The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

Efficient Discrete Optimal Transport Algorithm by Accelerated Gradient Descent

Dongsheng An' , Na Lei’, Xiaoyin Xu’, Xianfeng Gu'

!'Stony Brook University, NY, USA
2 Dalian University of Technology, Liaoning, China
3Harvard Medical School, MA, USA
{doan, gu}@cs.stonybrook.edu, nalei@dlut.edu.cn, xxu@bwh.harvard.edu

Abstract

Optimal transport (OT) plays an essential role in various areas
like machine learning and deep learning. However, comput-
ing discrete OT for large scale problems with adequate ac-
curacy and efficiency is highly challenging. Recently, meth-
ods based on the Sinkhorn algorithm add an entropy regu-
larizer to the prime problem and obtain a trade off between
efficiency and accuracy. In this paper, we propose a novel al-
gorithm based on Nesterov’s smoothing technique to further
improve the efficiency and accuracy in computing OT. Basi-
cally, the non-smooth c-transform of the Kantorovich poten-
tial is approximated by the smooth Log-Sum-Exp function,
which smooths the original non-smooth Kantorovich dual
functional. The smooth Kantorovich functional can be effi-
ciently optimized by a fast proximal gradient method, the fast
iterative shrinkage thresholding algorithm (FISTA). Theoret-
ically, the computational complexity of the proposed method
is lower than current estimation of the Sinkhorn algorithm
in terms of the precision. Experimentally, compared with the
Sinkhorn algorithm, our results demonstrate that the proposed
method achieves faster convergence and better accuracy with
the same parameter.

Introduction

Optimal transport (OT) is a powerful tool to compute
the Wasserstein distance between probability measures and
widely used to model various natural and social phenom-
ena, including economics (Galichon 2016), optics (Glimm
and Oliker 2003), biology (Schiebinger et al. 2019),
physics (Jordan, Kinderlehrer, and Otto 1998) and in other
scientific fields. Recently, OT has been successfully applied
in machine learning and statistics, such as parameter esti-
mation in Bayesian non-parametric models (Nguyen 2013),
computer vision (Arjovsky, Chintala, and Bottou 2017;
Courty et al. 2017; Tolstikhin et al. 2018; An et al. 2020a;
Lei et al. 2020; An et al. 2020b), and natural language pro-
cessing (Kusner et al. 2015; Yurochkin et al. 2019). In these
areas, the complex probability measures are approximated
by summations of Dirac measures supported on the sam-
ples. To obtain the Wasserstein distance between the empir-
ical distributions, we then solve the discrete OT problems.
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Discrete Optimal Transport In discrete OT problem,
where both the source and target measures are discrete,
the Kantorovich functional becomes a convex function de-
fined on a convex domain. Due to the lack of smooth-
ness, conventional gradient descend method can not be ap-
plied directly. Instead, it can be optimized with the sub-
differential method (Nesterov 2005), in which the gradi-
ent is replaced by the sub-differential. To achieve an ap-
proximation error less than e, the sub-differential method
requires O(1/£?) iterations. Recently, several approxima-
tion methods have been proposed to improve the computa-
tional efficiency. In these methods (Cuturi 2013; Benamou
et al. 2015; Altschuler, Niles-Weed, and Rigollet 2017),
a strongly convex entropy function is added to the prime
Kantorovich problem and thus the regularized problem can
be efficiently solved by the Sinkhorn algorithm. More de-
tailed analysis shows that the computational complexity of
the Sinkhorn algorithm is O(n?/e?) (Dvurechensky, Gas-
nikov, and Kroshnin 2018) by setting A = ¢/4logn. Also,
a series of primal-dual algorithms are proposed, including
the APDAGD (adaptive primal-dual accelerated gradient de-
scent) algorithm (Dvurechensky, Gasnikov, and Kroshnin
2018) with computational complexity O(n2?® /), the AP-
DAMD (adaptive primal-dual accelerated mirror descent)
algorithm (Lin, Ho, and Jordan 2019) with O(n?\/r/¢)
where r is a complex constant of the Bregman divergence,
and the APDRCD (accelerated primal-dual randomized co-
ordinate descent) algorithm (Guo, Ho, and Jordan 2020)
with O(n?/¢). But all of the three methods need to build a
matrix with space complexity O(n?), making them difficult
to compute when n is large.

Our Method In this work, instead of starting from the
prime Kantorovich problem like the Sinkhorn based meth-
ods, we directly deal with the dual Kantorovich problem.
The key idea is to approximate the original non-smooth
c-transform of the Kantorovich potential by Nesterov’s
smoothing technique. Specifically, we approximate the max
function by the Log-Sum-Exp function, which has also been
used in (Schmitzer 2019; Peyré and Cuturi 2018), such that
the original non-smooth Kantorovich functional is converted
to an unconstrained (n — 1)-dimensional smooth convex en-
ergy. By using the Fast Proximal Gradient Method named
FISTA (Beck and Teboulle 2009), we can quickly optimize



the smoothed energy to get a precise estimate of the OT cost.
In theory, the method can achieve the approximate error
with the space complexity O(n?) and computational com-
plexity O(n*®+/log n/¢). Additionally, we show that the in-
duced approximate OT plan by our algorithm is equivalent
to that of the Sinkhorn algorithm. The contributions of our
work are as follows.

* We convert the dual Kantorovich problem to an uncon-
strained smooth convex optimization problem by approx-
imating the non-smooth c-transform of the Kantorovich
potential with Nesterov’s smoothing idea.

The smoothed Kantorovich functional can be efficiently
solved by the FISTA algorithm with computational com-
plexity O(n?%/y/¢). At the same time, the computa-
tional complexity of the Kantorovich functional itself is
given by O(n?5 /g).

The experiments demonstrate that compared with the
Sinkhorn algorithm, the proposed method achieves faster
convergence and better accuracy with the same parame-
ter \.

Notation In this work, R>( represents the non negative
real numbers, O and 1 represents the all-zeros and all-
ones vectors of appropriate dimension. The set of integers
{1,2,...,n} is denoted as [n]. And | - |; and || - || are the
(1 and {5 norms, |v)y = Y, |v;| and |[v]] = />, v, re-
spectively. R(C') is the range of the cost matrix C' = (¢;;),
namely Ciax — Cin, Where Clay and Chyiy, represent the
maximum and minimum of the elements of C' with ¢;; > 0.
We use v, to denote the minimal element of v and @ to
denote element wise division.

Related Work

Optimal transport plays an important role in various kinds
of fields, and there is a huge literature in this area. Here
we mainly focus on the most related works. For detailed
overview, we refer readers to (Peyré and Cuturi 2018).

When both the source and target measures are discrete, the
OT problem can be treated as a standard linear programming
(LP) task and solved by interior-point method with compu-
tational complexity O(n®/2) (Lee and Sidford 2014). But
this method requires a practical solver of the Laplacian lin-
ear system, which is not currently available for large dataset.
Another interior-point based method to solve the OT prob-
lem is proposed by Pele and Werman (Pele and Werman
2009) with complexity O(n?). Generally speaking, it is un-
realistic to solve the large scale OT problem with the tradi-
tional LP solvers.

The prevalent way to compute the OT cost between two
discrete measures involves adding a strongly convex en-
tropy function to the prime Kantorovich problem (Cuturi
2013; Benamou et al. 2015). Most of the current solutions
for the discrete OT problem follow this strategy. Genevay
et al. (Genevay et al. 2016) extend the algorithm in its dual
form and solve it by stochastic average gradient method. The
Greenkhorn algorithm (Altschuler, Niles-Weed, and Rigol-
let 2017; Abid and Gower 2018; Chakrabarty and Khanna
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2021) is a greedy version of the Sinkhorn algorithm. Specif-
ically, Altschuler et al. (Altschuler, Niles-Weed, and Rigol-
let 2017) show that the complexity of their algorithm is

O(’Z—j ). Later, Dvurechensky et al. (Dvurechensky, Gas-
nikov, and Kroshnin 2018) improve the complexity bound of

the Sinkhorn algorithm to O(Z—j), and propose an APDAGD

method with complexity O(min{%ﬂ, Z—; ). Jambulapati et
al. (Jambulapati, Sidford, and Tian 2019) introduce a par-
allelelizable algorithm to compute the OT problem with

complexity O(%) Through screening the negligible

components by directly setting them at that value before en-
tering the Sinkhorn problem, the screenkhorn (Alaya et al.
2019) method solves a smaller Sinkhorn problem and im-
proves the computation efficiency. Based on a primal-dual
formulation and a tight upper bound for the dual solution,
Lin et al. (Lin, Ho, and Jordan 2019) improve the complexity

bound of the Greenkhorn algorithm to O(’g—;), and propose
the APDAMD algorithm, whose complexity bound is proven

to be O( "22/;), where r € (0, n] refers to some constants in
the Bregman divergence. Recently, a practically more effi-
cient method called APDRCD (Guo, Ho, and Jordan 2020)
is proposed with complexity O(n??® /¢). But all these three
primal-dual based methods need to build a matrix with space
complexity O(n?), which makes them impractical when n is
large. By utilizing Newton-type information, Blanchet et al.
(Blanchet et al. 2018) and Quanrud (Quanrud 2018) propose

algorithms with complexity O(";) However, the Newton-
based methods only give the theoretical upper bound and
provide no practical algorithms.

Besides the entropy regularizer based methods, Blondel et
al. (Blondel, Seguy, and Rolet 2018) use the squared 2-norm
and group LASSO (least absolute shrinkage and selection
operator) to regularize the prime Kantorovich problem and
then use the quasi-Newton method to accelerate the algo-
rithm. Xie et al. (Xie et al. 2019b) develop an Inexact Prox-
imal point method for exact optimal transport. By utilizing
the structure of the cost function, Gerber and Maggioni (Ger-
ber and Maggioni 2017) optimize the transport plan from
coarse to fine. Meng et al. (Meng et al. 2019) propose the
projection pursuit Monge map, which accelerates the com-
putation of the original sliced OT problem. Xie et al. (Xie
et al. 2019a) also use the generative learning based method
to model the optimal transport. But the theoretical analysis
of these algorithms is still nascent.

In this work, we introduce a method based on Nes-
terov’s smoothing technique, which is applied to the
dual Kantorovich problem with computational complexity
O(n?5+/Tog n/e) (or equivalently O(n?5 /¢)) and approx-
imation error bound 2\ log n.

Optimal Transport Theory

In this section, we introduce some basic concepts and the-
orems in the classical optimal transport theory, focusing on
Kantorovich’s approach and its generalization to the discrete
settings via c-transform. The details can be found in Villani’s
book (Villani 2008).



Optimal Transport Problem Suppose X C R, Y C R?
are two subsets of the Euclidean space R?, 11, v are two prob-

ability measures defined on X and Y with equal total mea-
sure, (X)) = v(Y).

Kantorovich’s Approach Depending on the cost func-
tions and the measures, the OT map between (X, u) and
(Y,v) may not exist. Thus, Kantorovich relaxed the trans-
port maps to transport plans, and defined joint probability
measure ™ : X X Y — R>g, such that the marginal proba-
bility of 7 equals to x and v, respectively. Formally, let the
projection maps be p,(z,y) = z, py(z,y) = y, then we
define

T(p,v) :=A{P: X XY = Rxo: (p)# P = p, (py) e P = V}l’
(1)
Problem 1 (Kantorovich Problem). Given the transport cost
function c : X x'Y — R, find the joint probability measure
P : X xY — R that minimizes the total transport cost
min / c(z,y)dP(z,y)
XXY

Me(p,v) = pluin

@)
Problem 2 (Dual Kantorovich Problem). Given two proba-
bility measures p and v supported on X and 'Y, respectively,
and the transport cost function ¢ : X X' Y — R, the Kan-
torovich problem is equivalent to maximizing the following
Kantorovich functional:

Mc(u,v)zmax{— /X by + /Y ¢du} 3

where ¢ € LY(X,u) and ¢ € L'(Y,v) are called Kan-
torovich potentials and —¢(x)+¢(y) < c(x,y). The above
problem can be reformulated as the following minimization
form with the same constraints:

Mcw,v)min{ /X by — /Y wdu}

Definition 3 (c-transform). Let ¢ € L'(X,p) and ¢ €
LY(Y,v), we define

¢(x) = °(x) = sup (y) — c(=,y).

yey

“

With c-transform, Eqn. (4) is equivalent to solving the fol-
lowing optimization problem:

M) = = min{ [ o @aute) - [ varm} o

where 1 € L'(Y,v). When pp = > p1;6(z — z;) and
v=>3"_1v0(y — ;) ¥ = (Y1, ¢2,...,¢n)", Eqn. (5)

gives the unconstrained convex optimization problem:

Me(p,v) = —min B($) = —min{} - pt)(ws) = 3 _vivoj}
i=1 j=1
(6)
where the c-transform of 1) is given by:

P(xi) = Hl;lx{ﬂ’j —cij} @)

where ¢;; = c(z;,y;). Suppose * is the solution to
Eqn. (6), then it has the following properties:
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1. If the cost function is é(z,y) = c(x,y) — k, where k
is a constant, the corresponding optimal solution is 1[)*
then ¢)* = v*. At the same time, we have M, (u,v) =
Me(p,v) + k.

2. ¥* + k1 is also an optimal solution for Eqn. (6).

In order to make the solution unique, we add a constraint
v € H using the indicator function Iy, where H
{¥1>°)_1¥; = 0}, and modify the Kantorovich func-

tional E(v)) in Eqn. (6) as:

0 veH
o Yeg&H

Then solving Eqn. (6) is equivalent to finding the solution
to:

E() ®)

E() + In(), In() = {

Me(p,v) = —min E(v)

= —min
K

which is essentially an (n — 1)-dimensional unconstrained
convex problem. According to the definition of c-transform
in Eqn. (7), ¢ is non-smooth with respect to .

m

>

=1

n )
wih(z;) — Z v + IH(lp)}
j=1

Nesterov’s Smoothing

Following Nesterov’s original strategy (Nesterov 2005),
which has also been applied in the OT field (Peyré and
Cuturi 2018; Schmitzer 2019), we smooth the non-smooth
discrete Kantorovich functional E(i)). We approximate
1¢(x) with the Log-Sum-Exp function to get the smooth
Kantorovich functional F(¢)). Then through the FISTA
algorithm (Beck and Teboulle 2009), we can easily in-
duce that the computation complexity of our algorithm is
O(n?®\/logn/e), with E(y*t) — E(¢*) < e. By abuse
of notation, in the following we call both E (1)) and E (1))
the Kantorovich functional and both E\(¢) and E) (1)) the
smooth Kantorovich functional.

Definition 4 ((«, §)-smoothable). A convex function f is
called («, 3)-smoothable if, for any X > 0, 3 a convex func-
tion fy such that

Iz) < fz) < falz) + BA

h) < @)+ (V@) y—a) + (- o) Haly — )
Here Hy = V2 f\(x) and fy is called a 5-smooth approxi-
mation of [ with parameters (a, [3).

The parameter A\ defines a trade-off between the approxi-
mation accuracy and the smoothness, where the smaller the
A, the better approximation and the less smoothness.

Lemma 5 (Nesterov’s Smoothing). Given f : R" — R,
f(z) =max{z; : j =1,...,n}, forany A > 0, we have its
X -smooth approximation with parameters (1,logn)

Fr(@) = Alog(D_ €"/*) — Alogn, (10)
j=1



Proof. We have Vz € R",

(@) < Mog(nmax ™) — Aog(n) = f(x)
f(z) = Alogmaxe%/ < Alogze%” = fa(z) + Mogn
Jj=1
Furthermore, it is easy to prove that fy(z) is 3-smooth.
Therefore, f(x) is an approximation of f(x) with parame-
ters (1,logn). O

Recalling the definition of c-transform of the Kantorovich
potential in Eqn. (7), we obtain the Nesterov’s smoothing of

1 by applying Eqn. (10)
> — Alogn.

n
j=1
We use 95 to replace 1) in Eqn. (9) to approximate the Kan-
torovich functional. Then the Nesterov’s smoothing of the
Kantorovich functional becomes

Ex(¥) =AY pilog <Z ewicij)”> =Y v — Alogn
i=1 j=1 j=1

12)

11

and its gradient is given by
9 E)\ (wj cij)/A
Z i

e(wk cik)/A
Furthermore, we can d1rect1y compute the Hessian matrix of
E\(¥). Let K;j = e~/ and v; = e¥i/*, and set E} :=
Aog 77, Kijvj, Vi € [m]. Direct computation gives the
following gradient and Hessian matrix:
VE\ = diagw)K" (u @ Kv) —v

Zuz 2E)u
1 1 %%T)

1

V= <1Tv e

where V; (Ki1v1, Kiova, . .., Kinv,)T, and A,
diag(K;1v1, Kyova, . .., Kinvy). By the Hessian matrix, we
can show that Ey is a smooth approximation of E.

Lemma 6. E) (1) is a +-smooth approximation of E(1))
with parameters (1,log nj\

Proof. In Eqn. (14), V2ES has K = {k1 : k € R} as its
null space. In the orthogonal complementary space of K,
V2 E} is diagonal dominant, thus strictly positive definite.

Wey!’s inequality (Horn and Johnson 1991) states that the
eigen value of A = B + C' is no greater than the maximal
eigenvalue of B minus the minimal eigenvalue of C, where
B is an exact matrix and C'is a perturbation matrix. Hence
the maximal eigenvalue of V2E}, denoted as o, has an up-
per bound,

—vj, Vji€[n] (13)

2
Vi = (14)

0<o0; < — L
=S 31Ty,
Thus the maximal eigenvalue of V2 E) (1) is no greater than
S pio; < +. Itis easy to find that E(¢) < E(y) <
E\(¥)+ Alogn. Thus, Ey(v) is a +-smooth approximation

X
of E(1) with parameters (1,logn). O

1
max{K”vj} <= Y
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Lemma 7. Suppose Ey (1)) is the +-smooth approximation
of E(v) with parameters (1,log nj\ WX is the optimizer of
E\(v), then the approximate OT plan is unique and given
by

e((¥X)j—cij)/A
S, e((Wk—cin) /X T

where K; is the ith row of K and v* = e¥>/?,

.
i Kijvj
Kﬂ)*

(P)ij = i (15)

Proof. By the gradient formula Eqn. (13) and the optimizer
13y, we have

OEA(¢7)
o,

On the other hand, by the definition of Py, we have

S

=3 (P)ij—v;=0 Vj=1,-,n

i=1

;:)Zj::u’l7 Vi:17"'7m7

€
O

Combing the above two equations, we obtain that Py
m(w, v) and it is the approximate OT plan.

Similar to the discrete Kantorovich functional in Eqn. (6),
the optimizer of the smooth Kantorovich functional in
Eqn. (12) is also not unique: given an optimizer v, then
X + k1, k € R is also an optimizer. We can eliminate
the ambiguity by adding the indicator function as Eqn. (8),

Ex(¥) = Ex(¥) + Iu (),
Ex(¥) = )\iﬂi log (Zn: e(chiJ')/A)
- ZVJ‘%' -

This energy can be optimized effectively through the follow-
ing FISTA iterations (Beck and Teboulle 2009).

(16)
Alogn + Iu ()

Zt+1 = HWtIH (wt - ntVEA(wt))
P = ptt1 0; —1 (2 — 21 (7
Or1

with initial conditions ¢* = 1° = 0,60y = 1,7, = A

and 6p41 = 3 (1 +4/1 +40t2). Here IL,,;,(2) = 2z —

% Z;;l z; is the projection of z to H (the proximal function
of Iy (x)) (Parikh and Boyd 2014). Similar to the Sinkhorn’s
algorithm, this algorithm can be parallelized, since all the
operations are row based.

Theorem 8. Given the cost matrix C = (c;;), the source
measure y € R and target measure v € R with
Yoty i = Y5 vy = 1, 4" is the optimizer of the dis-
crete dual Kantorovich functional E (1)), and % is the op-

timizer of the smooth Kantorovich functional Ex(1)). Then
the approximation error is

|E(4*) — Ex(¥})] < 2\ logn



Proof. Assume ¢* and 1) are the minimizers of £(v) and
E)(v) respectively. Then by the inequality in Eqn. (10)

Ex(v*) <E@®@*) < E@)) <EY))+Alogn
Ex(¥y) < E\(y*) <E®@*) <E\®*)+Alogn

This shows |E\(¢¥*) — Ex(¥})] < Alogn. Removing the
indicator functions, we can get

|E@W") = Ex($3)]
=|E(") — Ex(¥3)|
SIE@T) = Ex(@)] + [Ex(¥7) — Ex(¥3)]
<2Xlogn O

This also shows that E (1)) converges quickly to E(y*)
as the decrease of A. The convergence analysis of FISTA is
given as follows:

Theorem 9 (Thm 4.4 of (Beck and Teboulle 2009)). Assume
(1) g(z) is convex and differentiable with dom(g) = R™, Vg
is Lipschitz continuous with Lipschitz constant L > 0; and
(2) h(x) is convex and its proximal function can be evalu-
ated. Then from the minimization of f(x) = g(x) + h(zx) by
FISTA with fixed step size y = 1., we can get

2L

m” (18)

f@h) = f(a") < o’ — |

Corollary 10. Suppose ) is fixed and |)° = 0, then for any

t>1/ 2““” , we have

Ex(¥") — Ex(¥}) <,

where 1% is the optimizer of E\(1).
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Proof. Under the settings of the smoothed Kantorovich
problem Eqn. (12), F)(¢) is convex and differentiable with
V2Ex(1) = +1, I (1) is convex and its proximal function
is given by Ip (v). Thus, directly applying Thm. 9 and set-
ting L = 5, wecan get E)\(w ) EA(¢)\) > )\(t+1)’-’ ||%

0|2, Set wo = 0 and 53z [¢5 % < e then we get that,

whent > 4/ w, we have E) (') — Ex (%) < e.

With the above analysis of the convergence of the smooth
Kantorovich functional E ("), in the following we give the
convergence analysis of the original Kantorovich functional
E(4") in Eqn. (9), where ¢! is obtained by FISTA.

TTogn then foranyt > SHCH"’nlogn

A IOg Vpmin, We have
B! - B) <.

where 1)t is the solver of EA (1) after t steps in the iterations

in Alg. 1, and * is the optimizer of E(v)). Then the total
n2'5\/logn)

53

O

Theorem 11. If )\ =
with C = Cax —

(20)

computational complexity is O(

Proof. We set the initial condition ¢/° = 0. For any given
€ > 0, we choose iteration step ¢, such that ﬁ [N[E
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Algorithm 1: Accelerated gradient descent for OT
1:

Input: The cost matrix C' = (¢;;), the corresponding
source weights . and target weights v, the approximate
parameter A, and the step length 7).

2: Output: The smoothed Kantorovich functional ).
3: Initialize ¥ = (Y1, %2, ..., %s) < (0,0,...,0).
4: Initialize z < (0,0,...,0).
5: Initialize K = e~ ©/*, 0y =1
6: repeat
7 vt = e¥' /A,
8:  VEA(') = diag(v)KT (u @ Kv) — v.
L wt —nVE\(¢h)
10 2t =2t —mean(ztt).
) t+1_ tH1 4 =1 t41 _ ot
1n: v 2+ (z zh).
12: 9t+1:§ 1+\/1+49t2)
13: t=t+1
14: until Converge
15: The OT cost E(¢') = 3770, patp(:) — 225, Yfv;.
St> Y2 —— SR logn  here % is the optimizer of E(v)).
By theorem 9 we have
Ex(@') - B(o") < Ba(v') — Ba(e")
< B\ = B3
<
< sl
<&
-2

By Eqn. (16), we have
E@") - E@") =E®") +Iu®") - E@") — Iu(¥")
= (B@") - EA(@") + (BEx(") + 1u (")
—(E@") +1a(¥"))
< [E@W") = Ex@)] + (Ex(¥") —
< Alogn + %

E@"))

=&

Next we show that [|¢5[|> < n[|C||* by proving |(¥5);] <
C' Vj € [n]. According to Eq. (15),

S

e((WX)j—cii) /A
(Y k—cir) /X

21
W25/

- Z; . 2221 e/ Agleij—cin) /X

Assume (1)} )max is the maximal element of %, we have

22:1 e(Wk/Aeleiz—cin) /A > e(¢§)max//\e—cmax/)\’ where
C'max 18 the maximal element of the matrix C'. Thus,
(#’A)J/A
Vj < Z Hi (wk)max/kefcmdx/)\
o(¥3)5/A

(¥ max/ A g—Crnax /A



max

Then, (¥ )max <

(W3); + — Alogv; and

. LSy
(wx)max S E Zl{(djk)J + Cmax - )\lOg Vj}
j=

(22)
S Omax —A log Vmin

According to the inequality of arithmetic and geometric
means, we have S7_, e(W)r/A > pew (CEo (W0R/N) = g,

RGOS
Thus, v; < = 7x-
(¥3); = Alogn — Cmax + Alogvy; 23)
> A log Vmin — Cmax
Combine Eqn. (22) and (23), we have [(¥3);| < Cmax —

Mog Vimin C'. Hence, we obtain that when ¢t >
8|IC|I2nlogn 7 .
VR Ioen | f(yt) — B(y*) <.

For each iteration in Eqn. (17), we need O(n?) times of
operations, thus total the computational complexity of the
proposed method is 0(7 Viogn ) O
Relationship with Softmax If there exists an OT map
from p to v, then each sample x; of the source distribu-
tion is classified into the corresponding y; = T'(x;). If there
does not exist an OT map, we can only get the OT plan,
which can be treated as a soft classification problem: each
weighted sample z; with weight p; will be sent to the corre-
sponding y;s with weight ,uiznp% where P;; > 0. Here
P = 72" —— gives the OT plan from the source to

k
the target distribution. The smoothed OT plan given by min-
imizing the smooth Kantorovich functional can be further
treated as a relaxed OT plan. Instead of sending the weights
of a specific sample to several target samples, the smooth
solver tends to send each source sample to all of the target

(V5 —ei)/

Sr_ (WL —cik) /X"
W] e /A

by p; will be sent to y; W1th weight 1; ST

n_e vE—cik) /A"

samples weighted by Sample x; weighted

Relationship with entropy regularized OT problem
The Sinkhorn algorithm is deduced from minimizing the
entropy regularized OT problem (Cuturi 2013): (P,C) +
AKL(P|p ® v) with P € m(p,v). Its dual is given by
(Genevay et al. 2016):

Wi(p,v) = —rnvjn {)\Zm log <Z V]‘e(chij>/>\>
i=1 j=1

N (24)
= v+ A}
=1
(Wj—cij)/A
. . roA%% _ vje J 1y
with gradient i > | i ey Ve

With the optimal solver w* the approximate OT plan is
e(¥i=ei) /X

yl‘e(’/’k cik)/N"
them with our gradient Eqn (13) and approximated OT plan
Eqn. (15) to see the subtle differences. Actually, by setting
1 := 1) — log v, the minimizing problem in Eqn. (24) is

given by P;;

= U Z" We can compare
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equivalent to our smoothed semi-discrete problem of Eqn.
(16) with a different constant term.
Furthermore if we set u = (u1,us, ..., upy)? withu; =
K g in Eqn. (15), the computed approxrmate OT plan can be
rewritten as Py = diag(u)Kdiag(v), which is the same as
the form of the Sinkhorn solution (Cuturi 2013). Since the
solution of the Sinkhorn algorithm is unique, we conclude
that the induced approximate optimal transport plan Eqn.
(15) by our algorithm is equivalent to that of the Sinkhorn.

Experiments

In this section, we investigate the performance of the pro-
posed algorithm under different parameters, and then com-
pare it with the Sinkhorn algorithm (Cuturi 2013). In the
following, we first introduce the various settings of the ex-
periments including the parameters, the cost matrix and the
evaluation metrics. Then we show the experimental results.
All of the codes were written in MATLAB with GPU accel-
eration, including the proposed method and the Sinkhorn al-
gorithm (Cuturi 2013). The experiments are also conducted
on a Windows laptop with Intel Core i7-7700HQ CPU, 16
GB memory and NVIDIA GTX 1060Ti GPU.

Parameters There are two parameters involved in the pro-
posed algorithm, A and 7;. The former is used to control the
approximate accuracy between the Log-Sum-Exp function
and the Kantorovich potential ¢/ in Eqn. (11), and the latter
controls the step size of the FISTA algorithm in Eqn. (17).
Basically, smaller A gives better approximation.

In our experiments, to get A as small as possible, based
on the Property 1 of the Eqn. (6), we set the median of the
cost matrix C equal to zero, so that the full range of the ex-
ponential of the floating-point numbers can be used, instead
of only the negative part'. Thus we set C = C — %
and call it the translation trick. If the range of C is denoted
as R, then the accuracy parameter is set to be A = £, where
T is a positive constant. For the FISTA algorithm, the ideal

step size should be n; = %, where o,.x 1S the maximal

eigenvalue of the Hessian matrix V2E,\(z/)) in Eqn. (14). By
Nesterov smoothing, we know opax < %, so we set the step
length ; = n\, where 7 is a constant?. In practice we use
(T',n) as control parameters instead of (\, 7).

Cost Matrix In the following experiments, we test the per-
formance of the algorithm with different parameters under
different metrics. Specifically, we set p = > 1" j1;6(z

Zi), V = Z?:l v;j6(y — y;). Note that after the settings

of u;s and Vjs they are normalized by u; = yoHa = m and
1

v; = . To build the cost matrix, we use the Eu-

Zkﬂ

"For example, if double-precision floating-point format is
used in 64-bit processors, the range of the number is about
2.2251e73% ~ 1.7977¢73%% when using MATLAB.

%For one thing, if ) is relatively large, only with small step size,
the algorithm may run out of the precision range of the processor
and thus get Inf” or "NAN’. Thus, 77 may be far less that 1. For the

max; K;;v,
()

other thing, we have H < 1 max;
choose 17 > 1 when A itself is small.

1
< 5, we may also
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Figure 1: The performance of the proposed algorithm with different parameters.

clidean distance, squared Euclidean distance, spherical dis-
tance, and random cost matrix.

e For Euclidean distance (ED) and the squared Eu-
clidean distance (SED) experiments, in experiment 1,
x;’s are randomly generated from the Gaussian distri-
bution V' (314, 1;) and y;’s are randomly sampled from
the uniform distribution Uni([0, 1]¢) — 5. Both p; and
v; are randomly generated from the uniform distribution
Uni(]0,1]). Experiment 3 also uses a similar sampling
strategy to build the discrete source and target measures.
In experiment 2, like (Altschuler, Niles-Weed, and Rigol-
let 2017), we randomly choose one pair of images from
the MNIST dataset (LeCun and Cortes 1998), and then
add negligible noise 0.01 to each background pixel with
intensity 0. u; and x; (v; and y;) are set to be the value
and the coordinate of each pixel in the source (target) im-
age. Then the Euclidean distance and squared Euclidean
distance between z; and y; are given by c(x;,y;) =
llz; — y;ll and e(x, ;) = ||lw; — y;|*, respectively.

For the spherical distance (SD) experiment, both x; and
v; are randomly generated from the uniform distribution
Uni([0,1]). z;’s are randomly generated from the Gaus-
sian distribution NV'(31q, I4) and y;’s are randomly gen-
erated from the uniform distribution Uni([0, 1]¢). Then

we normalize z; and y; by z; L”Z and y; =

[ED

Y
lly;ll2

sphere. The spherical distance is given by c(z;,y;) =
arccos ((x1,15))-

For the random distance (RD) matrix experiment, both 1;
and v; are randomly generated from the uniform distri-

. As a result, both z;’s and y;’s are located on the
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bution Uni([0, 1]). Also, to build C, we randomly sam-
ple ¢;; from the Gaussian distribution A/(0, 1), then C'is
defined as C = C' — C\yin + 1.0.

Evaluation Metrics We use two metrics to evaluate the
proposed method: the first one is the transport cost, which is
defined by Eqn. (6) and is given by —E(v)); and the sec-
ond is the L; distance from the computed transport plan
Py to the admissible distribution space 7(p,v) defined in
Eqn. (1), and the distance is defined as D(Py) = ||Px1 —
ulls + 1PFL v,

Experiment 1: The influence of different parameters
We test the performance of the proposed algorithm with dif-
ferent parameters under the SED and SD with m = n = 100
and d = 5, as shown in Fig. 1. The left column shows the re-
sults for SED and the right column is the result for SD. The
top row illustrates the transport costs over iterations, and the
bottom row is the distance D(Py).

In the top row of Fig. 1, the black lines give the
groundtruth transport costs, which are computed by linear
programming. It is obvious that for the same 7, by increas-
ing T (decreasing A, see the different types of the lines with
the same color), the approximate accuracy is improved, and
the convergence rate is increased; if 7' (equivalently ) is
fixed, by increasing 7 (see the different colors of the lines
with the same type), we increase the convergence speed.

Experiment 2: Faster Convergence For the experiments
with ED and SED, the distributions come from the MNIST
dataset (LeCun and Cortes 1998), as illustrated in the Cost
Matrix. For the the experiments with SD and RD, we set
m = n = 500 and d = 5. Then we compare with the
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Figure 2: Comparison with the Sinkhorn algorithm (Cuturi 2013) under different cost matrix.
Sink  Green Screen APDAMD  Ours p GT Sink Ours | | Sink-GT| [Ours-GT |
ED | 0.0596 0.0923 0.0541 3.76 0.0404 1.5 103.33  103.51 103.27 0.18 0.06
SED | 0.0431 0.0870 0.0328 3.21 0.0197 2 281.7 282.5 281.6 0.8 0.1
SD | 0.0564 0.0862 0.0400 2.29 0.0142 3 | 2189.8 2197.1 2187.5 7.3 2.3
RD | 0.0374 0.0726 0.0313 2.88 0.0227 4 1169514 17038.5 16932.0 87.1 194

Table 1: Running time (s) of our method, Sinkhorn (Sink)
(Cuturi 2013), Greenkhorn (Green) (Altschuler, Niles-
Weed, and Rigollet 2017), Screenkhorn (Screen) (Alaya
et al. 2019) and APDAMD (Lin, Ho, and Jordan 2019).

Sinkhorn algorithm (Cuturi 2013) with respect to both the
convergence rate and the approximation accuracy. We man-
ually set 7' = 500 to get a good estimate of the OT cost,
and then adjust 7 to get the best convergence speed of the
proposed algorithm. For the purpose of fair comparison, we
use the same cost matrix with the same translation trick and
the same A for the Sinkhorn algorithm, where we treat each
update of v as one step. We summarize the results in Fig. 2,
where the green curves represent the groundtruth computed
by linear programming, the blue curves are for the Sinkhorn
algorithm, and the red curves give the results of our method.
It is obvious that in all of the four experiments, our method
achieves faster convergence than the Sinkhorn algorithm.
Note that the computed approximate transport plan of the
Sinkhorn algorithm is intrinsically equivalent to our induced
transport plan in Eqn. (15).

In Tab. 1, we report the running time of our method,
Sinkhorn (Cuturi 2013), its variants algorithms, including
Greenkhorn (Altschuler, Niles-Weed, and Rigollet 2017)
and Screenkhorn (Alaya et al. 2019), and APDAMD (Lin,
Ho, and Jordan 2019) for the four experiments shown in
Fig. 2 with T = 700. The stop condition is set to be
|E(yt) — E(Y)|/|E(?)| < 1073, For all of the exper-
iments, we can see that our proposed method achieves the
fastest convergence.

Experiment 3: Better Accuracy From Fig. 2, we can ob-
serve that —FE/(¢}) gives a comparable or better approxi-
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Table 2: Comparison among the OT cost (GT) by linear pro-
gramming, the Sinkhorn results (Cuturi 2013) denoted as
’Sink’ and the results of the proposed method denoted as
’Ours’ with 7' = 500 and different p.

mate of the OT cost than (P}, C) with the same small A,
especially for the L,, cost function ¢(x,y) = ||z — y||P with
p > 1, see the second column of Fig. 2 for an example of
p = 2. To achieve e precision, (P5,C) (equivalent to the
Sinkhorn result) needs to set A = 4kfgn (Dvurechensky,
Gasnikov, and Kroshnin 2018), which is smaller than our
requirement of A = 5 1o€g — according to Thm. 11. Thus, with
the same A, the results of our algorithm should be more ac-
curate than the Sinkhorn solutions. To verify this point, we
give more examples in Tab. 2 with p = 1.5, 2, 3 and 4.
Here we use the discrete measures similar to the squared
Euclidean distance as stated in the Cost Matrix part, and set
m = n = 500, d = 5. From the table, we can see that our

method obtains more accurate results than Sinkhorn.

Conclusion

In this paper, we propose a novel algorithm based on Nes-
terov’s smoothing technique to improve the accuracy for
solving the discrete OT problem. The c-transform of the
Kantorovich potential is approximated by the smooth Log-
Sum-Exp function, and the smoothed Kantorovich func-
tional can be solved by FISTA efficiently. Theoretically, the
computational complexity of the proposed method is given
by O(n?5y/logn/c), which is lower than current estimation
of the Sinkhorn method. Experimentally, our results demon-
strate that the proposed method achieves faster convergence
and better accuracy than the Sinkhorn algorithm.
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