
A Complete Criterion for Value of Information in Soluble Influence Diagrams

Chris van Merwijk∗,1 Ryan Carey∗,1 Tom Everitt2

1University of Oxford,
2DeepMind

chris.vanmerwijk@philosophy.ox.ac.uk, ryan.carey@jesus.ox.ac.uk, tomeveritt@google.com

Abstract

Influence diagrams have recently been used to analyse the
safety and fairness properties of AI systems. A key building
block for this analysis is a graphical criterion for value of
information (VoI). This paper establishes the first complete
graphical criterion for VoI in influence diagrams with multiple
decisions. Along the way, we establish two techniques for
proving properties of multi-decision influence diagrams: ID
homomorphisms are structure-preserving transformations of
influence diagrams, while a Tree of Systems is a collection of
paths that captures how information and control can flow in
an influence diagram.

1 Introduction
One approach to analysing the safety and fairness of AI sys-
tems is to represent them using variants of Bayesian networks
(Everitt et al. 2019; Kusner et al. 2017). Influence diagrams
(IDs) can be viewed an extension of Bayesian networks for
representing agents (Howard et al. 2005; Everitt et al. 2021a).
This graphical perspective offers a concise view of key re-
lationships, that abstracts away from much of the internal
complexity of modern-day AI systems.

Once a decision problem is represented graphically, key
aspects can be summarised. One well-studied concept is the
value of information (VoI) (Howard 1966), which describes
how much more utility an agent is able to obtain if it can
observe a variable in its environment, compared with if it
cannot. Other summary concepts includes “materiality”,
“value of control”, “response incentives”.

These concepts have been used to analyse the redi-
rectability (Everitt et al. 2021b; Holtman 2020) of AI
systems, fairness (Everitt et al. 2021a; Ashurst et al. 2022),
ambitiousness (Cohen, Vellambi, and Hutter 2020), and
the safety of reward learning systems (Armstrong et al.
2020; Everitt et al. 2019; Langlois and Everitt 2021; Evans
and Kasirzadeh 2021; Farquhar, Carey, and Everitt 2022).
Typically, this analysis involves applying graphical criteria,
that indicate which properties can or cannot occur in a given
diagram, based on the graph structure alone. Graphical
criteria are useful because they enable qualitative judgements

∗Equal contribution
Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

X

D V X ′ D′

Q′

U

chance node
decision node
utility node

Figure 1: Does X has positive value of information for D?

even when the precise functional relationships between
variables are unknown or unspecified.

For the single-decision case, complete criteria have been
established for all four of the aforementioned concepts
(Everitt et al. 2021a). However, many AI applications such as
reinforcement learning involve an agent making multiple de-
cisions. For the multi-decision case, multiple criteria for VoI
have been proposed (Nielsen and Jensen 1999; Shachter 1998;
Nilsson and Lauritzen 2000), but none proven complete.

This means that for some graphs, it is not known whether
a node can have positive VoI. For example, in Fig. 1, it is
not known whether it can be valuable for D to observe X .
Specifically, the edge X → D does not meet the criterion
of nonrequisiteness used by Nilsson and Lauritzen (2000),
so we cannot rule out that it contains valuable information.
However, the procedure that is used to prove completeness
in the single-decision setting (Everitt et al. 2021a) does not
establish positive VoI.

We prove that the graphical criterion of Nilsson and Lau-
ritzen (2000) is complete, in that any environmental variable
not guaranteed to have zero VoI by their criterion must have
positive VoI in some compatible ID. In the course of the
proof, we develop several tools for reasoning about soluble
IDs. In summary, our main contributions are:
• ID homomorphisms. These allow us to transform an ID

into another with similar properties, that may be more
easily analysed (Section 4).
• Trees of systems. A system is a set of paths that make

information valuable to a decision. A tree of systems
describes how those paths traverse other decisions
(Section 5.3).
• A complete VoI criterion. We prove the criterion in

Section 5. In Section 6 we explain why this criterion may
be useful, how it may be used in an AI safety application,
and share an open source implementation.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

10034



2 Setup
Limited memory influence diagrams (also called LIMIDs) are
graphical models containing decision and utility nodes, used
to model decision-making problems (Howard 1966; Nilsson
and Lauritzen 2000).

Definition 1 (Limited memory influence diagram graph;
Nilsson and Lauritzen 2000). A (limited memory) ID graph
is a directed acyclic graph G=(V , E) where the vertex set
V is partitioned into chance- (X), decision- (D), and utility
nodes (U ). Utility nodes lack children.

Since all of the influence diagram graphs in this paper have
limited memory, we will consistently refer to them simply
as influence diagram (ID) graphs. We denote the parents, de-
scendants, and family of a node V ∈ V as Pa(V ),Desc(V ),
and Fa(V ) = Pa(V )∪{V }. For Y ∈ V , we denote an edge
by V → Y , and a directed path by V 99K Y .

To specify the precise statistical relationships, rather than
just their structure, we will use a model that attaches proba-
bility distributions to the variables in an ID graph.

Definition 2. An influence diagram (ID) is a tuple M =
(G, dom, P ) where G is an ID graph, dom(X) is a finite do-
main for each nodeX in G that is real-valued for utility nodes,
and P (X|Pa(X)) is a conditional probability distribution
(CPD) for each chance and utility node X in G. We will say
thatM is compatible with G, or simply thatM is an ID on G.

The decision-making task is to maximize the sum of
expected utilities by selecting a CPD πD(D|Pa(D)),
called a decision rule, for each decision D ∈ D. A policy
π = {πD}D∈D consists of one decision rule for each
decision. Once the policy is specified, this induces joint
probability distribution PMπ over all the variables. We denote
expectations by EMπ and omit the superscript when clear
from context. A policy π is called optimal if it maximises
Eπ[U ], where U :=

∑
U∈U U . Throughout this paper, we

use subscripts for policies, and superscripts for indexing. A
lowercase v ∈ dom(V ) denotes an outcome of V .

Some past work has assumed “no-forgetting”, meaning
that every decision d is allowed to depend on the value v of
any past decision D′ or its observations Pa(D′), even when
that variable V ∈ Fa(D′) is not a parent of the current deci-
sion (V 6∈ Pa(D)) (Shachter 1986). In contrast, we follow
the more flexible convention of limited memory IDs (Nilsson
and Lauritzen 2000), by explicitly indicating whether a deci-
sion d can depend on the value of an observation or decision
v by the presence (or absence) of an edge V → D, just as
we would do with any variable that is not associated with a
past decision.

Within the space of limited memory IDs, this paper
focuses on soluble IDs (Nilsson and Lauritzen 2000), also
known as IDs with “sufficient recall” (Milch and Koller
2008). The solubility assumption requires that it is always
possible to choose an optimal decision rule without knowing
what decision rules were followed by past decisions. The
formal definition uses d-separation.

Definition 3 (d-separation; Verma and Pearl (1988)). A
path p is blocked by a set of nodes Z if p contains a
collider X → W ← Y , such that neither W nor any of its

descendants are in Z, or p contains a chain X → W → Y
or fork X ←W → Y where W is in Z. If p is not blocked,
then it is active. For disjoint sets X , Y , Z, the set Z is said
to d-separate X from Y , (X ⊥ Y | Z) if Z blocks every
path from a node in X to a node in Y . Sets that are not
d-separated are called d-connected.
Definition 4 (Solubility; Nilsson and Lauritzen (2000)). For
an ID graph G let the mapping extension G′ be a modified
version of G where a chance node parent Πi is added to each
decision Di. Then G is soluble if there exists an ordering
D1, . . . , Dn over the decisions, such that in the mapping
extension G′, for all i:

Π<i ⊥ U(Di) | Fa(Di)

where Π<i := {Πj | j < i} and U(Di) := U ∩ Desc(Di).
We will subsequently only consider ID graphs that are

soluble. Solubility is entailed by the popular more restric-
tive “no forgetting” assumption, where the decision-maker
remembers previous decisions and observations (Shachter
1986, 2016): in no forgetting, the family Fa(Di) includes
Fa(Dj) for j < i, so every policy node Πj is d-separated
from V \ Fa(Dj) ⊇ U ∩ DescD

j

. However, solubility is
more general, for example Fig. 1 is soluble, even though past
decisions are forgotten.

3 Value of Information
The VoI of a variable indicates how much the attainable ex-
pected utility increases when a variable is observed compared
to when it is not:
Definition 5 (Value of Information; Howard (1966)). For
an ID M and X 6∈ DescD, let MX6→D and MX→D be M
modified by respectively removing and adding the edge
X→D. Then, the value of information of X for D is:

max
π

EMX→D
π [U ]−max

π
EMX 6→D
π [U ].

This is closely related to the concept of materiality; an ob-
servation X ∈ Pa(D) is called material if its VoI is positive.

The graphical criterion for VoI that we will use itera-
tively removes information links that cannot contain useful
information, based on a condition called nonrequisiteness.
If X ⊥ U(Di) | Fa(Di) \ {X}, then both X and the in-
formation link X → Di are called nonrequisite, otherwise,
they are requisite. Intuitively, nonrequisite links contain no
information about influencable utility nodes, so the attainable
expected utility is not decreased by their removal. Removing
one nonrequisite observation link can make a previously req-
uisite information link nonrequisite, so the criterion involves
iterative removal of nonrequisite links. The criterion was first
proposed by Nilsson and Lauritzen (2000), who also proved
that it is sound. Formally, it is captured by what we calll a
d-reduction:
Definition 6 (d-reduction). The ID graph G′ is a d-
reduction of G if G′ can be obtained from G via a sequence
G = G1, ...,Gk = G′ where each Gi, i > 1 differs from
its predecessor Gi−1 by the removal of one nonrequisite
information link. A d-reduction is called minimal if it lacks
any nonrequisite information links.

10035



For any ID graph G, there is only one minimal d-reduction
(Nilsson and Lauritzen 2000), i.e. the minimal d reduction
is independent of the order in which edges are removed. We
can therefore denote the minimal d-reduction of G as G∗.
Thus, Nilsson and Lauritzen (2000, Theorem 3) states that if
an ID graph G contains X → D but G∗ does not, then X has
zero VoI in every ID compatible with G. Our completeness
result replaces this with an if and only if statement.
Theorem 7 (VoI Criterion). Let G be a soluble ID graph
containing an edge X → D from chance node X ∈ X to
decision D ∈ D. There exists an IDM compatible with G
such that X has strictly positive VoI for D if and only if the
minimal d-reduction contains X → D.

The VoI criterion is posed in terms of a graph G that con-
tains X → D. To analyse a graph that does not, one can
simply add the edge X → D then apply the same criterion
as long as the new ID graph is soluble (Shachter 2016).

The proof will be given in Section 5, with details in
Appendices C and D. We note that this excludes the case
of remembering a past decision X ∈ D, because Nilsson’s
criterion is incomplete for this case. For example, the simple
ID graph with the edges D → D′ → U and D → U , D
satisfies the graphical criterion of being requisite for D′, but
D′ has zero VoI because it is possible for the decision D
to be deterministically assigned some optimal value. This
means that there is no need for D′ to observe D.

4 ID Homomorphisms
To make the analysis easier, we will often want to transform
an original ID graph into a more structured one. Before de-
scribing the structure we will be aiming for, we consider the
general question of when a modified ID graph retains impor-
tant properties of the original. To this end, we will define the
concept of an ID homomorphism, which we then use to define
a class of property-preserving ID transformations. (Proofs
are supplied in Appendix B.)
Definition 8 (ID homomorphism). For ID graphs G=(V , E)
and G′=(V ′, E′), a map h :V ′→V is an ID homomorphism
from G′ to G iff:

(a) (Preserves node types) h maps each chance-, decision-, or
utility-node to a node of the same type;

(b) (Preserves links) For every A→ B in G′ either h(A)→
h(B) is in G, or h(A) = h(B);

(c) (Covers all information links) If h(N) → h(D) is in G
for D ∈D, then N → D is in G′; and

(d) (Combines only linked decisions) If h(D1)=h(D2) for
decisions D1 6= D2 in G′ then G′ contains D1→D2 or
D2→D1.

An ID homomorphism is analogous to the notion of
graph homomorphism from graph theory, which essentially
requires that edges are preserved along the map. An ID
homomorphism additionally requires that decisions in
the two graphs have equivalent parents (c), and that split
decisions are connected (d). This requirement maintains a
direct correspondence between policies on the two graphs,
so that, as we will see, ID homomorphisms preserve VoI.
Examples of ID homorphisms are given in Fig. 2.

Y D

U

G
original

D

U

G′
remove Y

D D′

U

G′′
duplicate D

D D′

U

G′′′
remove an edge

Figure 2: A sequence of homorphic transformations showing
how G can be homorphically transformed into G′′′ by compo-
sition of Lemmas 13 and 14. In the first step from G to G′, Y
is removed; in the step from G′ to G′′ a decision is duplicated;
and in the final step from G′′ to G′′′, a link is removed. Since
the mapping at each step (blue, green, and orange respec-
tively) meets the definition of an ID homomorphism, G′′′
must be an ID homorphism of G (Lemma 15).

The following three lemmas establish properties that are
preserved under ID homorphisms.
Lemma 9 (Preserves Solubility). Let G = (V , E) and G′ =
(V ′, E′) be ID graphs. If G is soluble, and there exists a
homomorphism h : V ′ → V , then G′ is also soluble.

Given a homomorphism h from G′ to G, we can define a
notion of equivalence between IDs (and policies) on each
graph. Roughly, two IDs are equivalent if the domain of every
node is a cartesian product of the domains of the nodes in its
pre-image (or the sum, in the case of a utility node). Formally:
Definition 10 (Equivalence). Mπ on G andM′π′ on Gπ′ are
equivalent if each non-utility node N in G has dom(N) :=
×Ni∈h−1(N) dom(N i), and PMπ (N = (n1, ..., nk)) =

PM
′

π′ (N1 = n1, ..., Nk = nk), and each utility node has
PMπ (U=u) = PM

′

π′ (
∑
Ui∈h−1(U) U

i=u).

Lemma 11 (Equivalence). If there is an ID homomorphism
h from G′ to G, then for any policy π′ in any IDM′ on G′
there is a policy π in a IDM on G such thatMπ andM′π′
are equivalent.

In this case, we will call M and π the ID and policy
transported along the homomorphism h. In the appendix, we
show that this correspondence between policies onM′ and
M is a bijection. Intuitively, if there is an ID homomorphism
G′ → G, this means we have a particular way to fit an ID on
G′ into G, while preserving the information that the decisions
can access. The basis of this proof is that properties (c,d) of
ID homomorphisms (Definition 8) require decisions to have
precisely the same information inM as inM′.

For our proof of Theorem 7, we will require that VoI is
preserved under homomorphism.
Lemma 12 (Preserves VoI). Let h : G′ → G be an ID
homomorphism. If X ′ has positive VoI for D′ in an IDM′
on G′, then X=h(X) has positive VoI for D=h(D′) in the
transported IDM=h(M′).

The proof builds heavily on there being a precise
correspondence between policies onM and onM′. Since
these two IDs are equivalent (Lemma 11), if obtaining

10036



certain information inM′ has value, so does obtaining that
information inM. The formal details are left to Appendix B.

We next present two transformation rules with which to
modify any ID graph, which are illustrated in Fig. 2. The
first transformation obtains a new graph G′ by deleting or
duplicating nodes, while preserving all links. Under this
transformation, the function that maps a node in G′ to its
‘originating node’ in G is an ID homomorphism:
Lemma 13 (Deletion & Link-Preserving Copying). Let
G=(V , E) be an ID graph and G′=(

⋃
N∈V Copies(N), E′)

an ID graph where Copies maps nodes in G to disjoint
sets in G′, and where E′ is a minimal set of edges such
that for any edge A → B in E and Ai ∈ Copies(A)
and Bi ∈ Copies(B) there is an edge Ai → Bi, and
if Ai, Aj ∈ Copies(A) are non-utility nodes then either
Ai → Aj or Ai ← Aj . Then the function h that maps each
V ∈ Copies(N) to N is an ID homomorphism.

Edges that are not information links can also be removed,
while having a homomorphism back to the original:
Lemma 14 (Link Pruning). Let G = (V , E) and G′ =
(V , E′) be ID graphs, where E′ ⊆ E and where for each
decision node D in V , every incoming edge N → D in E
is in E′. Then the identity function h(N) = N on V is a
homomorphism from G′ to G.

Finally, we can chain together a sequence of such graph
transformation steps, and still maintain a homomorphism
to the original. The justification for this is that a composition
of ID homomorphisms is again an ID homomorphism:
Lemma 15 (Composition). If h : G′ → G and h′ : G′′ → G′
are ID homomorphisms then the composition h◦h′ : G′′ → G
is an ID homomorphism.

5 Completeness of the VoI Criterion
We will now prove that the value of information (VoI) crite-
rion of Nilsson and Lauritzen (2000) is complete for chance
nodes (details are deferred to Appendix C and ??).

5.1 Parameterising One System
To prove that the criterion from Theorem 7 is complete we
must show that for any graph whereX → D is in the minimal
d-reduction, X has positive VoI for D. For example, consider
the graph in Fig. 3, which is its own d-reduction, and contains
X → D. In this graph, we can choose for X to be Bernoulli
distributed, for D to have the boolean domain {0, 1}, and for
U to be equal to 1 if and only if X and D match. Clearly, the
policy d = x will obtain E[U ] = 1. In contrast, ifX were not
observed (no link X → D), then no policy could achieve ex-
pected utility more than 0.5; so the VoI of X in this ID is 0.5.

X x ∼ Bern(0.5)

Dd ∈ {0, 1} U u = δd=x

Figure 3: The observation X has positive VoI for D.

A general procedure for parameterising any single-
decision ID graph meeting the Theorem 7 criterion to exhibit

positive VoI has been established by Everitt et al. (2021a)
and Lee and Bareinboim (2020). This procedure consists of
two steps: first, establish the existence of some paths, then
choose CPDs for the nodes on those paths. We call the paths
found in the first step a system, which will be a building
block for our analysis of IDs with multiple decisions. A
fully-general illustration of a system is shown in Fig. 4.
Definition 16 (System). A system s in an ID graph G is a
tuple (controls, infos, obss) where:
• The control path, controls, is a directed path Ds 99K Us

where Ds ∈D and Us ∈ U ,
• The info path, infos, is a path Pa(Ds) 3 Xs --- Us,

active given Fa(Ds) \ {Xs},
• obss maps each collider Ci in infos to an obs path, a

minimal-length directed path Ci99KDs.
We denote the information link of s, Xs → Ds, by

infolinks and the union of nodes in all paths of s by V s.

F 1

f1 ∼ Bern(0.5)

C1
ci=f i⊕f i+1

. . .

Cn

Qs

qs ∼ Bern(0.5)

O1 oi = ci OnXs

xs=f1

Ds

ds ∈ {0, 1}
Us

us = δqs=ds

path

edge

infos

obss

infolinks

controls

Figure 4: A system, annotated with a parameterization that
has positive VoI in the single-decision case. Dashed arrows
can zero or more nodes.

The existence of these paths follow from the graphical
criterion of Theorem 7. In particular, since X→D is in the
minimal d-reduction of G, there must exist a path from X to
some utility node U ∈ U ∩ DescD

s

, active given Fa(Ds)\
{Xs} (the “info path” in Definition 16).

The second step is to choose CPDs for the nodes V s in the
system s, as also illustrated in Fig. 4. The idea is to require the
decisionDs to match the value ofQs, by letting the utilityUs
equal 1 if and only if its parents along the control and infor-
mation paths are equal. If Xs is observed, the decision Ds =
Xs ⊕O1...⊕On = Qs yields E[Us] = 1, where ⊕ denotes
exclusive or (XOR). Otherwise, the observations O1, ..., On

are insufficient to decrypt Qs, giving E[Us] < 1. So Xs has
positive VoI. The intuitive idea is that Us tests whether Ds

knows Qs, based on the value ds transmitted along controls.

5.2 Parameterising Two Systems
When we have two decisions, however, it becomes insuffi-
cient to parameterise just one system. For example, suppose
that we try to apply the same scheme as in the previous sub-
section to the graph of Fig. 5a. Then, we would generate a ran-
dom bit at X and stipulate that the utility is U = 1 if the par-

10037



X

x ∼ Bern(0.5)

Dd = 0 V

v = d
Q′

X ′

x′ = v

D′

d′ = x

U

U = δd′=x

(a) The variable X has zero VoI for D.

X

x ∼ Bern(0.5)

Dd = x V

v = d
Q′q′ ∼ Bern(0.5)2

X ′

x′ = (v, q′[v])

D′

d′ = x′

U

U = δd′[2]=q′[d′[1]]

+δd′[1]=x

(b) The variable X has positive VoI for D.

Figure 5: In (a), a parameterisation of nodes in a single (red)
system fails to exhibit that X has positive VoI for D, whereas
in (b), positive VoI is exhibited by parameterising two (red
and blue) systems.

entsX andD′ on the red paths are equal. One might hope that
this would give D an incentive to observe X , so that d = x
is copied through D′ to obtain E[U ] = 1. And that is indeed
one way to obtain optimal expected utility. However, the pres-
ence of a second decision D′ means that maximal utility of
U = 1 may also be obtained using the policy d = 0, d′ = x,
which does not require X to be observed by D.

To achieve positive VoI, it is necessary to parameterise two
systems as shown in Fig. 5b. We first parameterise the second
(blue) system to ensure that x′ is transmitted to U , and then
parameterise the initial (red) system.

To check that X has positive VoI for D, we now solve
the combined model. Due to the solubility assumption, we
know that the optimal decision rule at D′ does not depend
on the decision rule taken at D. So let us consider D′ first.
D′ chooses a pair (i, j) where i is interpreted as an index of
the bits generated at Q′, and j is interpreted as a claim about
the ith bit of Q′. The first term of the utility U is equal to 1
if and only if the “claim” made by D′ is correct, i.e. if the
ith bit generated by Q′ really is j. X ′ contains (only) the vth

digit of Q′. Hence D′ can only ensure its “claim” is correct
if it chooses d′ = x′ = (v, q′[v]), where q′[v] denotes the
vth bit of q′. Having figured out the optimal policy for D′,
we next turn our attention to D. Intuitively, the task of D
is to match X , as in Fig. 3. The parameterization encodes
this task, by letting D determine V , which in turn influences
which bit of Q′ is revealed to D′. This allows U to check
the output of D via the index outputted by D′, and thereby
check whether D matched X . This means the second term
of U is 1 if and only if D = X so d = x the optimal policy
for D, with expected utility E[U ] = 2.

In contrast, if X were unobserved by D, then it would
no-longer be possible to achieve a perfect score on both terms
of U , so E[U ] < 2. This shows that X has positive VoI for D.

5.3 A Tree of Systems
In order to generalise this approach to arbitrary number of
decisions, we need a structure that specifies a system for
each decision, and indicates what downstream decisions
that system may depend on. These relationships may be
represented by a tree.

Definition 17 (Tree of systems). A tree of systems on an ID
graph G is a tuple T = (S, pred) where:

• S = (s0, ..., sk) is a list of systems (which may include
duplicates).
• pred maps each si to a pair (sj , p), where sj ∈ (S \{si})

is a system, p is one of the paths of sj (info, con-
trol, or obs), and infolinks

i

is in the path p, except
there is a unique “root system” sroot that is mapped to
(sroot, “None”).

Moreover, a full tree of systems is one where for each infor-
mation link X ′ → D′ in each path p in each system s, there
is precisely one system s′ whose information link equals
X ′ → D′ and with pred(s′) = (s, p).

The idea of a tree of systems is that if a decision Ds′ lies
on a path in the system s of some decision Ds, then s is a
predecessor of s′. We will use this tree to parameterise the
ID graph, and then we will also use it to supply an ordering
over the decisions (from leaf to root) in which the model can
be solved by backward induction.

In order to generalise the approach taken to parameterising
two systems, we need to reason about the systems indepen-
dently, in reverse order. If the systems overlap, however, this
makes it harder to reason about them independently. Thus
it is useful to define a notion of systems called normal form
that are well-behaved.

Definition 18 (Normal form tree). A tree T on G is in normal
form if all of the following hold:

(a) (position-in-tree-uniqueness) A node N in T can only
be in multiple paths p1, ..., pk of systems in the tree, if
splitting N into {N,N ′} via Lemma 13 and obtaining
T ′ from T by replacing N with N ′ in one of those paths
would make T ′ no longer a tree of systems.

(b) (no-backdoor-infopaths) Every system s in T has an info
path that starts with an outgoing link from Xs.

(c) (no-redundant-links) If N → N ′ is an edge to a non-
decision N ′, where one of N and N ′ is in a path in a
system of T , not including the nodes of the root informa-
tion link, then N → N ′ is in a path of a system of T .

An arbitrarily chosen tree will not generally be in normal
form. For example, Fig. 6a contains two systems (a red root
system for Xs → Ds and a blue child system for X ′ → D′)
that constitute a tree, but this tree fails all three requirements
for being in normal form. However, by a series of homo-
morphic transformations, it is possible to obtain a new graph
with a tree of systems that is in normal form (as in Fig. 6d).

Lemma 19 (Normal Form Existence). Let G be a soluble
ID graph whose minimal d-reduction G∗ contains X → D.
Then there is a normal form tree T ′ on a soluble ID graph G′,
with a homomorphism h from G′ to G where the information

10038



Xs

Ds

Y X ′ D′ U

Q′

(a) Y and U occur in both s
(red) and in s′ (blue)

Xs

Ds

Y X ′ D′ U

Y ′

U ′

Q′

(b) Copying Y and U ensures
position-in-tree-uniqueness

Xs

Ds

Y X ′ D′ U

O

Y ′

U ′

Q′

(c) Making a copy O of X ′,
ensures no-backdoor-infopaths.

Xs

Ds

Y X ′ D′ U

O

Y ′

U ′

Q′

(d) Finally, links are removed,
ensuring no-redundant-links

Figure 6: An ID graph (a) is homomorphically transformed via graphs (b) and (c) into a graph (d) whose tree is in normal form.

link X ′ → D′ of the root system of T ′, has h(X ′) = X ,
h(D′) = D, and every node in G is also in G′ but the only
nodes in G that are in T ′ are X and D.

Essentially, the procedure for obtaining a normal form tree
proceeds in four steps:

1. Construct a tree of systems on X → D: First, pick any
system forX → D. Then, pick any system for every other
information link X ′ → D′ in the existing system. Iterate
until every link in the tree has a system.

2. Make a copy (lemma 12) of each node for each position
(basically, each path) that node has in the tree. This en-
sures position-in-tree-uniqueness.

3. For systems whose infopath starts with an incoming link
X ← Y , copy X (lemma 12), to obtain X → O ← Y .
This ensures no-backdoor-infopaths.

4. Prune the graph (using lemma 13), by removing any (non-
information) links outside the tree of systems. This en-
sures no-redundant-links.

For example, in Figs. 6a to 6d, three transformations are
performed, each of which makes the tree meet one additional
requirement, ultimately yielding a normal form tree (Fig. 6d)
with a homomorphism to the original.

5.4 Proving Positive VoI Given a Normal Form
Tree

The reason for using normal form trees is that they enable
each system to be parameterized and solved independently.
In particular, we know that the optimal policy for one system
involves reproducing information from ancestor nodes such
as Qs. As optimal policies can be found with backwards
induction in soluble graphs, our approach involves finding
optimal policies in reverse order. It will therefore suffice
to prove that non-descendant systems cannot provide
information about ancestor nodes within the system. For
example, in Fig. 6a, when solving for πD

′
, we would like

to know that Ds cannot provide information about Q′.

Lemma 20 (Subtree Independence). Let s be a system
in a normal form tree T on a soluble ID graph G. Let
Pa−s = Pa(Ds) \ V s be Ds’s out-of-system parents,
Pas = Pa(Ds) ∩ V s be the within-system parents of Ds,
ObsDescs be the observation nodes in descendant systems
of s, and let Backs = Vs ∪ (Anc(Ds) \ Fa(Ds)). Then
Backs ⊥ Pa−s \ObsDescs | Pas ∪ObsDescs.

For example, Fig. 6d, has a normal form tree, which im-
plies the assurance that X ′ cannot use information from the
red system to tell it about Q′; formally, Q′ ⊥ (Y ∪Xs) | X ′.
Given that each decision Ds in the tree cannot use infor-
mation from ancestor systems, we can then prove that Ds

cannot know enough about Xs and Qs to perform optimally,
without observing Xs. More formally:
Lemma 21 (VoI Given Normal Form Tree). Let G be a
soluble ID graph with a normal form tree with root info
link X → D. Then there exists an ID compatible with G for
which X has positive VoI for D.

The formal proof is given in Appendix D.3. Informally,
in order to show that the decision of each system is forced to
behave as intended despite there now being a tree of systems
full of other decisions, we use Lemma 20 to show that the
utility that a decision obtains in system s only depends on the
information it obtains from within system s. This rules out
that ancestor decisions can observe and pass along relevant
information via a path outside the system. Moreover, we
know by the solubility assumption that the optimal decision
rule at a later decision cannot depend on the decision rule
followed by earlier decisions. The argument then proceeds
by backward induction. The final decision Dsn must copy
the value of Xsn . Given that it does so, the penultimate
decision Dsn−1

must do the same. And so on, until we find
that D must copy X , and cannot do so in any way other than
by observing it, meaning that X has positive VoI for D.

Finally, we can prove our main result, that there exists an
ID on G where X has positive VoI.

Proof of Theorem 7 (completeness direction). We know that
the d-reduction G∗ of G contains X → D. By Lemma 19,
there exists an ID graph G′ with normal form tree rooted at
a link X ′ → D′, with an ID homomorphism from G′ to G
that has h(X ′) = X and h(D′) = D. By Lemma 21, since
G′ has a normal form tree rooted at X ′ → D′, there exists an
ID on G′ in which X ′ has positive VoI for D′. By Lemma 12,
the presence of the ID homomorphism h from G′ to G means
that there also exists an IDM on G such that h(X ′) = X
has positive VoI for h(D′) = D, showing the result.

6 Applications & Implementation
Graphical criteria can help with modeling agents’ incentives
in a wide range of settings including (factored) Partially
Observed Markov Decision Processes (POMDPs) and

10039



Modified-action Markov Decision Processes (Langlois and
Everitt 2021). For concreteness, we show how our contribu-
tions can aid in analysing a supervision POMDP (Milli et al.
2017). In a supervision POMDP, an AI interacts with its
environment, given suggested actions from a human player.
We will assume that the human’s policy has already been
selected, in order to focus on the incentives of the AI system.

R1

S1

A1 R2

S2

A2 R3

S3

AH
1 AH

2

ΘH

Figure 7: A supervision POMDP with the human considered
part of the environment; we show 3 timesteps and 2 actions.

Given the graph in Fig. 7, we can apply the VoI criterion
to each AHi , the sole parent of Ai. The minimal d-reduction
is identical to the original graph, so since AHi 6⊥ Ri+1 | ∅,
the observation AHi can have positive VoI. This formalises
the claim of Milli et al. (2017) that in a supervision
POMDP, the agent “can learn about reward through [the
human’s] orders”. We can say the same about Cooperative
Inverse Reinforcement Learning (CIRL). CIRL differs from
supervision POMDPs only in that each human action AHi
directly affects the state Si+1. If G is modified by adding
edges AHi → Si+1, and the VoI criterion is applied at AHi
once again, we find that AHi may have positive VoI for Ai,
thereby formalising the claim that the robot is “incentivised
to learn” (Hadfield-Menell et al. 2016, Remark 1).

To facilitate convenient use of the graphical criterion, we
have implemented it in the open source ID library pycid
(Fox et al. 2021), whereas the previous implementation was
limited to single-decision IDs.1

7 Related Work
Value of information The concept of value of information
dates back to the earliest papers on influence diagrams
(Howard 1966; Matheson 1968). For a review of recent
advances, see Borgonovo and Plischke (2016).

Previous results have shown how to identify observations
with zero VoI or equivalent properties in various settings. In
the no forgetting setting, Fagiuoli and Zaffalon (1998) and
Nielsen and Jensen (1999) identified “structurally redundant”
and “required nodes” respectively. In soluble IDs, Nilsson
and Lauritzen (2000) proved that optimal decisions need
not rely on nonrequisite nodes. Completeness proofs in a
setting of one decision have been discovered for VoI and
its analogues by Zhang, Kumor, and Bareinboim (2020);
Lee and Bareinboim (2020); Everitt et al. (2021a). Finally, in
insoluble IDs, Lee and Bareinboim (2020) proved that certain
nodes are “redundant under optimality”. Of these works, only

1Code is available at www.github.com/causalincentives/pycid.

Nielsen and Jensen (1999) attempts a completeness result
for the multi-decision setting. However, as pointed out by
Everitt et al. (2021a), it falls short in two respects: Firstly, the
criterion X 6⊥ UD | Pa(D) is proposed, which differs from
nonrequisiteness in the conditioning set. Secondly, and more
importantly, the proof is incomplete because it assumes that
positive VoI follows from d-connectedness.

Submodel-trees Trees of systems are loosely related
to the “submodel-trees” of Lee, Marinescu, and Dechter
(2021). In both cases, the tree encodes an ordering in which
the ID can be solved, so the edges in a tree of systems
are analogous to those in a submodel-tree. The nodes,
however, (i.e. systems and submodels) differ. Whereas a
submodel-tree aids with solving IDs, a tree of systems helps
with parameterising an ID graph. As a result, a submodel
contains all nodes relevant for D, whereas a system consists
just one set of info-/control-/obs-paths. Relatedly, in a
submodel, downstream decisions may be solved and replaced
with a value node, whereas in a tree of systems, they are not.

8 Discussion and Conclusion

This paper has described techniques for analyzing soluble
influence diagrams. In particular, we introduced ID homo-
morphisms, a method for transforming ID graphs while pre-
serving key properties, and showed how these can be used
to establish equivalent ID graphs with conveniently parame-
terizable “trees of systems”. These techniques enabled us to
derive the first completeness result for a graphical criterion
for value of information in the multi-decision setting.

Given the promise of reinforcement learning methods,
it is essential that we obtain a formal understanding of
how multi-decision behavior is shaped. The graphical
perspective taken in this paper has both advantages and
disadvantages. On the one hand, some properties cannot be
distinguished from a graphical perspective alone. On the
other hand, it means our results are applicable even when
the precise relationships are unspecified or unknown. There
are a range of ways that this work could be beneficial. For
example, analogous results for the single-decision setting
have contributed to safety and fairness analyses (Armstrong
et al. 2020; Cohen, Vellambi, and Hutter 2020; Everitt et al.
2021b, 2019; Langlois and Everitt 2021; Everitt et al. 2021a).

Future work could include applying the tools developed
in this paper to other incentive concepts such as value of
control (Shachter 1986), instrumental control incentives, and
response incentives (Everitt et al. 2021a), to further analyse
the value of remembering past decisions (Shachter 2016;
Lee and Bareinboim 2020), and to generalize the analysis
to multi-agent influence diagrams (Hammond et al. 2021;
Koller and Milch 2003).

Acknowledgments

This work was supported in-part by the Leverhulme Centre
for the Future of Intelligence, Leverhulme Trust, under Grant
RC2015-067.

10040



References
Armstrong, S.; Orseau, L.; Leike, J.; and Legg, S. 2020.
Pitfalls in learning a reward function online. In International
Joint Conference on Artificial Intelligence (IJCAI).
Ashurst, C.; Carey, R.; Chiappa, S.; and Everitt, T. 2022.
Why Fair Labels Can Yield Unfair Predictions: Graphical
Conditions for Introduced Unfairness. In AAAI.
Borgonovo, E.; and Plischke, E. 2016. Sensitivity analysis: a
review of recent advances. European Journal of Operational
Research.
Cohen, M. K.; Vellambi, B. N.; and Hutter, M. 2020. Asymp-
totically Unambitious Artificial General Intelligence. In AAAI
Conference on Artificial Intelligence.
Evans, C.; and Kasirzadeh, A. 2021. User Tampering in Re-
inforcement Learning Recommender Systems. In FAccTRec
Workshop on Responsible Recommendation.
Everitt, T.; Carey, R.; Langlois, E.; Ortega, P. A.; and Legg,
S. 2021a. Agent Incentives: A Causal Perspective. In AAAI.
Everitt, T.; Hutter, M.; Kumar, R.; and Krakovna, V. 2021b.
Reward Tampering Problems and Solutions in Reinforcement
Learning: A Causal Influence Diagram Perspective. Synthese.
Everitt, T.; Kumar, R.; Krakovna, V.; and Legg, S. 2019.
Modeling AGI Safety Frameworks with Causal Influence
Diagrams. In IJCAI Workshop on AI Safety.
Fagiuoli, E.; and Zaffalon, M. 1998. A note about redundancy
in influence diagrams. International Journal of Approximate
Reasoning.
Farquhar, S.; Carey, R.; and Everitt, T. 2022. Path-Specific
Objectives for Safer Agent Incentives. In AAAI.
Fox, J.; Everitt, T.; Carey, R.; Langlois, E.; Abate, A.; and
Wooldridge, M. 2021. PyCID: A Python Library for Causal
Influence Diagrams. In Scientific Computing with Python
Conference (SciPy).
Hadfield-Menell, D.; Dragan, A.; Abbeel, P.; and Russell, S. J.
2016. Cooperative Inverse Reinforcement Learning. In Ad-
vances in Neural Information Processing Systems (Neurips).
Hammond, L.; Fox, J.; Everitt, T.; Abate, A.; and Wooldridge,
M. 2021. Equilibrium Refinements for Multi-Agent Influence
Diagrams: Theory and Practice. In International Conference
on Autonomous Agents and Multiagent Systems (AAMAS).
Holtman, K. 2020. AGI Agent Safety by Iteratively Im-
proving the Utility Function. International Conference on
Artificial General Intelligence.
Howard, R. A. 1966. Information Value Theory. IEEE
Transactions on Systems Science and Cybernetics.
Howard, R. A.; Matheson, J. E.; Howard, R. A.; and Mathe-
son, J. E. 2005. Influence Diagram Retrospective. Decision
Analysis.
Koller, D.; and Milch, B. 2003. Multi-agent influence di-
agrams for representing and solving games. Games and
Economic Behavior.
Kusner, M. J.; Loftus, J. R.; Russell, C.; and Silva, R. 2017.
Counterfactual Fairness. In Advances in Neural Information
Processing Systems (Neurips).

Langlois, E.; and Everitt, T. 2021. How RL Agents Behave
when their Actions are Modified. In AAAI.
Lee, J.; Marinescu, R.; and Dechter, R. 2021. Submodel
Decomposition Bounds for Influence Diagrams. In AAAI.
Lee, S.; and Bareinboim, E. 2020. Characterizing optimal
mixed policies: Where to intervene and what to observe. Ad-
vances in Neural Information Processing Systems (Neurips).
Matheson, J. E. 1968. The economic value of analysis and
computation. IEEE Transactions on Systems Science and
Cybernetics.
Milch, B.; and Koller, D. 2008. Ignorable Information in
Multi-Agent Scenarios. Technical report, Massachusetts Insi-
tute of Technology (MIT).
Milli, S.; Hadfield-Menell, D.; Dragan, A.; and Russell, S. J.
2017. Should robots be obedient? In International Joint
Conference on Artificial Intelligence (IJCAI).
Nielsen, T. D.; and Jensen, F. V. 1999. Welldefined decision
scenarios. In Uncertainty in Artificial Intelligence (UAI).
Nilsson, D.; and Lauritzen, S. L. 2000. Evaluating influence
diagrams using LIMIDs. Uncertainty in Artificial Intelligence
(UAI).
Shachter, R. D. 1986. Evaluating influence diagrams. Opera-
tions research.
Shachter, R. D. 1998. Bayes-Ball: The Rational Pastime (for
Determining Irrelevance and Requisite Information in Belief
Networks and Influence Diagrams). Uncertainty in Artificial
Intelligence (UAI).
Shachter, R. D. 2016. Decisions and Dependence in Influ-
ence Diagrams. In Proceedings of the Eighth International
Conference on Probabilistic Graphical Models.
Verma, T.; and Pearl, J. 1988. Causal Networks: Semantics
and Expressiveness. In Uncertainty in Artificial Intelligence
(UAI).
Zhang, J.; Kumor, D.; and Bareinboim, E. 2020. Causal
imitation learning with unobserved confounders. Advances
in Neural Information Processing Systems (Neurips).

10041


