

1 step := 0, Slbest := S;
2 build spanning tree Tw for ∀w ∈ S according to

Constructing Rule;
3 conf [v] := thred[v] := k for ∀v ∈ V ;
4 while step < stepMax do
5 if S is a k-club then
6 Slbest := S, step := 0;
7 select v1 with conf [v1] ≥ thred[v1] according to

Selection Adding Rule;
8 S := S ∪ {v1} and update the spanning trees,

conf and thred;

9 while S is infeasible and |S| ≤ |Slbest|+ 2 do
10 select v2 with conf [v2] ≥ thred[v2] according to

Selection Adding Rule;
11 S := S ∪ {v2} and update the spanning trees,

conf and thred;

12 if S is infeasible then
13 select u1 according to Selection Removing Rule;
14 S := S \ {u1} and update the spanning trees and

conf ;

15 if S is infeasible and with probability α then
16 select u2 according to Selection Removing Rule;
17 S := S \ {u2} and update the spanning trees and

conf ;

18 step := step+ 1;

19 return Slbest;

cases, which has also been discussed in the previous liter-
ature (Shahinpour and Butenko 2013a). After that, the al-
gorithm tries to remove a vertex according to the selection
removing rule (lines 12–14). If S is still infeasible, another
removed vertex is selected with the probability α (lines 15–
17). During the whole step, after a selected vertex has been
operated, the corresponding spanning tree, conf and thred
should be updated accordingly.

Experimental Evaluation
We carry out experiments to evaluate NukCP on a broad
range of random and DIMACS benchmarks as well as
massive graphs for k = 2,3,4. We compare NukCP with
three previous algorithms, including VNS (2013a), mS/B
(2014b)2 and ITDBC (2018). Note that mS/B is only de-
signed for k = 2 and 3.

All algorithms were implemented in C++ and compiled
by g++ with ‘-O3’ option. CPLEX 12.633 and Gurobi 4 are
used in the mS/B and ITDBC, respectively. We set the same
parameters as what described in the corresponding literature
and optimize these parameters for the new added instances.
The parameters stepMax and α in NukCP are set to 100

2mS IP and mB IP (2014b) are specialized for 2-club and 3-
club, respectively. We use mS/B to denote these two algorithms.

3https://www.ibm.com/products/software
4http://www.gurobi.com

Instance k NukCP VNS ITDBC mS/B

Family max max max max

n100d0.03 3 16.4 16.4 16.4 16.3
n100d0.04 3 24.2 24.2 24.2 23.4
n100d0.02 4 20.9 20.9 20.8
n100d0.03 4 35.3 35.2 35.2
n100d0.04 4 58.7 58.5 58.6
n200d0.02 4 55.2 54.9 54.9
n300d0.015 4 62.7 61.4 62.7

Table 1: Experiment results on the random graphs.

Instance k NukCP VNS ITDBC mS/B

max max max max
(avg) (avg) (avg) (avg)

uk 2 5* 5 5 4
cs4 3 12 12 12 10
email 3 212 215 211 210
football 3 58 56 58 55
polblogs 3 776 768 775 776
email 4 651 648 651
hep-th 4 344 338 344

Table 2: Experiment results on the DIMACS benchmark.

and 0.6 according to our preliminary experiment. All exper-
iments are run on Intel Xeon E5-2640 v4 @ 2.40GHz CPU
with 128GB RAM under CentOS 7.5.

We use the same generator method as (Moradi and Bal-
asundaram 2018) to randomly generate 90 instances for k
= 2,3,4. These random graphs are divided into 9 families,
each of which has 10 instances. As for the DIMACS bench-
mark5, we collect all DIMACS instances used in the previ-
ous literature for the MkCP. Thus, we select a total of 22
DIMACS instances. We consider massive real-world graphs
from the Network Data Repository (Rossi and Ahmed 2015)
and among them we choose 65 graphs with more than 105
vertices and more than 106 edges in this work, which has
been widely used into testing different graph problems (Cai
et al. 2020; Wang et al. 2020a,b)

For each instance, VNS and NukCP are executed 10 times
with random seeds from 1 to 10 while mS/B and ITDBC
only execute one time since the random seeds do not affect
them. The time limit of all algorithms is set to 1000 seconds
for the random and DIMACS benchmarks, while the time
limit is 3600 seconds for the massive graphs. For each in-
stance, max denotes the best size found and avg denotes the
average size obtained over 10 runs. When max = avg, we
do not report avg. For random graphs, we report for each
family the average value of max, denoted as max. If an
algorithm fails to provide a solution for an instance, then
the corresponding column is marked as “N/A”. If an algo-
rithm proves the optimal solution, the corresponding column
is marked with a “*”. The bold values indicate the best so-
lution value among the different algorithms. Due to space

5https://www.cc.gatech.edu/dimacs10
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Instance k=2 k=3

NukCP VNS ITDBC mS IP NukCP VNS ITDBC mB IP

max max max max max max max max
(avg) (avg) (avg) (avg) (avg) (avg) (avg) (avg)

bn-human-BNU 1 0*5 s*n 1-bg 8255 8081 8081 8227 15101 N/A 8081 15101
bn-human-BNU 1 0*5 s*n 2-bg 7494 7432 7432 7441 12117(12034) N/A 7432 12056
ca-coauthors-dblp 3300* 3300 3300 3300 7098 4369 3300 6652
ca-dblp-2012 344* 344 344 344 2136 608 2136 2136
ca-hollywood-2009 11468 11468 N/A 11468 17777 N/A N/A 17777
channel-500x100x100-b050 19 19 19 19 44 30 44 44
dbpedia-link 293749 N/A N/A 293749 369531 N/A N/A 369531
delaunay n22 24 24 24 24 52 38 52 52
delaunay n23 29 29 29 29 62 48 62 62
delaunay n24 27 27 27 27 58 46 58 58
friendster 3005 N/A N/A 3005 5932 N/A N/A 5932
hugebubbles-00020 5 4 5 4 7 6 7 7
hugetrace-00010 5 4 5 4 7 6 7 7
hugetrace-00020 5 4 5 4 7 6 7 7
inf-europe osm 14 14 14 14 23(20.5) 15 14 18
inf-germany osm 14 14 14 14 23 15 14 18
inf-roadNet-CA 13* 13 13 13 17 16 17 17
inf-roadNet-PA 10* 10 10 10 15* 14 15 15
inf-road-usa 10* 10 10 10 16 12 10 16
rec-dating 33412 N/A N/A 33412 54051 N/A N/A 54051
rec-epinions 158933 N/A N/A 158933 191728 N/A N/A 191728
rec-libimseti-dir 33390 N/A N/A 33390 56801 N/A N/A 56801
rgg n 2 23 s0 41 41 41 41 65 55 65 65
rgg n 2 24 s0 42 41 41 42 75 58 75 75
rt-retweet-crawl 5071* 5071 5071 5071 6499 5732 5071 6338
sc-ldoor 77 77 77 77 133 112 133 130
sc-msdoor 77 77 77 77 126 126 126 126
sc-pwtk 180* 180 180 180 214 214 214 214
sc-rel9 168 168 168 168 266 N/A N/A 266
sc-shipsec1 71 71 71 71 162 160 162 162
sc-shipsec5 90 90 90 90 187 187 187 187
soc-buzznet 64290* 64290 64290 64290 72280(72279) N/A N/A 72276
soc-delicious 3217* 3217 3217 3217 6369(6317.1) 4244 3217 5465
soc-digg 17644* 17644 17644 17644 27771(27680) N/A N/A 27653
soc-dogster 46504 N/A N/A 46504 70507 N/A N/A 70507
socfb-A-anon 4916* 4916 4916 4916 8903 N/A N/A 8903
socfb-B-anon 4357 4357 4357 4357 7402(7153) N/A N/A 6946
socfb-uci-uni 4961* N/A N/A 4961 11088(7378.2) N/A N/A 6928
soc-flickr 4370 4370 4370 4370 9976(9883) N/A N/A 9923

Table 3: Experiment results on the massive graphs I.

limitations, the detailed results as well as the source code of
our NukCP can be found in the supplementary material6.

Tables 1 and 2 summarize the results of the random and
DIMACS benchmarks, respectively. Most instances are so
easy that all algorithms find the same quality values. We do
not report the detailed results of these instances in Tables
1 and 2. For three instance families in the random graphs,
NukCP finds better solutions. As for the DIMACS bench-
mark, only for email with k = 3, NukCP fails to find the
same solution as VNS. Moreover, for 75 out of 270 random
graphs and 30 out of 66 DIMACS instances, NukCP can
prove the optimal solution.

6https://github.com/yiyuanwang1988/NukCP.git

The results on the massive graphs are presented in Ta-
bles 3 and 4, where we only present the results for k =
2,3, and the results for k = 4 can be found in the supple-
mentary material. NukCP performs better on almost all in-
stances except two instances where mS/B finds better solu-
tions. Among these instances, our NukCP can prove the op-
timal solution for 44 out of 195 instances, and most of them
are concentrated in the case of k = 2. Also, the results show
that the performance of our NukCP algorithm becomes a bit
worse as the value of k increases. This is because when k
has a large value, the size of solution is also large and thus
NukCP costs a lot of time to calculate the upper bound as
well as maintain the solution.

We compare the average run time of these four algorithms
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Instance k=2 k=3

NukCP VNS ITDBC mS IP NukCP VNS ITDBC mB IP

max max max max max max max max
(avg) (avg) (avg) (avg) (avg) (avg) (avg) (avg)

soc-flickr-und 27237 N/A N/A 27237 40654 N/A N/A 40654
soc-flixster 1475 1475 1475 1475 3891(3800.1) N/A N/A 3709
soc-FourSquare 106229 N/A N/A 106229 106513 N/A N/A 106513
soc-lastfm 5151* 5151 5151 5151 8227(8196.5) N/A N/A 8105
soc-livejournal 2652 2652 2652 2652 3517 N/A N/A 3683
soc-livejournal-user-groups 1053721 N/A N/A 1053721 1300141 N/A N/A 1300141
soc-LiveMocha 2981 2981 2981 2981 8182(8133) N/A N/A 8242
soc-ljournal-2008 19433 N/A N/A 19433 25624 N/A N/A 25624
soc-orkut 27467 N/A N/A 27467 50600 N/A N/A 50600
soc-orkut-dir 33314 N/A N/A 33314 59375 N/A N/A 59375
soc-pokec 14855* 14855 14855 14855 16415(16414.7) N/A N/A 16289
soc-sinaweibo 278490 N/A N/A 278490 382513 N/A N/A 382513
soc-twitter-higgs 51387 N/A N/A 51387 78697 N/A N/A 78697
soc-youtube 25410* 25410 25410 25410 33636(33538) N/A N/A 33413
soc-youtube-snap 28755* 28755 28755 28755 41215(40864) N/A N/A 40605
tech-as-skitter 35456 35456 N/A 35456 57395(57369) N/A N/A 57349
tech-ip 1833162 N/A N/A 1833162 1855649 N/A N/A 1855649
twitter mpi 532053 N/A N/A 532053 765315 N/A N/A 765315
web-arabic-2005 1103* 1103 1103 1103 1137* 1137 1137 1137
web-baidu-baike 97849 N/A N/A 97849 166176 N/A N/A 166176
web-it-2004 470* 470 470 470 1086* 482 1086 1086
web-uk-2005 851* 851 851 851 1350* 1350 1350 1350
web-wikipedia link 825148 N/A N/A 825148 1064494 N/A N/A 1064494
web-wikipedia2009 2625* 2625 2625 2625 3183(2858.1) 2630 2625 2685
web-wikipedia-growth 226074* N/A N/A 226074 302564(2747.9) N/A N/A 302564
wikipedia link en 68873 N/A N/A 68873 80686 N/A N/A 80686

Table 4: Experiment results on the massive graphs II.

benchmark k NukCP VNS ITDBC mS/B

random graphs
2 0.01 0.01 0.01 0.01
3 0.01 0.06 0.02 0.01
4 0.08 2.4 1.3

DIMACS
2 0.01 49.98 6.28 0.01
3 9.09 46.77 40.52 29.43
4 6.77 18.72 9.59

massive graphs
2 33.82 1288.89 1230.22 71.33
3 912.61 3054.07 2375.97 1229.91
4 2071.4 3465.55 2436.12

Table 5: Average run time for all benchmarks

on all benchmarks (Table 5), where the run time of each run
of an algorithm is the time to reach the final solution. Fig-
ure 3 displays the average run time of NukCP and the cor-
responding competitor when both algorithms find the same
maximal and average solution values, which further indi-
cates the superiority of NukCP, with a few exceptions.

To further verify the effectiveness of the proposed NukCP,
we also evaluate the performance of NukCP on two popu-
lar benchamarks, including Stanford Large Network Dataset

Collection7 and DIMACS10 8. Due to space limitations, we
present the detailed results of NukCP and all competitors in
the supplementary material.

Benchmark TRIM DRM

r% time(s) r% time(s)

random graphs 44.96% <0.01 43.97% <0.01
DIMACS 33.75% 0.03 33.68% 0.01
massive graphs 57.72% 844.92 58.77% 376.43

Table 6: Reduction efficiency of TRIM and DRM.

The Effectiveness of the Proposed Strategies
Table 4 reports the reduction ratio (r%) and the time con-
sumption (time) of TRIM (2018) and DRM for the initial
reduction on all benchmarks with the same bound functions.
The difference of the reduction ration between DRM and
TRIM is obvious on the massive graphs. This is because
TRIM costs too much time on calculating upper bound val-
ues and fails to delete any vertices.

7http://snap.stanford.edu/data
8https://www.cc.gatech.edu/dimacs10/
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Figure 3: Average run time of NukCP and competitors.

Benchmark vs. NukCP1 vs. NukCP2

#better #worse #better #worse

random graphs 1 1 1 1
DIMACS 1 0 1 0
massive graphs 15 4 18 3

Table 7: Compare NukCP with two modified versions on all
benchmarks. #better and #worse denote the number of in-
stances where NukCP finds better and worse results, respec-
tively.

To verify the effectiveness of STCC, we design two al-
ternative algorithms where NukCP1 utilizes DCC (2020) in-
stead of STCC and NukCP2 utilizes BoundedCC (2021) in-
stead of STCC. The results in Table 5 show that our pro-
posed STCC plays a key role in the NukCP algorithm and
performs well in the massive graphs.

Conclusion
In this paper, we propose an efficient reduction strategy and
a variant of configuration checking strategy for the MkCP.
Based on the above strategies, we develop a local search al-
gorithm called NukCP. Experiments show NukCP signifi-
cantly outperforms the state-of-the-art heuristic algorithms.
As we know, it is the first work for solving the MkCP on
the massive graphs, and thus the proposed NukCP can help
establish such a standard for the MkCP. As for future work,
STCC can be considered as a general idea to solve many
other optimization problems with connectivity constraints.
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