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Abstract

Given a first-order sentence I' and a domain size n, how
can one sample a model of T" on the domain {1,...,n} effi-
ciently as n scales? We consider two variants of this problem:
the uniform sampling regime, in which the goal is to sample
a model uniformly at random, and the symmetric weighted
sampling regime, in which models are weighted according
to the number of groundings of each predicate appearing in
them. Solutions to this problem have applications to the scal-
able generation of combinatorial structures, as well as sam-
pling in several statistical-relational models such as Markov
logic networks and probabilistic logic programs. In this pa-
per, we identify certain classes of sentences that are domain-
liftable under sampling, in the sense that they admit a sam-
pling algorithm that runs in time polynomial in n. In particu-
lar, we prove that every sentence of the form VzVy : ¢ (z, y)
for some quantifier-free formula v (z,y) is domain-liftable
under sampling. We then further show that this result contin-
ues to hold in the presence of one or more cardinality con-
straints as well as a single tree axiom constraint.

Introduction

We introduce and study the first-order sampling problem:
given a sentence in first-order logic I' and a domain size
n, sample a model of " on the domain {1,...,n}. Clearly,
naive approaches such as rejection sampling are intractable
for all but the smallest domains here, so we focus our at-
tention on designing domain-liftable sampling algorithms,
meaning their runtime is polynomial in n. Our approach is
inspired by the first-order model counting literature (Van den
Broeck et al. 2011; Beame et al. 2015), in which the goal is
to count the number of models of a sentence over a fixed do-
main size n in time polynomial in n; however, as we shall
see, new challenges arise when translating results there to
the sampling setting.

The first-order sampling problem has applications in sev-
eral areas of computer science. Many problems related to
the generation of combinatorial structures can easily be ex-
pressed as first-order sampling problems. Indeed, a great
deal of research in the combinatorics community has gone
into designing sampling schemes for particular classes of
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structures (Jerrum, Valiant, and Vazirani 1986); by view-
ing these problems through the lens of first-order sampling,
one can obtain a more generalizable approach. For example,
suppose we are interested in uniformly sampling labelled 2-
colored trees with n nodes, where one color is used k times
and the other n — k times. This is precisely the type of prob-
lems that the results in our paper allow us to solve; it can be
modelled with the sentence:

Vo :—=R(x,x) A
VaVy : R(z,y) — R(y,x) A
Vo :Cy(z) v Ca(z) A
Vo :=Cp(x) v =Ca(x) A
VaVy :R(x,y) —
—(Ci(2) A Ci(y)) A —=(Ca(z) A Ca(y)) A
TR/\
|C1] =k A|Cal =n—k

where T i enforces that the binary relation R forms a tree,
and |C1| = k and |C3| = n — k enforces cardinality con-
straints on the number of groundings of the relations C'; and
Cs.

There are also applications of first-order sampling in
the domain of statistical-relational learning (De Raedt
et al. 2016). For instance, Markov logic networks
(MLNs) (Richardson and Domingos 2006) are a flexible for-
malism for mixing uncertainty with first-order logic. Prob-
abilistic inference in an MLN is known to be reducible to
weighted first-order model counting (Van den Broeck et al.
2011); as it turns out, essentially the same reduction can
be used to sample possible worlds from an MLN. Domain-
liftability under sampling is particularly important in these
applications, as MLNs are often modelled over large popu-
lations.

In this paper, we prove the domain-liftability under sam-
pling of UFO?, the universally-quantified two-variable
fragment of first-order logic, comprising sentences of the
form VzaVy Y(x,y) for some quantifier-free formula
¥(x,y). We then show how to further extend this result in
two different directions: one allowing the addition of car-
dinality constraints (Kuzelka 2021), and another allowing
the addition of a tree constraint (van Bremen and Kuzelka
2021).



Related Work

The approach taken in this paper, as well as the formal lifta-
bility notions considered here, are inspired by the lifted in-
ference literature (Van den Broeck et al. 2021). In lifted
inference, the goal is to perform probabilistic inference in
statistical-relational models in a way that exploits symme-
tries in the high-level structure of the model. Models that
are amenable to scalable inference as domain size increases
are dubbed domain-liftable, in a similar spirit to the notion
of domain-liftability under sampling presented here. There
exists a very extensive literature on lifted inference, both
viewed from the logical as well as graphical models per-
spective (Poole 2003; de Salvo Braz, Amir, and Roth 2005;
Gogate and Domingos 2011; Van den Broeck et al. 2011;
Taghipour et al. 2013), which we do not cover exhaustively
here for brevity. We do, however, draw the reader’s atten-
tion to Beame et al. (2015, Appendix C), which studies
the data complexity of weighted first-order model counting
(WFOMC) of the two-variable fragment of first-order logic.
The general argument used there—namely, the analysis of
a two-variable sentence in terms of its cell types—forms a
basis for our sampling approach discussed later in the paper.

On a related note, sampling from propositional logic for-
mulas is a relatively well-studied area (Gomes, Sabhar-
wal, and Selman 2006; Chakraborty, Meel, and Vardi 2013;
Chakraborty et al. 2014). However, many real-world prob-
lems can achieve a far more natural and compact represen-
tation when expressed in first-order logic, and suffer from
a significant blow-up in formula size when grounded out to
propositional logic. Due to the lack of immediately identifi-
able symmetries in propositional logic formulas, most sam-
pling approaches for propositional logic instead seek to de-
sign approximate samplers, typically through the imposition
of random parity constraints. It is important to note as well
that these approaches are not polynomial-time in the input
formula length, and rely on efficient access to an NP ora-
cle (typically realised through a SAT solver). In this paper,
we instead aim to exploit the structure inherent in first-order
logic to obtain exact lifted sampling schemes, a setting that
to the best of our knowledge remains largely unstudied.

Gogate, Jha, and Venugopal (2012) studied lifted impor-
tance sampling, building on earlier work by Gogate and
Domingos (2011). However, the algorithms here are ap-
proximate with a view to estimating the partition function
of an MLN, unlike the exact and more general first-order
logic setting considered in this paper. Van den Broeck and
Niepert (2015) also propose an approximate sampling-based
inference framework for graphical models in a similar spirit.

Finally, Lin, Lu, and Tan (2021) recently proposed an ef-
ficient algorithm for satisfiability testing of the two-variable
fragment of first-order logic, that exhibits a finite model for
a given formula if one exists. However, no guarantees are
made as to the model size (other than an exponential upper
bound) or the distribution of the algorithm’s output.

Background

In this section, we describe all the necessary background for
the paper.
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First-Order Logic

We consider the function-free, finite domain fragment of
first-order logic defined by a set of constants A, called a do-
main, a set of variables ) and a set of predicates P. For any
P € P, denote by arity(P) the arity of P. An atom takes the
form P(z1,...,xx) where x1,..., 2, € AUV, P € P and
arity(P) = k. A literal is an atom or its negation. A for-
mula is formed by connecting one or more literals together
using conjunction or disjunction. A formula may optionally
be surrounded by one or more quantifiers of the form Vx
or Jx, where x is a logical variable. A logical variable in a
formula is said to be free if it is not bound by any quanti-
fier. A formula with no free variables is called a sentence.
A formula is ground if it contains no logical variables. The
groundings of a quantifier-free formula is the set of formulas
obtained by instantiating the free variables with any possible
combination of constants from A. A possible world w is rep-
resented as the set of ground atoms that are true in w. A pos-
sible world w is called a model of a sentence I if it satisfies I"
(i.e., w = T), according to the usual semantics of first-order
logic. We denote the set of all models of a sentence I' over
a fixed domain A = [n] = {1,...,n} by models,(T"). The
two-variable syntactic fragment of first-order logic (FO?) is
obtained by restricting the set of variables allowed in a for-
mula to V = {z,y}. We denote the subfragment of FO?
comprising sentences of the form VaVy : ¢(z,y), where
Y (x,y) is some quantifier-free formula, by UFQ?Z.

Weighted First-Order Model Counting

The sampling problems investigated by this paper are in-
spired by the problem of weighted first-order model count-
ing (WFOMC), which has been extensively studied in,
among other works, (Van den Broeck et al. 2011; den
Broeck, Meert, and Darwiche 2014; Beame et al. 2015; Ku-
usisto and Lutz 2018; van Bremen and KuzZelka 2021).

Definition 1 (Weighting). Denote the set of predicates ap-
pearing in the sentence I' by Pr. A weighting on I is a pair
of mappings w : Pr — Rxq and w : Pr — Rl

Given a weighting (w, w) on a sentence, for every possi-
ble world w, we define its weight as

Waw(w) = [ ] wlpred(®)) - | w(pred(1)),

leT leF

where wr (wr) denotes the set of true (false) ground atoms
in the possible world w, and the notation pred(l) maps an
atom [ to its corresponding predicate name. When the con-
text is clear, we leave out w and 1 in the subscript of W, .

Definition 2 (WFOMC). Let (w,w) be a weighting on a
sentence I'. The WFOMC of T over a domain of size n under

(w, w) is
2

pemodels, (T)

WFOMC(T, n, w, w) :=

"We use a slightly different definition of weighting here than
that used in the WFOMC literature, by requiring the range of the
weighting function to be non-negative. This ensures that the prob-
ability of a model introduced later is well-defined.



Note that since these weightings are defined on the predi-
cate level, all groundings of the same predicate get the same
weights. For this reason, the notion of WFOMC defined here
is also referred to as symmetric WFOMC.

Given a sentence, or a class of sentences, prior research
has mainly focused on its data complexity for WFOMC: the
complexity of computing WFOMC(T', n, w, w) when fixing
the input sentence I and weighting (w, @), and treating the
domain size n as a unary input. A sentence, or class of sen-
tences, that enjoys polynomial-time data complexity is said
to be domain-liftable.

Count Distribution

The distribution of predicate cardinalities among the models
of a sentence, called the count distribution, plays an impor-
tant role in our sampling algorithm. Given a possible world
w and a list of predicates ¥ = (Py,...,P,), we denote
the vectors of count-statistics: N(V,w) := (n1,...,nm),
where Vi € [m],n; = |P;| is the cardinality of the predicate
P;, i.e., the number of ground atoms for P; that are true in
w.

Definition 3 (Count distribution). Given a sentence I', and a
list of predicates W, the count distribution of V conditioned
on I over a domain of size n under (w, w) is

3 W (1) '
pemodels,, (T'): WFOMC(Fa n,w, w)
N(¥,u)=n

ey

gr,v(n) :

We can efficiently compute a count distribution as long as
there exists a domain-lifted algorithm for WFOMC on the
sentence in question.

Theorem 1 (Proposition 4 in Kuzelka (2021)). For any set
of predicates U, if there is a domain-lifted oracle for com-
puting WFOMC(T', n, w, ), the count distribution qr v can
be obtained by a polynomial number of queries to this ora-
cle.

Graph Theory

We will need some tools from graph theory to handle the tree
constraint. We deal with undirected weighted graphs without
self-loops. We can characterise any such graph by its sym-
metric weighted adjacency matrix A, whose element at po-
sition (a, b) denotes the weight on the edge {a,b}. Denote
V(A) as the set of vertices in A, and £(A) the set of edges
with non-zero weight. Let S(A) be the set of (weighted)
spanning trees of A. Define
[T Awn

TS(A,F):= ),
TeS(A): {a,b}eT
FT

@

as the weighted sum of spanning trees of A that contain all
edges in F < £(A). Here we give some intuitions about the
constraint that certain edges must be present in the spanning
trees: in our algorithm, we sample a spanning tree edge by
edge, and at each step we need to compute the number of
trees that must contain the already sampled edges. TS(A, F)
can be efficiently computed in time polynomial in |V(A)]
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by contracting the edges that must be present, then applying
Kirchhoff’s theorem (Chaiken and Kleitman 1978). We refer
the reader to van Bremen and KuZzelka (2021) for the details.

Problem Statement

We are now ready to formally define the problem of uni-
form first-order sampling, along with its weighted counter-
part symmetric weighted first-order sampling.

Definition 4 (Uniform first-order sampling). Given a first-
order sentence T, the uniform first-order sampling prob-
lem on T' over a domain of size n is to generate a random
model G(I',n) in modelsy, (I") such that P[G(T',n) = p] =
1/|models, (T')| for every p € models, (T').

In some cases—for example, when sampling from

MLNs—we are more interested in a weighted model sam-
pler of a sentence, that generates models with differing prob-
abilities according to the atoms that appear in the model. We
use the same weighting definition as in symmetric WFOMC,
and define the problem of symmetric weighted first-order
sampling.
Definition 5 (Symmetric weighted first-order sampling).
Let (w,w) be a weighting on a sentence I'. The symmetric
weighted first-order sampling problem on I" over a domain
of size n under (w,w) is to generate a model G(I",n,w, w)
of T such that

_ W, (1)
WFOMC(T, n, w, w)

PG, n, w, @) = p] 3)

Sor every € models, (T).

We call a probabilistic algorithm that realises a solution
to the uniform or symmetric weighted first-order sampling
problem a uniform model sampler (UMS) or weighted model
sampler (WMS) respectively. Several sampling problems in
combinatorics can be directly solved given access to a UMS
or WMS, as long as the characterizing properties of the
structure in the question can be encoded as a first-order logic
sentence.

Example 1. A WMS of the sentence > YxVy : (E(x,y) —
E(y,x)) n—E(x,x) AVaVy : x # y A clig(z) A clig(y) —
E(z,y) with cardinality constraint |clig| = k (i.e., the
clique size is k) over a domain of size n under the weighting
w(E) = 3,w(E) = 1 and w(cliq) = w(cliq) = 1 samples
an Erdos-Rényi graph (Erdos and Rényi 1960) G, ,—o.9 with
planted clique of size k.

We also adapt the notion of data complexity of WFOMC
to the sampling problem, and say a UMS or WMS is
domain-lifted (or simply lifted) if the model generation algo-
rithm runs in time polynomial in the domain size n. We call
a sentence, or class of sentences, that admit a domain-lifted
UMS or WMS domain-liftable under sampling.

We remark that the uniform (resp. symmetric weighted)
first-order sampling problem is not a trivial task, since the di-
rect reduction from sampling to counting may be intractable.
By the traditional reduction from sampling to counting, one

>The inequality = # y can be easily realized by cardinality
constraints (Beame et al. 2015, Lemma 3.5).



can sample a model p of a sentence I' by iteratively deter-
mining whether an atom a is true in p by computing the
conditional probability P[a | ' A o] = WFOMC(T" A 0 A
a,n, w, w)/WFOMC(T" A o,n,w,w), where o is the con-
junction of all sampled literal evidences. However, as stated
by Van den Broeck and Davis (2012), there always exists
a sentence I' in UFO? and a conjunction o such that the
WFOMC of I' A ¢ cannot be computed by any algorithm
whose runtime grows polynomially in the size of o, unless
P = NP.

Domain-Liftability Under Sampling of UFO?

In this section, we show that any sentence in UFO? is
domain-liftable under sampling.

Proposition 1. The fragment UFO? is domain-liftable un-
der sampling.

To prove the proposition above, we will construct a WMS
for any UFO? sentence, and then prove it is domain-lifted.

Main Algorithm

Fix an input sentence I" and domain A = {¢, ¢, ..., ¢, } of
size n. Denote 2 = {{1,2},{1,3},...,{n — 1,n}} the set
of all distinct index pairs over [n]. Let Pr be the set of all m
predicates in I'.

Define a unary literal as an atomic predicate or its nega-
tion using only the variable x, and a binary literal an atomic
predicate or its negation using both variables x and y. Note
that an atom like R(z,z) or its negation is considered a
unary literal, even though R is a binary relation. A binary
literal is always of the form R(z,y) or R(y,x), or their re-
spective negations. A unary type (for short, U-type) 7 is de-
fined as a maximal consistent conjunction of unary literals,
and a binary type® (for short, B-type) p is a maximal con-
sistent conjunction of binary literals. A type is either a U- or
B-type. Note that a type can be viewed as a quantifier-free
formula that is the conjunction of its elements. We use U/ and
B to denote the set of all U-types and B-types, respectively,
of a sentence.

Example 2. Consider the formula (x,y) = (F(z,y) v
G(x)) v (=G(z) v —H(x)). Then there are 23 = 8 U-types
on Y(x,y); one such example is —F(x,z) n G(x) A H(z).
There are 4 B-types: F(z,y) A F(y,x), F(z,y) A—F(y, x),
—F(z,y) A F(y,z) and =F(z,y) A =F(y, ).

A type assignment T over the domain A is an ordered list
(T4, T2y« oy Ty P1,2, P1,3, - - - » Pn—1,n) that associates each
domain element ¢; with a unary type 7; € U and each dis-
tinct element pair {c;, c;} with a binary type p; ; € 5. When
associated with a domain element (resp. element pair), the
U-type 7; (resp. B-type p; ;) can be grounded out to 7;(c;)
(resp. p; ;(ci,c;)). Any possible world w is fully charac-
terised by a unique type assignment 7. Moreover, if we con-
join the grounding of all types in T" as X = /\ie[n] Ti(ci) A

3Note that although the definition presented here of a unary type
is precisely the same as the notion of a /-fype well known in the
logic literature, binary types are defined differently from 2-rypes,
in that a binary type does not include information about the unary
types of its two constituent elements.
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Nijiea Pij(cir¢;)s WFOMC(T' A X7, n, w, w) is exactly

W (w) if w is a model of T, and 0 otherwise. Thus, sampling

a model from the sentence I' according to (3) is equivalent

to random generation of a type assignment 7" with the prob-

ability

P[T] = WFOMC(T A ZT,nﬂfj,u’))
WFOMC(T, n, w,w)

Example 3. Let I be the sentence from Example 1, n = 2
and k = 2. The type assignment

T = (clig(z) n —E(x,z),clig(z) A —~E(z,x),
E(z,y) A E(y,z))
fully characterises a unique possible world w
{clig(c1), cliq(ca), E(c1,c2), E(ca, c1)}. Since w is a model
of T, WFOMC(T' A 7, n,w, @) = W(w).
For brevity, we simply use 7; to denote both the U-type
7; and its grounding 7;(c¢;) for a specific domain element c¢;
in the rest of the paper. Similarly, p; ; denotes both p; ; and
pi.j(¢i,c;j). We randomly assign all types 7;’s and p; ;’s in
an incremental manner:

4)

e we start with a trivial sentence o = T,

* at the first step, we randomly assign the U-types 7;’s to
all domain elements with the probability

WFOMC(F N /\ie[n] Tiy N, W, ’II))
Tnl = WFOMC(T, n, w, )

and conjoin the sampled corresponding grounding to o,
iLe., o o A Niepy Tir and

]P[Tl,...

)

* at each following step, we randomly select a B-type p; ;
from B for the element pair {c;, ¢;} with probability

Plp; ] = WFOMC(T' A 0 A pj j,n,w, @)
Piil = TTWFOMC(T A o, n, w, @)

and conjoin the sampled p; ; to 0,1.., 0 < 0 A p; ;.

®)

Once the algorithm has gone over all element pairs indexed
in 2, the probability of the resulting type assignment is guar-
anteed to be (4) by the chain rule of probability.

The first step of randomly assigning all U-types is cru-
cial to our algorithm. As mentioned before, computing the
WFOMC of I' A ¢ (and therefore (5)) may be intractable.
However, later in the section, we shall see that if all U-types
have been determined, we can compute (5) for any possible
o and p; ; in a domain-lifted way.

The main sampling algorithm for UFO? is presented in
Algorithm 1. At the beginning of the algorithm, we ran-
domly assign all U-types using a subroutine UnaryTypes
which will be introduced in the next subsection. In lines 6-
19, the algorithm traverses all pairs of distinct domain ele-
ments, and randomly assigns a B-type for each of them in
lines 7-18.

Complexity

The computation of Algorithm 1 comes mainly from
UnaryTypes and computing the probability (5). We will
analyse the computational complexity of each of them re-
spectively.



Algorithm 1: Weighted Model Sampler for UFO?

Input: A UFO? sentence T", a domain A of size n and a
weighting (w, @)
Output: A model 1 of I with the probability (3)
: T =(11,...,m7) < UnaryTypes(T, A)
0 < i€[n] Ti
W — WFOMC(T' A o, n, w, W)
Q< {1,2},...,{n—1,n}}
B « the set of all B-types of I"
for {i,j} € Q do
for p € Bdo
W, — WFOMC(T' A ¢ A p(ci,¢5),n, w, W)
/I Uniform(0, 1) produces a random number
from the uniform distribution over [0, 1]
if Uniform(0,1) < %2 then
o — o A ple,cj)
W — W,
append pto T’
break
else
W—W-W,

WRe RN hw®2

10:
11:
12:
13:
14:
15:
16:
17: end if

18: end for

19: end for

20: return the unique possible world characterised by T’

UnaryTypes We will provide a domain-lifted algorithm
realizing UnaryTypes. Denote T, = (71,72, ..., 7,) an as-
signment of U-types over A. Like in the previous section, we
denote by Y7, the conjunction of the groundings of types in
T.,. Since Pr is of size m, the size of U is 2. Let 79 be
the jth U-type in Y. For any U-types assignment 7,,, we use
nrp, = (n1,nsa,...,nam) to denote the U-type cardinality
vector of T, where each n; is the multiplicity of 70 in T,.
Since predicate weightings are symmetric (i.e. they give the
same weight to every ground atom of a given predicate), we
have

WFOMC(T" A X7, , n, w, w) = WFOMC(T' A X177, n, w, W),
i.e., the probability of the U-types assignments T, and T},
is equal as long as ny,, = nyv. Hence, if the U-type cardl—
nahty vector n has already been sampled, we can randomly
assign the U-types 7i,...,T, by, for each j € [2™], uni-
formly selecting n; elements from A without replacement
and assigning them the U-type 7).

The probability of every U-type cardinality vector n is
proportional to ZTU:nTu —n WFOMC(T'A X7, ,n, w, w). We
can sample it by

1. conjoining Vo : &;(x) « 7U) to T for each j €
[2™], where ¢; is a new predicate with neutral weight-
ing w;(€) = w;(§) = 1, to obtain a new sentence I';

2. computing the count distribution of ¥ = {&;,...,&m }
conditional on I as g v;

3. generating a vector n according to qrv .
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Since UFO? is a subfragment of FO? and thus domain-
liftable (den Broeck, Meert, and Darwiche 2014), computing
the count distribution gr v is tractable by Theorem 1.

Finally, we remark here that thanks to Theorem 1, the
method proposed above for sampling U-types can gener-
alise beyond UFO? as long as the first-order sentence I
is liftable.

Computing Probability Next, let us deal with the proba-
bility (5). It is sufficient to prove that there exists a domain-
lifted algorithm for computing WFOMC(T" A o, n, w, w) for
any o appearing in Algorithm 1. Denote the set of index
pairs that have been processed or are being processed as
<.

For any o appearing in the algorithm, we can always write
itaso = Xp, A (i, e Pij where T,, = {71,...,7,} is
a U-types assignment and p; ; € B for all {4, j} € Q. The
grounding of the sentence I' = VaVy : ¢(x,y) over the
domain A can be written as

n= /\ 1;[} C?acl /\ (1/’(61701') A 1/’(01',61))-

i€[n] {1,j}eQ

For all {7, j} € Q, let ¥/(c;, ¢;) denote the ground sentence
¥(ci, ;) A(cy, ¢;), where all determined atoms have been
replaced by true or false, according to 7; and 7;. Then we

have
nno =Sra N\ (piat(ce)n N\ ¥ (eic).
{1,5}eQ\

{i,7}e¥
Observe that each conjunct in the formula above is inde-
pendent, (that is, they do not share any propositional vari-
ables). Denote w; = WMC(7;, w,w), #; ; = WMC(p; ; A
Y (¢i,¢j), w,w) and r; ; = WMC(¢Y' (¢, ¢;), w, w), where
WMC(:, -, ) denotes the weighted model count (Beame
et al. 2015). We can thus write the WFOMC of I' A ¢ as

WFOMC(T' A oyn,w @) = [ wi- [ 7y

i€[n] {,j}e¥

[

{i,gte\¥

(6)

ri,j-

Computing each w;, #; ; and 7; ; is independent of n, and
the total number of wy;, #; ; and 7; ; is at most n?. It is easy
to check that evaluating (6) is domain-lifted.

Proof of Proposition 1. We prove that Algorithm 1 is a
domain-lifted WMS for any UFO? sentence. Algorithm 1
needs to call UnaryTypes once and compute O(n?) prob-
abilities (5) to sample a model. By the above analysis of
UnaryTypes and (5), the total runtime of Algorithm 1 is
clearly polynomial in the domain size n. O

Domain-Liftability Under Sampling of UFO?
with Tree and Cardinality Constraints

In addition to our sampling result for the fragment UFO?
discussed in the previous section, in this section, we will
also be proving domain-liftability results under sampling
for tree and cardinality constraints, which are not necessar-
ily expressible in first-order logic without grounding out the



Algorithm 2: Weighted Model Sampler for UFO? with
Constraints
Input: An UFO? sentence I, a constraint C, a domain A of
size n and a weighting (w, )
Output: A model p from models, (I' A C) with the proba-
bility (7)

1. T = (’7' Tyoos

,Tn) < UnaryTypes(T',C, A)
3: W «— WFOMC(T' A 0 A C,n,w, @)

8 W, — WFOMC(I' Ao A p(ci,¢5) AC, i, w, W)

constraint in question. This is following recent analogous re-
sults for WFOMC (Kuzelka 2021; van Bremen and Kuzelka
2021).

We therefore define a constraint C on a sentence I' as a
function mapping every possible world that can be formed
on the predicates in T to {T, L}. For instance, a tree con-
straint on a binary predicate R requires that the ground
atoms of R in w form a tree (mapping such possible worlds
to T, and others L ). Multiple constraints can always be com-
bined into a single one by considering the logical “and” of
their outputs. The satisfaction relation = and the logical and
symbol A are extended naturally for constraints: w =T A C
means that w = I" and C(w) = T. Other notation and ter-
minology is also extended accordingly by taking I' A C as
a pseudo-sentence, e.g., models, (' A C) denotes all possi-
ble worlds satisfying I' A C. We note here that the reduc-
tion in Theorem 1 from computation of a count distribution
to WFOMC still works for pseudo-sentences, and refer the
reader to Appendix for the details.

WMS for UFO? with Constraints

The uniform and symmetric weighted sampling problems
for UFO? with constraints are defined analogous to Defi-
nition 4 and 5 respectively. In this section, we consider the
symmetric weighted sampling problem (of which the uni-
form sampling problem is a special case). Recall that the
symmetric weighted sampling problem on a given sentence
" with constraint C under (w, w) requires the probability of
any generated model G(I',C, n, w, @) to be

_ W, (1)

WFOMC(T A C, n,w,w)

(N
for every 1 € models,(I" A C). We generalise the terms
WMS, lifted and domain-liftable under sampling to the con-
straint case in the natural way.

We construct a WMS for UFO? with constraints in Algo-
rithm 2, which is derived based on Algorithm 1 by consider-
ing the constraints when executing the UnaryTypes subpro-
cedure and computing WFOMCs. Sampling cell types for a
UFO? sentence I' with constraint C can be realised in al-
most the same way described in Section , except that we
sample the cardinality vector of U-types using the count dis-
tribution gr- ¢, rather than gr .

P[G(T,C,n,w,w) = u]
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Tree Constraints

Let us first consider the tree constraint. For any possible
world w and predicate P € Pr, we denote by wp the set
of ground atoms for P that are true in w. Recall from (van
Bremen and Kuzelka 2021) that a tree constraint on some
distinguished binary predicate R on a possible world w, de-
noted by T p(w), returns T i.f.f.

* the relation defined by wg, is antireflexive and symmetric,
and

* wpg is a tree when interpreted as an undirected graph.

Though it may seem complicated, we show that a single
tree constraint does not hurt the liftability of UFO?Z.

Proposition 2. The fragment UFO? with a single tree con-
straint is domain-liftable under sampling.

Proof. Tt is sufficient to prove that Algorithm 2 is domain-
lifted for any UFO? sentence I' with any single tree con-
straint T . According to the proof of Proposition 1, we
only need to analyse the complexity of UnaryTypes and
WEFOMC of I" A o A Tg. As discussed before, UnaryTypes
is clearly domain-lifted, since computing the count distribu-
tion is reducible to the WFOMC problem of UFO? with a
single tree constraint, which has been proved to be domain-
liftable in (van Bremen and KuZelka 2021).

Let us analyse WFOMC(I' A o A Tg,n,w,w).
Adopt all notations in Section . Let F, and F. be
the set of all index pairs {i,5} € € for which
R(ci,c;j) and —R(c;, ¢j) is true in o respectively. Denote
r;tj WMC(Y'(¢;,¢;) A R(ei,cj), w,w) and Tii
WMC(Y'(¢;,¢5) A —R(c;,¢j), w, w). Let F be the set of
index pairs {i, j} € Q\Q' such that r; ; = 0. Let Q" = O\
be the set of indices that algorithm does not reach yet. Recall
w; = WMC(TZ‘,UJ7’IIJ) and fi,j = WMC(pi,j,w,w). Con-
sider some tree T" over [n] such that 7, U F < T and does
not contain any edges in F.. We will compute the weighted
sum W of every model i of I' A o that satisfies ur = T (in
other words, the WFOMC of I A ¢ limited to models that
contain exactly the tree T'). We can write:

Wr=]Tw- [] #;- I o T iy
ie[n] {i,j ey {i,j eT Q" {i,jreQ\T
= Hw, 74 n szw 1_[ T
ie[n] {i,jyev {i,j}eF {i,j}eQ"\F
T

{i.jyeTn(@N\F) "id

Summing both sides of the equation across all trees contain-
ing F, u F while not containing any edges in F_. is the



WFOMC of I' A ¢ with the tree constraint T :
WFOMC(T' A 0, Tr,n,w,w)

> o

TSO\F.
FoOFCT
= [Tw- [T 75 I1 75 11 rmip
i€[n] {i,j}e¥ {i,j}eF {1,7}eQ"\F
+ (3)
>l =
TCONF, {ij}eFg0F {ij}eTr(QNF) i
FsuFCT
= [Tw- [T 75 I1 75 11 mip
i€[n] {i,gteq {i.j}eF {i,5}eQ\F
TS(A, Fy U F)
where A is the graph with weighted adjacency matrix:
ri.
L1 if{i,j} € Q"\F
i,
Aai) =0 if{i,j}eF
1 otherwise

Since the quantity TS(A, F, u F) can be computed in time
polynomial in the size n of A, we can conclude that evalu-
ating this WFOMC is also domain-lifted, which completes
the proof. O

Cardinality Constraints

Next, let us incorporate cardinality constraints into the sam-
pling problem. Given a sentence I' containing predicates Pr.,
a cardinality constraint w.r.t. I" is a function on possible

worlds
Cr(w) := {

where f € NIPrl — {0, 1}. For brevity, when the function f
is in the form 1[|P;| = n;] where P; is a predicate, n; € N,
and 1[-] is the indicator function, we can simply write the
cardinality constraint C; as | P;| = n;.

We are now ready to present our final result on the
domain-liftability under sampling of UFQ?, this time with
tree and cardinality constraints.

T i f(N(Prw)) = 1
1 otherwise

Theorem 2. The fragment UFO? with a single tree con-
straint and multiple cardinality constraints is domain-
liftable under sampling.

Proof. Given a UFO? sentence I', a tree constraint Tp
and multiple cardinality constraints Cy,,...,Cy,,, we can
first construct a new cardinality constraint Cy, where f =
minf\il fi» and then combine it with T resulting a single
constraint C. We will prove Algorithm 2 is domain-lifted for
any such constraint.

Following the same argument of Proposition 1 and 2,
we investigate the complexity of UnaryTypes(I',C,A)
and WFOMC(T' A ¢ A C,n,w,w) respectively. Similarly,
UnaryTypes(T',C, A) is easily proved domain-lifted since
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computation of the necessary count distribution is reducible
to computation of the WFOMC of I' A Tr A Cy, which is
domain-liftable (van Bremen and Kuzelka 2021).

Next, let us consider WFOMC(T A ¢ A C,n,w,w). Let
D = X pep. {0, ..., n(F)} Recall f is a function map-
ping every n € D to {0, 1}, and

4qr Ao ATR,Pr (Il) =

2

pemodels, (TAcATR):
N(Pr,u)=n

W(n)
WFOMC(T' A 0 A Tr,n,w,w)’

The WFOMC of a sentence I' A o with constraint C can be
written as

WFOMC(T'Ao A C,n,w,w)

W)

2

pemodels, (TAcATR):
N(Pr,p)=n

= WFOMC(T A o A Tg,n,w, ©)-
Z f(n) *qUr Ao ATR,Pr (Il)

neD

pemodels, (Ao AC)

> fn)-

neD

W(p)

Computing the term WFOMC(T' Ac AT g, n, w, @) has been
proven domain-lifted by Proposition 2. The remaining sum-
mation is over the count distribution of Pr conditioned on
I' Ao AT g, which is however also reducible to the WFOMC
of the liftable I' A 0 A Tg. It is easy to check computing
WFOMC(T' A ¢ A C,n,w,w) is in time polynomial in 7,
which the conclusion follows. O

Algorithmic Improvements

We further optimise Algorithm 2 to make it more efficient
in practice. Briefly, we devise a faster UnaryTypes and
use caching to avoid recomputing WFOMCs and WMCs
throughout the algorithm. Details can be found in the online
technical report*.

Applications and Experiments

In this section, we present some applications of the first-
order sampling problem and examine the scalability of our
algorithm in practice. All experiments were performed on a
computer with an 8-core Intel i7 3.60GHz processor and 32
GB of RAM.

Sampling Combinatorial Structures

We first consider the problem of counting k-colored trees.
Recall that a graph is said to be k-colorable if every ver-
tex can be colored with one of k colors such that no two
vertices of the same color are adjacent to one another. A k-
colored graph is a k-colorable graph together with a valid
color assignment. We evaluated our algorithm on 2-, 3-, and
4-colored trees, and plotted a few examples of 3-colored
trees of size 10 in Figure 1a.

*https://github.com/lucienwang1009/lifted_sampling_ufo2
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Figure 1: (a) Sampled 3-colored (red, blue, and green) trees of size 10. (b) Sampled 2-colored (red and blue) trees of size 10
with cardinality constraint |red| = 3. (c) Examples of the sampled possible worlds from “friends-smokers” MLN over a domain
of size 10. Red vertices denote smokers, and black vertices non-smokers. Two vertices are connected if the corresponding pair

of people are friends (best viewed in color).

We next consider the problem posed in the introduction of
the paper: uniform generation of a labelled 2-colored tree of
size n, where the first color is used & times and the other n —
k times. This problem can be encoded as a UFO? sentence
with tree and cardinality constraints, as already shown in the
introduction. We present a few such trees generated by our
algorithm with n = 10 and k = 3 in Figure 1b.

Sampling from MLNs

We now turn to applications of our approach to sam-
pling possible worlds from MLNs. Recall that an
MLN is a finite set of weighted first-order formulas
{(wy,a1), ..., (Wm, @m)}, Where each w; is either a real-
valued weight or o0, and «; is a quantifier-free first-order
formula. An MLN & paired with a domain A induces a prob-
ability distribution over possible worlds:

Pa.a(w) =
{ . eXp (Z(a,w)ebg; w- N(a7w)> ifw = Qo ©

Zo.a
0 otherwise

where & and ®., denote the real-valued and co-valued for-
mulas in ® respectively, N («, w) is the number of ground-
ings of « satisfied in w, and Zg A, called the partition func-
tion, is a normalisation constant. The sampling problem on
an MLN ® over a domain A is to randomly generate a pos-
sible world w with the probability P[w] = pe a(w).

Following the reduction from the partition function to
WFOMC (Van den Broeck et al. 2011), we can reduce the
sampling problem on MLNSs to a symmetric weighted first-
order sampling problem introduced in this paper. Given an
MLN O, for every real-valued formula (o, w;) € g, where
the free variables in «; are x = {z1,..., 2}, we create a
new formula Vx,&;(x) < «;(x), where &; is an auxiliary
predicate. When «; has w; = o0, we instead create a new
formula Vx, v;(x). We denote the conjunction of the result-
ing set of sentences by I' and set the weighting function to
be w(&;) = exp(w;) and w(§;) = 1, and for all other pred-
icates we set both w and w to be 1. One can check that any
possible world satisfying &, corresponds to a model y of T’
by removing all atoms with auxiliary predicates £;’s, and the
required probability (3) of u is equal to (9).

We note here, the aforementioned reduction to symmetric
weighted first-order sampling has the helpful property that
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the number of variables in the sentence produced by the re-
duction is the same as the maximum number of variables
appearing in any formula of the original MLN. In particular,
this means that if the number of variables used in each of the
formulas in the MLN is limited to two, the reduced sentence
is in UFO? and thus liftable under sampling.

We consider the sampling problem on the classic “friends-
smokers” MLN:

¢ = {(007 _'fT(LL', l‘))7 (007 fr(azy) - fr(y,cv)),
(0.2, fr(z,y) A sm(z) — sm(y)), (0, sm(x))}.

This MLN models that people who are friends with smokers
are likely to smoke themselves. Examples of the sampled
possible worlds of ® over a domain of size 10 is illustrated
in Figure 1c.

Performance Analysis

We further analyse the scalability of our algorithm on the ex-
amples of k-colored trees and the “friends-smokers” MLN.
For the experiment on k-colored trees, we evaluated the av-
erage runtime across different domain sizes (with 10 sam-
ples for every size) for 2-, 3- and 4-colored trees and plotted
it in Figure 2a. Similarly, the runtime for sampling possi-
ble worlds from the “friends-smokers” MLN over different
domain sizes is shown in Figure 2b.

To the best of our knowledge, this is the first exact lifted
sampling algorithm for first-order logic, so the closest com-
parison would be against a state-of-the-art propositional
sampler like UniGen (Soos, Gocht, and Meel 2020). We ran
UniGen on the “friends-smokers” MLN, but it could only
scale to domains of size 30, whereas our approach takes less
than 1 second on a domain of size 100, as shown in Fig. 2b.

Discussion and Conclusion

We introduced the problem of first-order sampling, as well
as the notion of domain-liftability under sampling. We fur-
ther showed that the fragment UFO? is domain-liftable
under sampling, even with the addition of cardinality con-
straints and a single tree constraint.

A natural direction for future work is to see if our re-
sults can be extended from UFO? to FOQ, or even further
beyond to the two-variable fragment with counting quanti-
fiers C2. Analogous results have been obtained for domain-
liftability in the counting setting, however, we conjecture
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Figure 2: (a) Runtime for sampling 2-, 3-, and 4-colored
trees. (b) Comparison of computation between our algorithm
(FO) and propositional sampling method (Propositional) for
the “friends-smokers” MLN for various domain size.

that transferring this to the sampling setting would require
heavier machinery or may not even be possible at all: this
raises questions to what extent the classic equivalence be-
tween counting and sampling holds in the first-order con-
text. For example, a UMS for C?2 can be used to solve the
uniform generation problem of k-regular graphs, on which
there have been highly non-trivial works, e.g., (Gao and
Wormald 2017). On the other hand, we rigorously show in
Appendix that directly applying our sampling algorithm on
an FO? sentence with existential quantifiers is intractable
(not domain-lifted) unless FP = #P, which suggests that
an entirely different approach is necessary. Thus, sampling
for the full fragment of FOQ, and even more so for C2, is an
interesting challenge for the future.
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Appendix
Reduction of Count Distribution for First-order
Sentence with Constraints
It is easy to prove the reduction from computation of count
distributions to WFOMC for sentences with constraints, fol-
lowing the proof of Theorem 1 in (KuZelka 2020).
Corollary 1. For any set of predicates V and constraint C, if
there is a domain-lifted oracle for computing WFOMC(T' A
C,n,w,w), the count distribution qr »c w can be obtained
by a polynomial number of queries to this oracle.

of

n?

Proof. Given a sentence I' with constraint C, a list
predicates ¥ = {Py,...,P,} and a domain of size
the domain® of its count distribution grac,w is D

X0, 1, nr B et M = [peritv(P) 4

1,...,ne®(Pn) 4 1], Extending the range of a weight-
ing from non-negative real values to complex numbers,
and applying Discrete Fourier Transform (DFT) and inverse
DFT (Kuzelka, Kungurtsev, and Wang 2020) on gr .¢c,w, we
have

WFOMC(T A C, n, wy, W)

A k = s 1
grac,u(k) WFOMC(T A C,m, w, 0) (10)
where for all j € [m], wi(P;) = w(P;) - e~27ki/Mi and
wk(P;) = w(Pj), and
k) - exp(i2m(n,k/M
drnc.u(n) = Deepdrw (k) -expln(a k/MD) -

[T M
where k/M denotes component-wise division, and {-,-) is
the inner product. By (10) and (11), the number of WFOMC
calls required to compute the count distribution is in poly-
nomial in n. O

A Counterexample with Existential Quantifiers

We provide an FO? sentence with existential quantifiers that
does not admit efficient sampling by our algorithm:
I =VaVy: E(z,y) > E(y,z)A

Vo : —E(x,z)A

Vady : E(z,y).
Uniform sampling here is equivalent to uniform generation
of an undirected graph with no isolated vertices. Note there
is an efficient rejection sampling algorithm for this problem.
However, we will show that Algorithm 1 fails to process I'
in time polynomial in the domain size.

When we run Algorithm 1 with I', we always need to
compute the WFOMC of I' A A\; 112 —E (4, ) for all pos-
sible sets £ of element pairs. By viewing every £ as an
undirected graph G indexed in the domain, whose edges
are exactly £, the WFOMC of I" A /\{i,j}¢5 —FE(i,j) un-
der the weighting mapping all predicates to 1 corresponds
to counting the edge coverings of G, which is known
to be #P-complete. In other words, there always exists a
set of element pairs £ such that the WFOMC of T" A
Nijiee ~E (4, j) cannot be computed by any domain-lifted
algorithm, unless FP = #P.

>Here, domain refers to the domain of a mathematical function,
not to a domain as a set of domain elements.
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