
Identifiability of Linear AMP Chain Graph Models

Yuhao Wang and Arnab Bhattacharyya
National University of Singapore

yuhaowang@u.nus.edu, arnabb@nus.edu.sg

Abstract
We study identifiability of linear Andersson-Madigan-
Perlman (AMP) chain graph models, which are a com-
mon generalization of linear structural equation models and
Gaussian graphical models. AMP models are described by
DAGs on chain components which themselves are undirected
graphs. For a known chain component decomposition, we
show that the DAG on the chain components is identifiable
if the determinants of the residual covariance matrices of the
chain components are equal (or more generally, monotone
non-decreasing in topological order). This condition extends
the equal variance identifiability criterion for Bayes nets, and
it can be generalized from determinants to any super-additive
function on positive semidefinite matrices. When the com-
ponent decomposition is unknown, we describe conditions
that allow recovery of the full structure using a polynomial
time algorithm based on submodular function minimization.
This is the first work that offers a general and rigorous iden-
tifiability condition for unknown chain components. We also
conduct experiments comparing our algorithm’s performance
against existing baselines.

Introduction
Probabilistic graphical models offer architectures for model-
ing and representing uncertainties in decision making. From
a computational standpoint, graphical representations en-
able efficient algorithms for inference, e.g., message pass-
ing, loopy belief propagation, and other variational inference
methods (Kschischang, Frey, and Loeliger 2001). They have
found applications in a wide range of domains, e.g., image
processing, natural language processing and computational
biology; see (Koller and Friedman 2009; Wainwright and
Jordan 2008) and references therein for examples.

A typical application of graphical models is to encode
causal information. An influential article from (Pearl 1995)
elucidated how Bayesian networks can be used to represent
causal processes and allow identification of causal effects.
The graphical structure of a Bayesian network is a directed
acyclic graph (DAG). Each node has a functional depen-
dency on its parents, as determined by the graph. A pop-
ular way to substantiate Bayesian networks is as a linear
structural equation model (SEM) where variables that cor-
respond to nodes in the graph are a linear function of their
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parents’ values plus additive independent noise (often Gaus-
sian) (Bollen 1989; Spirtes et al. 2000). (Hoyer et al. 2008)
defined the more general additive noise model where each
node is an arbitrary function of its parents with an additive
independent noise.

While Bayesian networks offer a clear conceptual way to
model the causal structure of a system, they are in practice
very hard to infer from data, as they require knowledge of
how every single variable is generated. In applications in-
volving hundreds of variables (e.g., in computational biol-
ogy), this requirement is unreasonable, particularly because
at the end, we may only be interested in causal effects on
a few target variables. Furthermore, in SEMs modeled by
Bayesian networks, the noise terms of different variables
must be independent whereas in real-world systems, correla-
tions can arise for various reasons (e.g., latent confounders).
An interesting middle ground is the notion of chain graphs
(Lauritzen and Wermuth 1989). Here, the variable set is par-
titioned into chain components, and there is a DAG on these
chain components. The variables inside each chain compo-
nent, however, are connected by undirected edges, not di-
rected ones. See Figure 1 for an illustration. Thus, chain
graph models interpolate between directed (causal) models
and undirected (probabilistic) models.

There are several prevalent interpretations of chain graph
models, namely the Lauritzen-Wermuth-Frydenberg (LWF)
(Lauritzen and Wermuth 1989; Frydenberg 1990), Alter-
native Markov Property or Andersson-Madigan-Perlman
(AMP) (Andersson, Madigan, and Perlman 2001), and Mul-
tivariate Regression (MVR) (Cox and Wermuth 1993). They
differ in the conditional independence relations implied by
the graphical structure. In this work, we restrict ourselves to
the linear AMP model, which is very natural from a genera-
tive viewpoint. Let C be an AMP chain graph* on n nodes.
Suppose the nodes are partitioned into chain components
{τ}. Then, we say that a random variable X ∈ Rn is gener-
ated by C if for every chain component τ :

Xτ = MτXPa(τ) + Zτ (1.1)

where Xτ is X restricted to τ , Pa(τ) = {v : ∃u ∈ τ, v →C
u}, Mτ is a matrix satisfying:

(Mτ )uv ̸= 0 =⇒ v →C u,

*See Notations and Preliminaries section for formal definitions.
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(a) C1 (b) C2 (c) C3

Figure 1: Chain graphs. Each shaded region is a maximal chain component.

and Zτ is independent from XPa(τ) and is a multivariate
Gaussian drawn from N(0,Στ ) where Στ satisfies:

(Σ−1
τ )uv ̸= 0 =⇒ u C v

The last condition ensures that N(0,Στ ) is Markovian with
respect to the undirected induced subgraph Cτ on τ . One
may also consider the additive noise AMP formulation
where each

Xτ = fτ (XPa(τ)) + Zτ , (1.2)
the noise Zτ is as above, and the function fτ is arbitrary,
provided it satisfies the directed graph structure:

(∂fτ )u
∂Xv

̸= 0 =⇒ v →C u.

The directed edges of the AMP chain graph form a Bayesian
network structure on the chain components, while for each
τ , the undirected induced subgraph Cτ describes a Gaussian
Markov model for Xτ | XPa(τ).

In this work, we focus on the question of identifiabil-
ity of chain graph models. That is, given knowledge of the
distribution of X , can we recover the AMP chain graph C
generating X? Moreover, can we recover C in polynomial
time? For Bayesian networks†, the study of identifiability
has received sustained attention for more than two decades.
In general, the problem is computationally hard (Chickering
1996), but by making faithfulness or related assumptions,
many sets of researchers (e.g., (Spirtes et al. 2000; Chick-
ering 2002; Zhang and Spirtes 2016; Raskutti and Uhler
2018)) have shown that the underlying DAG can be recov-
ered up to its Markov equivalence class. This is quite unsat-
isfactory as the faithfulness assumption becomes too restric-
tive in the presence of finite sample error and the DAG is
not uniquely identifiable. In a different line of work, (Peters
and Bühlmann 2014) showed that C is exactly identifiable
for linear Gaussian SEMs if all the noise terms have equal
variance. (Ghoshal and Honorio 2017, 2018) and (Park and
Kim 2020) established identifiability conditions for linear
SEMs even with unknown heterogeneous error variances.
Most recently, (Park 2020) extended these conditions to ad-
ditive noise models, while (Gao, Ding, and Aragam 2020)
further generalized to arbitrary Bayesian networks. See also
(Eberhardt 2017) and (Glymour, Zhang, and Spirtes 2019)
for other perspectives.

We extend these identifiability conditions from DAGs to
linear AMP chain graph models. Our main contributions are:

†For Gaussian graphical models, identifiability reduces to find-
ing the inverse of the covariance matrix.

(i) Additive noise AMP with known chain component de-
composition: We give a general class of identifiability
conditions (generalizing the equal variance condition for
linear SEMs) that imply identifiability of the DAG on a
known collection of chain components. For instance, the
DAG is identifiable if the determinant of the conditional
covariance of a chain component τ given τ ’s parents‡ is
the same for all τ . More generally, it is sufficient for this
determinant to be monotonically non-decreasing with re-
spect to a topological order on the chain components. The
same is true if the trace or the permanent satisfies the
monotonicity condition.

(ii) AMP with unknown chain component decomposition:
We give an identifiability condition for recovering the
chain components as well as the DAG for the standard
AMP chain graph model. Informally, the requirement
is quite natural: the variables in each chain component
should be tightly correlated, while as a whole, each chain
component should have large variance conditioned on its
parents. More formally, the conditions are that:

(a) If S is a proper subset of a chain component τ :

det(Cov(XS | Xτ\S , XPa(τ))) < 1

(b) det(Cov(Xτ | XPa(τ))) is greater than 1 and equal
for all chain components τ . (Again, similar to (i)
above, one can relax “equal” to “monotonically non-
decreasing”.)

In our conditions, the determinant of the covariance ma-
trix of Gaussians plays a central role, and this is for good
reason. If X ∼ N(0,Σ) is an n-dimensional Gaussian, then
det(Σ) is the generalized variance of X and is related to its
differential entropy. Namely, the differential entropy of X is
1
2 (log det(Σ) + n log(2πe)); see, e.g., (Krause, Singh, and
Guestrin 2008; Yu 2015). So, one can interpret condition (a)
above as: If S is a proper subset of τ , its differential entropy
conditioned on τ \S and τ ’s parents is smaller than a thresh-
old. Similarly, the first part of condition (b) can be restated
as: If S equals τ , the differential entropy of S conditioned
on its parents is larger than a threshold.

These identifiability conditions come with polynomial
time algorithms. Notably, our algorithm for recovering the
chain components in (ii) above involves a non-trivial sub-
modular function minimization, in contrast to the more
straightforward algorithms known for identifying linear
SEMs and Bayesian networks (Park 2020; Gao, Ding, and

‡Note that if the generating equation is Xτ = B ·XPa(τ)+Zτ ,
where Zτ = (0,Στ ) is the noise, then Cov(Xτ |XPa(τ)) = Στ .
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(a) C1 (b) C2

Figure 2: Chain graph identifiability: how to determine
which of these graphs is generating a given joint distribu-
tion P (X1, X2, X3)?
Aragam 2020) under analogous conditions. The conditions
in (i) and (ii) that determinants of residual covariances are
equal is especially relevant where each chain component
corresponds to the same physical system (e.g., in time se-
ries data).

Technical Overview
In this section, we describe some of the intuition behind our
identifiability conditions.

Known chain components. Consider Figure 2 which
shows two chain graphs C1 and C2; the question is to deter-
mine which of these graphs is generating a given joint dis-

tribution (X1, X2, X3). In C1, let
(
X1

X2

)
∼ N (0,Σ1), and

X3 = β1X1 + Z, where β1 ̸= 0 and Z ∼ N (0, σ2). In C2,

let
(
X1

X2

)
=

(
β2

0

)
X3 + Z where β2 ̸= 0, Z ∼ N (0,Σ2)

and X3 ∼ N (0, σ2). Assume Det(Σ1) = Det(Σ2) = σ2,
so that in both models, the determinant of the covariance of
each chain component conditioned on its parents is σ2.

We claim one can distinguish between C1 and C2 based on
the generated distribution. Our algorithm first finds the chain
component τ minimizing det(Cov(Xτ )). Note that for C1,
using the independence of Z: Cov(X3) = β2

1 Cov(X1) +
Cov(Z) ≻ Cov(Z), assuming§ Cov(X1) ≻ 0. Hence,
det(Cov(X3))> det(Z) = σ2 = det(Cov(X12)). On the
other hand for C2, det(Cov(X12)) > σ2 = det(Cov(X3)).
Thus, the chain component with the smallest determinant of
the covariance can be identified as the first in a topological
ordering. This can be understood as the uncertainty level of
the parents is less than its children. Once the first chain com-
ponent is known, we can select the second by choosing the
one that minimizes the determinant of its covariance condi-
tioned on the first chain component, and so on. It suffices
to find the topological order because as described in (Gao,
Ding, and Aragam 2020), one can identify the directed edges
by standard variable selection methods.

Note that the only property we used of the determinant
is that det(A + B) > det(A) if B is strictly positive defi-
nite. This property holds not only for the determinant but for
many natural matrix functions. For example for any i, the
diagonal entries (A + B)ii > Aii when A and B are posi-
tive definite. Carrying out the same logic as above but now
using projection to diagonal entries instead of determinants

§In this work, we make the assumption everywhere that all co-
variance matrices are strictly positive definite.

implies that the chain component DAG is identifiable when
all the individual variables have equal variance, extending
the result of (Peters and Bühlmann 2014) to chain graphs. In
fact, there is a large class of functions called “generalized
matrix functions” that satisfy the desired super-additivity
condition and hence result in identifiability conditions for
the DAG on chain components.

Unknown chain components. Consider again C1 from
Figure 2, but suppose now that we do not have the chain
component partitioning. Let (X1, X2, X3) be generated
as described above. In addition to imposing the condi-
tion that det(Σ1) = σ2, we now also require that: (i)
det(Cov(X1|X2)) and det(Cov(X2 | X1)) are¶ strictly less
than 1, and (ii) σ2 is strictly greater than 1.

Now, we can show that

det(Cov(X12)) = min
S⊆{1,2,3}

det(Cov(XS)).

Observe that det(Cov(X3)) > det(Cov(X12)) already
follows from the earlier discussion. We now compare
det(Cov(X12)) to det(Cov(X1)) and det(Cov(X2)). We
use the fact that:

det(Cov(X12)) = det(Cov(X1)) · det(Cov(X2 | X1)).

This follows from standard facts about multivariate Gaus-
sians. From our assumption det(Cov(X2 | X1)) < 1,
we get that det(Cov(X1)) > det(Cov(X12)). The same
holds for det(Cov(X2)). Finally, we need to show that
det(Cov(X123)) > det(Cov(X12)). Again, we can invoke
the above fact:

det(Cov(X123)) = det(Cov(X12)) · det(Cov(X3 | X12)).

Our conclusion follows from the assumption σ2 > 1.
For a general chain graph, it similarly follows that the

non-empty set S minimizing det(Cov(XS)) is the topo-
logically smallest. We can identify the next component by
conditioning on the components already discovered, which
results in a Gaussian on the rest, and then finding a non-
empty subset with conditional covariance matrix of smallest
determinant. This algorithm can be implemented efficiently.
The reason is that for any positive definite n× n-matrix M ,
the function F (S) = log det(M [S, S]), where M [S, S] is
the submatrix on rows and columns indexed by S ⊆ [n],
is submodular. F , as noted earlier, corresponds to the dif-
ferential entropy of a Gaussian vector with covariance M ,
which is a submodular function, plus an additional modu-
lar term. The problem of submodular function minimiza-
tion has a long and rich history, beginning with the semi-
nal works of (Grötschel, Lovász, and Schrijver 1981, 2012)
and continuing to the current day (Iwata, Fleischer, and Fu-
jishige 2001; Schrijver 2000; Lee, Sidford, and Wong 2015;
Dadush, Végh, and Zambelli 2018; Jiang 2021). Thus, we
can invoke any of these known polynomial-time algorithms
for submodular function minimization to recover the chain
components in topological order.

¶det(Cov(X2 | X1)) is well defined, since (X1, X2) are
jointly Gaussian, and hence, for any choice of x1, Cov(X2 | X1 =
x1) is the same.
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Related Work
Learning DAG Models. The literature on learning pure
DAG models is vast. One popular approach is to exploit the
constraints imposed by Markov structure, e.g., the PC al-
gorithm and its variants, like Fast Causal Inference (FCI),
Really Fast Causal Inference (RFCI) and Cyclic Causal
Discovery (CCD) (Spirtes, Glymour, and Scheines 2000;
Spirtes et al. 2000; Richardson 2013; Colombo et al. 2011;
Tom Claassen and Smyth 2013; Harris and Drton 2013;
Colombo and Maathuis 2014) under different assumptions.
Another important class of algorithms aims to maximize a
score function over the space of DAG’s, such as Greedy
Equivalence Search (GES) (Chickering 2002; Ramsey et al.
2017; Nandy et al. 2018) and a recent line of work that for-
mulates score maximization as a continuous optimization
problem (e.g., (Zheng et al. 2018, 2020; Wei, Gao, and Yu
2020)). This latest direction has resulted in algorithms that
learn the DAG structure with deep learning methods (e.g.,
(Yu et al. 2019; Lachapelle et al. 2020; Wang et al. 2020)).

DAG Identifiability. A probability distribution may be
Markov with respect to many Bayes networks; so for ex-
act identifiability, one needs to impose more structural con-
straints on the DAG model. For Structural Equation Mod-
els (SEM’s), identifiability can be established by lever-
aging asymmetries between variable pairs (Shimizu et al.
2006; Mooij et al. 2016), restricting SEMs to having ad-
ditive noise, such as linear non-Gaussian acyclic model
(LiNGAM) (Shimizu et al. 2006), general additive noise
models (Peters et al. 2014), Post-nonlinear model (PNL)
(Zhang et al. 2016), or equal and unknown error variance
(Peters and Bühlmann 2014; Ghoshal and Honorio 2017;
Eberhardt 2017; Ghoshal and Honorio 2018; Chen, Drton,
and Wang 2019; Glymour, Zhang, and Spirtes 2019; Park
and Kim 2020; Park 2020; Gao, Ding, and Aragam 2020).

Learning AMP Chain Graph Models. AMP chain
graphs, our focus in this work, have been less widely studied
than pure DAG models and more in the statistics literature
than computer science. Informally speaking, (Peña 2015)
showed that any AMP model can be viewed as arising from
a DAG causal model subject to selection bias. (Levitz, Perl-
man, and Madigan 2001) introduced a pathwise separation
criterion to characterize conditional independence relations
in AMP chain graphs. (Roverato 2005; Studenỳ, Roverato,
and Štěpánová 2009; Peña 2017a) studied the equivalence
classes of chain graph models, and (Peña 2018) provided a
factorization for positive distributions that are Markov with
respect to an AMP chain graph. (Drton et al. 2009) showed
that the AMP conditional independence relations may lead
to non-smooth models for discrete variables. (Peña 2014b,
2016) investigated extensions to the AMP model, e.g., the
marginal AMP model (MAMP) that is a common general-
ization of AMP and MVR. When the chain graph structure is
known, (Drton and Eichler 2006) proposed an algorithm for
maximum likelihood estimation of the model parameters.
(Peña 2012, 2014a; Peña and Gomez-Olmedo 2016) pro-
posed PC-LIKE, a constraint based algorithm under faith-
fulness assumptions for learning the structure of AMP and
MAMP models. Peña also designed a score-based algorithm

for AMP model structure learning similar to the work on
additive noise models (Peña 2017b) and an algorithm based
on answer set programming (Peña 2016). Recently, (Javid-
ian, Valtorta, and Jamshidi 2020) solved the problem of effi-
ciently finding minimal separating sets in AMP chain graphs
and obtained a new decomposition-based structure learning
algorithm called LCD-AMP.

Notations and Preliminaries
Probability. We need the following useful fact about con-
ditional covariance. The proof is a simple generalization of
the standard proof for the law of total variance.
Fact 1.1 (Law of Conditional Covariance). If X, Y, Z are ran-
dom variables with strictly positive distributions with each
component having finite second moment, then:

CovX(X | Y ) = EZ [CovX(X | Y, Z) | Y ] + CovZ(EX [X | Y,Z] | Y ).

The following result yields a very useful decomposition
for covariance of normal distributions.
Fact 1.2. If X = (XA, XB) is distributed jointly as a Gaus-
sian N (0,Σ), then:

det(Cov(X)) = det(Cov(XA)) · det(Cov(XB | XA))

where Cov(XB | XA) = Cov(XB | XA = xA) is indepen-
dent of xA.

Chain Graphs. Following conventions in the field, a vari-
able is denoted by an uppercase letter, e.g., X , and its value
is denoted by the corresponding lowercase letter, z ∈ Z,
where Z is the state space of X . Graphs in this paper con-
tain both directed (’→’) and undirected (’—’) edges. Below
we will further invoke the most central definitions and nota-
tions used in this paper. For a general account, we refer the
reader to (Lauritzen 1996) and (Edwards 2012).

A chain graph C consists of a vertex set V and an edge
set E ∈ V × V . Two vertices joined by an edge are
called adjacent. A path in C is a sequence of distinct ver-
tices ⟨v0, . . . , vn⟩ such that vi−1 and vi are adjacent for all
1 ≤ i ≤ n, and is called a cycle if vn = v0. Moreover, a
semi-directed cycle exists if v1 → v2 is in C and vi → vi+1,
vi ←→ vi+1 or vi − vi+1 is in C for all 1 < i < n.
For any subset S, the set of parents of v is denoted as
Pa(v) := {v ∈ V \ S | v → s ∈ C for some s ∈ S}, the set
of children of v is denoted as Ch(v) := {v ∈ V \ S | s→
v ∈ C for some s ∈ S}, the set of neighbours is denoted as
Ne(v) := {v ∈ V \S | v− s ∈ C for some s ∈ S}. A chain
graph with no directed edges is an undirected graph (UG),
while a chain graph with no undirected edges is a DAG. For
vertices (u, v) ∈ E but (v, u) ̸∈ E, we write u → v, where
vertex u is a parent of v. If both (u, v) ∈ E and (v, u) ∈ E,
we denote it by u − v, which means u is a neighbor of
v. The vertex set of a chain graph can be partitioned into
chain components {τ | τ ∈ T }, (V = ∪(τ∈T )τ). Edges
within chain components are undirected whereas edges be-
tween two chain components are directed. A source node is
any node Xτ such that Pa(Xτ ) = ∅. A sink node is any
node Xτ such that Ch(Xτ ) = ∅. The chain components τ
of a chain graph are the connected components of the undi-
rected graph obtained by removing all directed edges from
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the chain graph. In a DAG, all chain components are sin-
gletons. For S ⊆ V , CS denotes the induced subgraph on
S.

By taking into account the directed connections of chain
components, an AMP chain graph admits a topological or-
dering of its chain components. For statistical identifiability
of chain graph C, we will consider it sufficient to learn the
partition into chain components τ1, . . . , τt, and a topological
ordering ≺ such that τj → τk =⇒ τj ≺ τk. One can learn
the directed and undirected edges using standard parameter
estimation algorithms.

Matrix Algebra. Our identifiability condition in the case
of known chain components is in terms of positive and
super-additive families, which we define next.
Definition 1.3. Let Cn denote the cone of n × n positive
semidefinite matrices. We say that a real-valued function
dn : Cn → R is positive and super-additive if: (i) dn(A) > 0
for all positive definite matrices A, and (ii) for all positive
semidefinite matrices A,B:

dn(A+B) ≥ dn(A) + dn(B).

A positive and super-additive family is a collection of func-
tions fn : Cn → R, each of which is positive and super-
additive.

We have several examples of families of positive and
super-additive functions:
• Clearly, the projection on any diagonal element and the

matrix trace function are positive and super-additive.
• By Minkowski’s determinant theorem (see, e.g., (Mar-

cus and Minc 1992)), it known that for all A,B ∈ Cn:
(det(A+B))1/n ≥ (det(A))1/n+(det(B))1/n. Hence,
{det1/n : Cn → R} is positive and super-additive.

• For χ an irreducible character on a subgroup H of Sn

(the permutation group on n elements), define the gener-
alized matrix function with respect to H and χ as:

dHχ (A) =
∑
σ∈H

χ(σ)
n∏

i=1

ai,σ(i)

where A = (ai,j). (Schur 1918) showed that dHχ (A) > 0
for all positive definite A. It is also known (e.g., (Mer-
ris 1997), p. 228) that they satisfy the super-additivity
condition. Hence, the determinant||, permanent, and the
Hadamard matrix function (product of diagonal entries)
all form positive and super-additive families.

Identifiability with Known Chain Component
Decomposition

In this section, we give a general class of conditions which
are sufficient to ensure that the DAG structure of the chain
graph is identifiable from data generated by it. Here, the
chain component decomposition D is already known to the
algorithm. D consists of t disjoint maximal chain compo-
nents that partition the variable set.

||The super-additivity of the determinant is also directly implied
by the super-additivity of det1/n.

We formulate our results for general AMP chain graph
models. They will immediately imply the conditions for ad-
ditive noise AMP models mentioned in the Introduction.

Algorithm 1: Our algorithm for learning the topo-
logical order of a chain graph with chain component
decomposition D of size t.

1 A, P ← ∅;
2 i← 0;
3 while |A| ̸= t do
4 τi ← argminτ∈C\A d|τ |(E[Cov(Xτ | XP )]);
5 A ← A∪ {τi};
6 P ← P ∪ τi;
7 i← i+ 1;
8 Return the ordering (τ1, . . . , τt)

Theorem 1.4. Suppose the random variable X is generated
by an AMP-CG C with known chain component decomposi-
tion D. Then, C is identifiable from P if there exists a topo-
logical ordering π of C and a positive and super-additive
family {dn : Cn → R} such that:

d|τ |

(
E

XPa(τ)

Cov
Xτ

(Xτ | XPa(τ))

)
≤

d|τ ′|

(
E

XPa(τ′)
Cov
Xτ′

(Xτ ′ | XPa(τ ′))

) (1.3)

for any two chain components τ, τ ′ where τ ≺π τ ′.
The following corollary is immediate.

Corollary 1.5. Suppose X corresponds to an additive noise
model generated by a chain graph C, i.e.:

Xτ = fτ (XPa(τ)) + Zτ ,

where the noise term Zτ is independent of XPa(τ), for all
chain components τ of D.

Then, given the chain component decomposition, a topo-
logical ordering of D is identifiable from X if there exists a
topological ordering π of D such that

det(Cov(Zτ )) ≤ det(Cov(Zτ ′))

for all chain components τ ≺π τ ′.
Non-parametric algorithm. We give a finite-sample ver-
sion algorithm using the determinant as dn. One can esti-
mate det(E[Cov(Xτ | XP )]) by (i) using a non-parametric
regressor F̂τ,P (XP ) to estimate E[Xτ | XP ] with n1 sam-
ples, and (ii) using a plug-in estimator on n2 samples:

det

(
1

n2

n2∑
i=1

(
(X(i)

τ )⊗2 − F̂⊗2
τ,P (X

(i)
P )
))

Using standard non-parametric regularity conditions, we
can lower bound the probability of the algorithm recovering
the true topological order. Note that the result does not de-
pend on the particular choice of the estimator F̂τ,P as long
as it is asymptotically consistent. Due to space constraints, a
detailed statement is deferred to the appendix.
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General Identifiability
In this section, we establish identifiability conditions for re-
covering both the chain components as well as the DAG
structure of chain graphs from the generated probability dis-
tribution. Here, by identifiability, we mean that the parti-
tioning into chain components and the topological order on
the chain components are uniquely specified. The exact set
of directed and undirected edges can then be recovered us-
ing standard variable selection methods (as described in Ap-
pendix A of (Gao, Ding, and Aragam 2020)).

Algorithm 2: Infinite sample algorithm for learning
the topological order of a chain graph with unknown
chain components.

1 P ← ∅;
2 i← 1;
3 τ1 = argminS⊆V,S ̸=∅ det(Cov(XS)) ;
4 P ← P ∪ τ1;
5 while V \ P ̸= ∅ do
6 τi ← argminS⊆V \P,S ̸=∅ det(Cov(XS | XP ));
7 P ← P ∪ τi;
8 i← i+ 1;
9 Return the topological sort (τ1, . . . , τi)

Theorem 1.6. Suppose the random variable X is generated
by an AMP-CG C with unknown structure. Then, C is identi-
fiable from X if the following three conditions hold:
(i) For all chain components τ and all non-empty proper

subsets S ⊂ τ :

det(Cov(Xs | Xτ\s, XPa(τ))) < 1.

(ii) For all chain components τ :

det(Cov(Xτ | XPa(τ))) > 1.

(iii) There is a topological order π on the chain components
such that for all τ ⪯π τ ′. :

det(Cov(Xτ | XPa(τ))) ≤ det(Cov(Xτ ′ | XPa(τ ′))).

Informally speaking, for any subset S, given its comple-
mentary set and parents union of τ in C, we require the vari-
ables in each chain component to be tightly correlated. Be-
sides, given the union of the parents of chain components τ ,
we require the clustered variables in each chain component
to have large generalized variance. The third condition is the
same one imposed in the identifiability with known chain
component decomposition section.

There is a geometric way to view the conditions in The-
orem 1.6, which substantiates the intuition that they require
each chain component to cluster together while having large
variance as a whole. Recall that for any matrix M , det(M)
corresponds to the volume of the parallelepiped spanned
by the rows of M . Let the chain components be denoted
τ1, . . . , τk in a topological order. For i = 1, . . . , k, let Mi de-
note the covariance matrix of Xτi | Xτ1∪···∪τi−1

, and let M
denote the full covariance matrix, Cov(Xτ1∪···∪τk). From
Fact 1.2,

det(M) = det(M1) · · · det(Mk). (1.4)

C C′
A B

C D

A B

C D
ϵCD

ϵA ϵB

ϵC ϵD

Figure 3: Synthetic data generation. Undirected edges corre-
spond to correlated noise.

Let Vi denote the set of row vectors of Mi, and we iden-
tify Vi with the parallelepiped it spans. Due to Equation 1.4,
we can view each Vi as residing in a subspace orthogonal
to the spans of other Vj’s, so that their volumes just mul-
tiply with each other. (Alternatively, construct a block di-
agonal matrix M ′ where the i’th block on the diagonal is
Mi; clearly, det(M) = det(M ′).) In this language, Condi-
tion (ii) in Theorem 1.6 says that the volume of each Vi is
more than 1, and condition (iii) says that the volumes are
non-decreasing with i. Condition (i) says that for any Vi, the
volume of any sub-parallelepiped is larger than the volume
of the whole. Intuitively, this means that the vectors in Vi

form very small angles with each other, so that the volumes
keep decreasing as more vectors are added.

Computational Efficiency. It is known that Algorithm 2
can be implemented in polynomial time. This is because the
optimization problems in lines 3 and 5 of the pseudocode
correspond to submodular function minimization, as ex-
plained earlier. A slight non-triviality is that the optimization
is over all non-empty sets instead of over all sets. However,
it is well-known how to reduce this to unconstrained mini-
mization (e.g., see Section 4.1 of (Gurjar and Rathi 2020)).

Experiments
In this section, we compare the performance of Algorithm
1 and Algorithm 2 on synthetic datasets to state-of-the-art
methods for AMP chain graph structure learning**. Recall
that as we showed in Theorem 1.4, the DAG on the chain
components of an AMP chain graph is identifiable if (1.3)
is satisfied for a positive and super-additive family dτ . Here,
we let dτ be the determinant operator, and hence dub our
algorithm as Determinant of Covariance (DCOV).

Synthetic Data Generation. To generate the chain graph
C, in our first step, an undirected graph G with n nodes
is generated by using the Erdős Rényi (ER) model with
an expected neighbor size s = 2 and then symmetrizing.
Given the number of chain components c, we split the in-
terval [1, n] into c equal-length sub-intervals [I1, . . . , Ic] so
that variable sets for each sub-interval forms chain com-
ponents τ1, . . . , τc. Meanwhile, for any (i, j) pair, we set
Ci,j = 0 if ∃i ∈ Iℓ, j ∈ Im, ℓ > m. Given the binary adja-
cency matrix C, we generate the matrix M of edge weights
by Mi,j ∼ U(−1.5,−0.5] ∪ U [0.5, 1.5) if Ci,j ̸= 0 and
Mi,j = 0 otherwise.

**Code is available at https://github.com/YohannaWANG/
DCOV
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(a) Algorithm 1 (known chain components) (b) Algorithm 2 (unknown chain components)

Figure 4: SHD performance (lower is better)

The observational i.i.d. data Xτ = MτXPa(τ) + Zτ is
generated with a sample size n = 1000 and a variable size
d ∈ {10, 20, 30, 40, 50}. Zτ is an independent multivari-
ate Gaussian drawn from N(0,Στ ) where Στ is generated
randomly with det(Στ ) = 1, satisfying the assumption of
Corollary 1.5. Figure 3 illustrates how the synthetic AMP
chain graph data is generated.

Baseline Algorithms. We compare our DCOV method
against the PC-LIKE (Peña 2012, 2014a; Peña and Gomez-
Olmedo 2016), STABLE-PC4AMP (Javidian, Valtorta, and
Jamshidi 2020), and LCD algorithm (Learn Chain Graphs
via Decomposition) (Ma, Xie, and Geng 2008). We use de-
fault parameters among those baseline algorithms in order
to avoid skewing the results in favour of any particular algo-
rithm as a result of hyperparameter tuning††. All the base-
line algorithms above are implemented using R-packages
(licensed under GPL-2 or GPL-3) such as ggm (Marchetti
et al. 2006), pcalg (Kalisch et al. 2012), mgcv (Wood and
Wood 2015), np (Racine and Hayfield 2020), and lcd (Ma,
Xie, and Geng 2008). We use rpy2 (Gautier 2012) to ac-
cess R-packages from Python and ensure that all algorithms
can be compared in the same environment. The results are
averaged over 20 independent repetitions. The experiments
were conducted on an Intel Core i7-9750H 2.60GHz CPU.

Implementation of DCOV. We implement Algorithm
2 using the Matlab toolbox Submodular Function
Optimization (Krause 2010). Each iteration of Algo-
rithm 1 and Algorithm 2 estimates the conditional covari-
ance of the remaining chain components using the finite-
sample algorithm mentioned earlier. Like (Gao, Ding, and
Aragam 2020), we run a gam regression to estimate con-
ditional expectations. We set the p-value with significance
level of 0.001 for determining the parents of the node.

Performance Evaluation Metrics. We evaluate the per-
formance of the proposed algorithms in terms of the four
measurements, namely, true positive rate (TPR), false pos-
itive rate (FPR), accuracy (ACC), and structural hamming
distance (SHD) that are commonly used in (Javidian, Val-
torta, and Jamshidi 2020; Colombo and Maathuis 2014; Ma,
Xie, and Geng 2008).

††The implementation of baseline algorithms is available at
https://github.com/majavid/AMPCGs2019.

Agnostic learning When the chain components are un-
known, our theoretical results treat the case that the data is
realized following the conditions in Theorem 1.6. A straight-
forward question is: how the algorithm performs when the
condition is violated? To answer this question, we conduct
agnostic learning experiments by showing the experiment
results based on the following conditions:

1. Chain graph experiments: Take the opposite condition
from Theorem 1.6, where det(Cov(Xτ | XPa(τ))) ≤ 1.

2. DAG experiments: Evaluate the performance of our al-
gorithms on synthetic Directed Acyclic Graph (DAG) data;

(a) The variance for each node is equal and > 1;
(b) The variance for each node is uniformly in [0.5, 1.5];

Summary of Experiment Results. As shown in Figure 4,
DCOV, under both known and unknown chain component
conditions, shows superior performance compared with all
other baselines by wide margins. This is because the identifi-
ability condition we proposed provides a correctness guaran-
tee for the recovery of chain-graph structures. Surprisingly,
in the DAG structure learning task, if the condition in The-
orem 1.6 holds, our unknown chain graph structure learning
algorithm (Algorithm 2) can correctly identify the special
one-node chain component structures. It also shows supe-
rior performance over all other baseline methods. Besides, in
our chain graph agnostic learning experiments, when node
number increases, although SHD is still lower than other
baseline algorithms, the ACC, TPR, and FPR performances
are relatively worse. Furthermore, we also conduct agnostic
learning experiments on DAG structures. Since our proposed
condition does not hold in this case, in the worst condition,
Algorithm 2 can wrongly treat all the nodes in a DAG graph
as one chain component. This leads to the highest SHD and
FPR, and lower ACC performance in our experiment results.
We also evaluate the performance of Algorithm 1 on four
real Gaussian Bayesian networks from R package bnlearn
(Scutari 2009). The ECOLI70 graph provided by (Schafer
and Strimmer 2005) contains 46 nodes and 70 edges. The
MAGIC-NIAB graph from (Scutari et al. 2014) contains 44
nodes and 66 edges. The MAGIC-IRRI graph contains 64
nodes and 102 edges. The experimental details are available
in the supplementary material. One limitation of this work is
the lack of real datasets that can be modeled by chain graphs.
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Conclusion
In this work, we address the problem of recovering lin-
ear AMP chain graph in polynomial time from observa-
tional data, and we proposed two algorithms for both known
and unknown chain components to handle the problem. In
our experiments, we implemented our algorithms over both
known and unknown chain components. As future work, we
are also interested in exploring a score-based approach for
chain graph structure learning from observational data.
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Schur, I. 1918. Über endliche Gruppen und hermitesche For-
men. Mathematische Zeitschrift, 1(2): 184–207.
Scutari, M. 2009. Learning Bayesian networks with the bn-
learn R package. arXiv preprint arXiv:0908.3817.

10088



Scutari, M.; Howell, P.; Balding, D. J.; and Mackay, I. 2014.
Multiple quantitative trait analysis using Bayesian networks.
Genetics, 198(1): 129–137.
Shimizu, S.; Hoyer, P. O.; Hyvärinen, A.; and Kerminen,
A. 2006. A linear non-Gaussian acyclic model for causal
discovery. Journal of Machine Learning Research, 7(Oct):
2003–2030.
Spirtes, P.; Glymour, C.; and Scheines, R. 2000. Causation,
prediction, and search. Adaptive computation and machine
learning.
Spirtes, P.; Glymour, C. N.; Scheines, R.; and Heckerman,
D. 2000. Causation, prediction, and search. MIT press.
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operations of merging and splitting components in a chain
graph. Kybernetika, 45(2): 208–248.
Tom Claassen, T. H., Joris M. Mooij; and Smyth, P. 2013.
Learning Sparse Causal Models is not NP-hard. In Proceed-
ings of the Twenty-Ninth Conference on Uncertainty in Ar-
tificial Intelligence, UAI 2013, Bellevue, WA, USA, August
11-15, 2013. AUAI Press.
Wainwright, M. J.; and Jordan, M. I. 2008. Graphical mod-
els, exponential families, and variational inference. Now
Publishers Inc.
Wang, Y.; Menkovski, V.; Wang, H.; Du, X.; and Pech-
enizkiy, M. 2020. Causal discovery from incomplete data: a
deep learning approach. arXiv preprint arXiv:2001.05343.
Wei, D.; Gao, T.; and Yu, Y. 2020. DAGs with No Fears:
A Closer Look at Continuous Optimization for Learning
Bayesian Networks. In Advances in Neural Information Pro-
cessing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual.
Wood, S.; and Wood, M. S. 2015. Package ‘mgcv’. R pack-
age version, 1: 29.
Yu, Y.; Chen, J.; Gao, T.; and Yu, M. 2019. DAG-GNN:
DAG Structure Learning with Graph Neural Networks.
In International Conference on Machine Learning, 7154–
7163.
Yu, Y.-L. 2015. Submodular Analysis, Duality and
Optimization. http://www.cs.cmu.edu/∼yaoliang/mynotes/
submodular.pdf. Accessed: 2021-02-18.
Zhang, J.; and Spirtes, P. 2016. The three faces of faithful-
ness. Synthese, 193(4): 1011–1027.
Zhang, K.; Wang, Z.; Zhang, J.; and Schölkopf, B. 2016.
On estimation of functional causal models: general results
and application to the post-nonlinear causal model. ACM
Transactions on Intelligent Systems and Technology (TIST),
7(2): 13.
Zheng, X.; Aragam, B.; Ravikumar, P. K.; and Xing, E. P.
2018. DAGs with no tears: Continuous optimization for
structure learning. In Advances in Neural Information Pro-
cessing Systems, 9472–9483.
Zheng, X.; Dan, C.; Aragam, B.; Ravikumar, P.; and Xing,
E. 2020. Learning sparse nonparametric DAGs. In Inter-
national Conference on Artificial Intelligence and Statistics,
3414–3425. PMLR.

10089


